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Joint Channel Estimation and Data Detection
with Cubature Kalman Filters

Raquel G. Machado, Luis G. P. Meloni and Renato R. Lopes

Resume—Este artigo apresenta a utilizagdo docubature for ISI compensation. Usually, the estimators and equalize
Kalman filter para a estimacéo dos coeficientes de um canalwork separately, and, in this type of scheme, the correfatio
MIMO duplamente seletivo e deteccdo de simbolos discretos pyapyveen estimated channel and data symbols introduced by
de forma conjunta. Com base no modelamento da din&mica . timates f detection in ch | estimati
temporal dos coeficientes do canal e dos simbolos transmitisl, usmg_es Ima eS_ rom dae eg lonin ¢ anne es_ Imation pﬂtpce
um vetor de estados é definido contendo ambas informacdesa@nd vice-versa is not considered. An interesting altevadt
levando a uma né&o-lineraridade na equagdo de observacdo dothis usual approach is described in [3], where a joint semi-
sistema proposto. Ocubature Kalman filteré entéo utilizado para  plind detection and channel estimation is proposed usigeg th
estimar as variaveis de estado, acompanhando satisfatoneente Bayesian estimation theory
a variagdo temporal do canal e reconhecendo os simbolos n B an filteri 4 '5 th terior d itv of th
transmitidos com baixa taxa de erros. n bayesian 1 _erlng (4], [5], the pos eror ensity o €

state of a system is used to evaluate the time and measurement

Palavras-Chave-Estimagdo e Detec¢do Conjuntas, Canal Du- \qates. The filter evaluates the statistical expectafiohese

| te Seleti Solucé E de Estad Filtro d " o - . .
ESrTgtTJrGa dgi;%an_ougao em E=spaco. de Estados, HIo 98 snditional densities through multi-dimensional intdgyaro-

Abstract—In this paper we approach the problem of joint viding an optimal analytical splutmn to nop-lmear f|_|1|aag|
channel estimation and data detection in multiple-input mutiple- ~ Problems. However, the solution of these integrals inwlve
output (MIMO) systems subject to fast frequency-selectivdading ~ great computational cost resulting in a mathematical bl
using the cubature Kalman filter(CKF). First, based on a model Therefore, approximations to the theoretical Bayesia@rfite
of the channel coefficients and transmitted symbol dynamics necessary in order to obtain practical non-linear filtemsthis

the problem is formulated in the state-space form, leading d . . e .
a nonlinear observation equation. Once the filtering problen is sense, a common solution for non-linear filtering problems i

defined, the CKF is presented and its numerical implementatin ~ Provided by theextended Kalman filte(EKF) [6], which is
is discussed. Finally, through numerical simulations, it $ shown based on local linear approximations to the Bayesian filter
that the CKF can be used to track channel variations and detdc using the first order Taylor series. However, there is a wide
transmitted symbols with low error rates. variety of scenarios where this first order approximatioasio
Keywords— Joint Estimation and Detection, Fast Frequency- not suffice, leading to a large estimation error and thugiligi
Selective Fading, State-Space Approach, Cubature Kalmaniker.  the applicability of the EKF.
In order to overcome the limitations of presently known
filters, the cubature Kalman filter(CKF), presented in [7],
l. INTRODUCTION was recently prop(?sed. The CK_F is a Gaussian approx_ima_tion
) o ) for the Bayesian filter that provides a more accurate filgerin
The use of multiple transmission and/or reception antenn@s,, EKF being able to solve a wider range of nonlinear
[1], [2], has played a central role in the design of moderrewir ,roplems. To approximate the theoretical Bayesian filtes, t
less communication systems. In practice, when using hith dgKF assumes that all conditional densities are Gaussian,
transmission rates in these systems, the transmitted $$mlpynsforming the multi-dimensional integral into a protuc
are subject to inter-symbol interference (ISI). Furtherend petween a non-linear function and a Gaussian probability
there exists a relative movement between the receiver afidyibution. Also, exploiting an efficient numerical igtation

the transmitter, the wireless channel through which data j$sthod known as cubature rules [8], the CKF requires little
transmitted will vary in time, becoming a fast frequencysomputational cost.

selective channel. Therefore, in order to implement pcatti  \yjithin this context, our goal is to efficiently perform a
wireless systems that use multiple transmit and/or receiygnt channel estimation and data detection in multiplesin
antennas, it is e_ssent|al to devise mefthods to Co”eCthetmuItiple—output (MIMO) systems subject to fast frequency-
symbols transmitted under such conditions. ~ selective fading. In order to achieve this goal, we first mode
Also, in order to mitigate channel effects, the receivghe channel estimation and data detection in the stateespac
must employ estimators for channel tracking and equalizgtm, noting that this leads to a non-linear filtering prable
Raquel G. Machado, Luis G. P. Meloni and Renato R Loper:lnd allowing US. to de.al With both prqblems_ SimUItane.OUSIy'
are with tHe Departnyﬁent of Corﬁmunications of the School oénce the non-linear filtering problem is defined, we discuss
Electrical and Computer Engineering, University of Camagin C.P. how thecubature Kalman filtercan be used to obtain mea-
Slloolbeg}zp@iéscoc%%?gé %%n:%garfp br Braziaquel , meloni,  syrement updates of the estimation and detection processes
: : Finally, we analyze the performance of the CKF for our

We acknowledge the financial support received from FINER41$3and ) ) ) )
CNPq (311844/2006-5). problem through numerical simulations, comparing theltssu
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with the EKF, which is the filter traditionally used in thispy 7, = [n{ ni_, ... nffoLd]T is the noise vector
of situation [9]. and

The remainder of this paper is organized as follows: Section H H 0

. . 0,k -~ L—1,k ce

Il describes the system model and the state-space formiltai 0  Hox o Hyoqx 0
The cubature Kalman filtederivation for the considered prob- H = ' '
lem is presented in Section Ill. Section IV reports simalati : . :
results and, finally, Section V concludes the paper. 0 0 Ho k Hr—1k

is a block Toepletiz matrix with each block representing the
Il. SYSTEM MODEL channel coefficients.
We consider a MIMO system witlV;- transmitting antennas ~ Also, definingvec(-) as the operator that stacks the columns
and Ny receiving antennas interfering with each other. Duef a matrix on top of each other, the column vector
to ISI, a signal received by an antennas also subject to h — H H H
interference from symbols transmitted previously. The-rel e=vee([Hox Hix ... Hioi])
tionship between received and transmitted signals at kmeepresents the channel coefficients. As described in [14],

can be expressed as: we can approximate the channel dynamics by a first order
autoregressive process (AR), and its time evolution can be
L—1 written as
Yi = Z HikXk—1 + Ny, 1) hie = Bhi—1 + Wi “)

=0
where s = Jo (27 fpTs), wy is a vector of white, Gaussian,

circularly symmetric, zero mean noise samples, with cevari
X1 ance matrixW = o2 Ix,n,, ando? = (1 — |5]?).

Xk

= [Hox Hie oo Hioay] : + M Finally, (3) can be rewritten as a combination of the channel
Xi_ L1 coefficients as follows:
where L is the numeer of channel pathy, = Vi = Xhy + 0y %)
[yl,k Yok - yNR,k] is the vector of signals receivedWhere
T .
by the Ny antennasx, = [z1x 22k ... @ngk] iSthe o o o
vector of signals transmitted by th®¥; antennasH; . is a 7 k=t kLAl
Ngr x Nt matrix,Vl =0,...,L — 1, whose element that lies X = Xe—1 Koz - X1 ® Iy
on thei — th row andj — th column is denoted by, ;; k. : : : "
corresponding to the value of tHe— th channel coefficient Xt ni1 Xben oo X N_L4e

between thg —th transmitting antenna and the th receiving
antenna at time: andmn. — [n . " k}T i and @ denotes the Kronecker product. Note that (4) and (5)
: k Lk 2k .- TNR, suggests the formulation of a filtering problem to perform th

a vector of white, Gaussian, circularly symmetric, zero mea : . . .
L . . . channel tracking as in [11]. However, in a practical commu-
i.i.d noise samples, with variance equaldp.

In addition, in order to represent the time variation o'?'catlon system, some elements dh may not be known by

the MIMO channel taps, we assume the typical Wide-sentshee receiver, preventing a linear state-space modeling.

stationary uncorrelated scattering (WSSUS) model [100is In order to develop the joint estimation _and detection state
: . : model, the augmented state vectry, is defined as

model, the channel taps have time-autocorrelation prigsert

that are governed by the Doppler rate and are given by 7, = [f(f hZ]T ] (6)

Elhijkhi jikear] = Jo(2m fpTs|AK|) (2)  Observe that in order to obtain the augmented state-equatio
where 7, is the zero-order Bessel function of the first kindi,t is necessary to describe the dynamic behavior of the vecto
fpT, is the normalized Doppler rate arf, is the baud Xi, that contains the stacked transmitted symbols. For such,
duration. note that, as time evolves, new transmitted symbols aredadde

We consider that the channel coefficients remain constdftthe top ofXx, while existing symbols are shifted towards
during N > 1 symbols and follow the time-autocorrelatiorfn® bottom. Consequently, definifig, ; as ai-by-j matrix of
function (2) for time evolution. Thus, we can stack the Z€ros, this time-shifting structure can be modeled as
received vectors, and write the received signals as a linear

At - e Xp = FuXp—1 +Ug 7

combination of the transmitted symbols, obtaining pE %
B B B where
Vi = HXp, + Ny, ®3)

i o . . = ONy x Np (N4 L—2) ONgx Ny

where 'y, = Vi Yiei oo Yien) Is a I Np (N+L—2) ONz (N+L-2)x Nr

column vector containing the N received vectors : .

N T T T . 15 a shift matrix and

e =[x xi_, ... xl_y_,.]" is a vector .

containing N + L — 1 stacked transmitted vectors, U = [X{  Oixnp(ver—2)]
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is a non-Gaussian noise with covariance matrix given by *N (21 Zijk—1, Prjk—1)dz,
_ H N T
U = Eluguy | L k—1Yk| k-1

— 52 I Ny ONop x Np(N+L—2) } and

v [ONT(N+L—2)XNT ONp (N4 L—2)x Np(N+L—2)
Vil 1 = Hitie— 1% 6—1 * N (Zi; Zij ko1, Prji—1)dzp
With the dynamic behavior ok, and hy in hand, (given Yelje—1 /Rn klk—1 7kl —1 (213 Zata—1, P )d2i

by (7) and (4), respectively), it is possible to write theteta (13)
transition matrix from timek — 1 to time k as where
E_ [Fz 0} ) Xijk—1 = [O01x vy Xi—1jk—1(1: No(N + L +2))7]
0 Fu and

whereF), = §. ) ] Hor ... Hr—1k 0

'I.'herefore,. using (5)—(8), we deflng Fhe process an_d ob;er- 0 Hou Ho 1k 0
vation equations for the problem of joint channel estimatioH 1 = 3
and data detection as : B - - :

F . 0 0 Ho.x e Hro—1x
Zk = F2h-1 G ©) As mentioned before, an analytic solution for these intisgra
Y. = C(k,zi) + Ny, (10) is mathematical intractable. However, in order to numdisica

h calculate such integrals, a third degree spherical-radial,

where N called cubature rule [7], can be used. According to the aubkat
C(k,z) = XNy = HXi rule, a standard Gaussian weighted integral can be computed
and as follows:
_ T 7T m
A = [ug Wi - FON (X0, Nax ~ 3 wif (&)
Q = Ela,ay] = [0 w} : i =t
where

Note that the process equation described in (9) is linear and 1 0 1 0
allows us to estimate the predicted statg,(;) and the pre- ¢ = m : : : :
dicted error covariancef;,_;) using Kalman filtering theory ~* 2 0 T ; ’ 0 T o

[9]. The observation equation, on the other hand, is a neatfin

function of the state variables, since it involves a muiltigion and

between state vector elements. Consequently, for measatem wi=—,1=1,2,....m=2x%S8.
updates, the Kalman filter can not be used and the optimal m

solution can only be achieved through Bayesian filtering. Wheres is the state dimension. _
Therefore, (11), (12) and (13) can be approximated as:

[1l. CUBATURE KALMAN FILTER 1
The Bayesian filtering paradigm evaluates the time and Yeje—1 = Ezc(k’sklk—lgiJrzklk—l) ’ (14)
measurement updates by calculating the statistical expeict =t
of the predicted state density based on past input-measuatem
pairs. As discussed earlier, this requires calculatingtimul
dimensional integrals in order to obtain the predicted mea- . -
surement and error covariance matrices associated with the *C(k, Skik—1&i + Zrk—1)" |
Kalman gain. Approximating this statistical descriptidhe A T 2
. . . - — 1to I }
CKF assumes that the conditional densities are Gaussian. Yeli—1Yili—1 i Nn
Thus, defininga,,—; as the estimate of a term at time & and m
given observation up th—1, the innovation covariance matrix, Py kih1 = 1 S [(Skp-1&i + Zup-1) (16)
the cross covariance matrix and the predicted measurement a mi4

as follows «C(k, Skjp—1& + Zrpp—1)"]

= X X T 5 T
Pyy k-1 /an (=1 Xk jk—1) (Hipp—1Xeje—1)" (1) S ST

s N (Zi; Zigpk—1, Proj—1)dZi wheresSy, ;.1 is a square-root of the predicted error covariance

1 & ;
Pyypik—1 = — D [Clk Stnrbi + Zue—1)  (15)

i=1

Prjp—1.

& ~T . . . . . .

Vi1 Ykk—1 T oalNg In scenarios with high SNR, i.e., wherf is small, this
filter may become numerically unstable. In order to mitigate

P = N A (12) suqh e_ffects, we use thsquare-root cubature Kal_man fllt_er

2kl - | | which is a square-root version of the CKF. This algorithm
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TABELA |
SQUARE-ROOT CUBATURE KALMAN FILTER ALGORITHM

BE
- —@— CKF
Time Update —¥— EKF

Zp—1 = Frp—1Zk_1)k—1 107
Prii—1 = Frh—1Po_1je—1Fi_1 + Qs
Measurement Update

Pyip—1 = Sk\kqsg‘k,l
Zij—1jk—1 = (Skk—1&i + Zg|e—1)(i=1,...,m)

Zipk—1 = £ [Z1k—11k—1 = Zrjk—1 - Zim h—1k—1 — Zk|k—1]
Yik—1lk—1 = C(k,Zi p_1|k—1)(i=1,...,m)

Vi1 = = [Yik-1/b—1 = Iijo—1- Ymk—1k—1 = Yio—1)
)A’k\kﬂ = % 2111 Yz’,k—l\k—l

Ry = Sr xSk,

Syy,klk—1 =Tia([Vep-1  Srx]) 0 5 10
Py klk-1= Zk\qukT‘k,l

Wy, = (sz,/c\kfl/sfzvk‘kfl)/swz,k\kfl

MSE

éN R(dB)Z‘O 2‘5 30

23k = Zije—1 T Wr (Y — Viejp—1) Fig. 1. Mean Square error of channel tracking fos7" = 0.001.
Sk = Tria ([Zrje—1 = Wedkje—1 WiSr.k])
Pyx = Sk\ksiﬂk
R
*-o. -y
efficiently performs the joint estimation and data detattic d‘“--Z::.\
since the SCKEF treats the nonlinearity inherent to the @nobl el TeIeel 1
Defining Tria (X) as a general triangularization algorithm [12] w "‘\,\"\:‘t\
the steps are shown in Table 1. 2} AT MUY
. . . . = Seo ~o ik T
The use of triangularizations for covariance updates, hed 1 el el *
use of the least-squares method for calculating the Kalm 07 RIS SO
gain used in the algorithm improves the numerical stabili \\\ Tt e
of the SCKF. Furthermore, its computational complexity, i I
terms of flops, is similar to the EKF, growing proportionally TS
e e S T
In order to correctly detect the received symbols, it is
important to note that the estimated stacked vectors Fig. 2. Mean Square Error of channel tracking fo57" = 0.01.
X = [)A(g Xg—l EE XZ—N—L—AT

. L . clan be observed from thdean Square ErrofMSE) of the
contains the estimation of the current transmitted symba - :
L . . . channel coefficients an8ymbol Error Rate(SER) analysis.
vector and the estimation of vectors transmitted in pase ti

n1’he MSE and SER values for each SNR considered are

instants. This facF suggests that_a yector estimated .'ncgmpared to perfect conditions, i.e, for channel estinmatio
later moment provides a better estimative for the transahitt )
we consider the case when all symbols are known by the

symbols. Thus, a fixed delay in detection is introduced, aed treceiver (Best Estimation - BE) and for symbol detection,

final estimative for vectoxy, is obtained at timé+ N + L —2, . .
where a decision device gives the detected symbols. we plot the performance of_a Kalmgn equalizer with pe_r_fect
9 Y knowledge of channel state information (KF-CSI). In adufiti
for comparison purposes, the performance of a receivegusin
IV. SIMULATIONS AND RESULTS the extended Kalman filte(EKF) for joint estimation and
In this section, we report the results obtained by applyirdgtection [13] is also shown.
the algorithm in Table 1, to the problem of joint channel Fig. 1 presents the MSE of the channel estimation per-
estimation and data detection in MIMO wireless communfermed by the CKF, the EKF, and by an estimator with
cation system subject to fast frequency-selective fadillg. complete knowledge of all symbols, representing the best
suppose a communication system as described by (3), in@ossible channel estimative (BE) for a normalized dopyats r
environment with 2 transmitting and 4 receiving antennas, of 0.001. It is clear that the estimation provided by the CKF is
which 1 x 10° QPSK symbols are sent in frames composdaktter than the estimation provided by the EKF, being closer
by 25 training symbols and 125 data symbols. The channelthe best possible channel estimative, which indicates th
coefficients were generated by an autoregressive process agbility of the CKF in satisfactorily tracking the variatiaof
(4), with O dB average power, and we assume that the receiebannel coefficients. Figure 2 depicts the MSE performance
knows the noise variance?. of the CKF and the EKF fofpT = 0.01. Note that for higher
Two scenarios were considered: a normalized Doppler r&88IR’s, the EKF error performance stops improving, while
fpT = 0.001 with N = 6 stacked vectors andlpT = 0.01 the MSE values for CKF continues to decrease. This can be
with N = 10. For both scenarios, the algorithm’s performancexplained mainly by the fact that very accurate measuresnent
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KF-CSI, fpT = 0.001
—@—EKF, fpT = 0.001
—8—CKF, fp T = 0.001
- = =KFCS|, fpT = 0.01
A -8 =-EKF, fpT = 0.01
CKF, fpT = 0.01

(1]

(2]
» (3]

SER

N (4

N (5]

(6]
(71
(8]
[9
in some nonlinear filtering problems may result in numeric
instability, which ends up interfering on channel estiati
Thus, besides being a better estimator, this result shoats tHO]
the square-root cubature Kalman filteis also less prone to [11]
numerical instabilities.

The symbol error rate for detected symbols using the C
the EKF and a Kalman equalizer with perfect channel knowl-
edge (KF-CSI) is presented in Fig. 3. As expected, for slower
channel variations, all filters have better performancelseiV [13
the normalized channel Doppler rate($)01, the difference
between the CKF and the KF-CSI is of approximately 3dB,
while the difference between the EKF and the KF-CSI iﬁ4
of approximately 6dB. When we increase the frequency of
channel variation tofpT = 0.01, this difference is of about
7dB for the CKF and 9dB for EKF. Analyzing the SER values,
the CKF once again outperforms the EKF.

SNR(dB)"

Fig. 3. Symbol error rate for detected symbols.

V. CONCLUSIONS

In this paper, theeubature Kalman filte{ CKF), was used
to perform joint channel estimation and data detection &t fa
frequency-selective MIMO environments. In order to jomtl
estimate the channel and detect the symbols, the problem
was modeled in the state-space form by defining an extended
state-equation containing both the channel coefficiendstiaa
transmitted symbols. This formulation leads to a nonlinear
observation equation, which prevents the use of the well-
known Kalman Filter.

Once the estimation problem was defined, théature
Kalman filter (CKF) was presented, along with its square-
root version. Thesquare-root cubature Kalman filtg)lSCKF)
is a variation of the traditional CKF, and was used in order to
guarantee numerical stability.

Simulations proved the ability of the CKF to efficiently tkac
fast channel variations and correctly detect symbols witwa
error rate. Furthermore, the CKF outperformed &xtended
Kalman filter (EKF), presenting a smaller MSE for channel
estimation and a smaller SER for symbol detection than the
EKF, which is the commonly nonlinear filtering solution. The
simulations also show that the CKF is less susceptible to
numerical issues than the EKF, despite the fact that both
algorithms have comparable computational complexities.
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