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Joint Channel Estimation and Data Detection
with Cubature Kalman Filters
Raquel G. Machado, Luis G. P. Meloni and Renato R. Lopes

Resumo— Este artigo apresenta a utilização do cubature
Kalman filter para a estimação dos coeficientes de um canal
MIMO duplamente seletivo e detecção de símbolos discretos
de forma conjunta. Com base no modelamento da dinâmica
temporal dos coeficientes do canal e dos símbolos transmitidos,
um vetor de estados é definido contendo ambas informações
levando a uma não-lineraridade na equação de observação do
sistema proposto. Ocubature Kalman filteré então utilizado para
estimar as variáveis de estado, acompanhando satisfatoriamente
a variação temporal do canal e reconhecendo os símbolos
transmitidos com baixa taxa de erros.

Palavras-Chave— Estimação e Detecção Conjuntas, Canal Du-
plamente Seletivo, Solução em Espaço de Estados, Filtro de
Curvatura de Kalman.

Abstract— In this paper we approach the problem of joint
channel estimation and data detection in multiple-input multiple-
output (MIMO) systems subject to fast frequency-selectivefading
using the cubature Kalman filter(CKF). First, based on a model
of the channel coefficients and transmitted symbol dynamics,
the problem is formulated in the state-space form, leading to
a nonlinear observation equation. Once the filtering problem is
defined, the CKF is presented and its numerical implementation
is discussed. Finally, through numerical simulations, it is shown
that the CKF can be used to track channel variations and detect
transmitted symbols with low error rates.

Keywords— Joint Estimation and Detection, Fast Frequency-
Selective Fading, State-Space Approach, Cubature Kalman Filter.

I. I NTRODUCTION

The use of multiple transmission and/or reception antennas
[1], [2], has played a central role in the design of modern wire-
less communication systems. In practice, when using high data
transmission rates in these systems, the transmitted symbols
are subject to inter-symbol interference (ISI). Furthermore, if
there exists a relative movement between the receiver and
the transmitter, the wireless channel through which data is
transmitted will vary in time, becoming a fast frequency-
selective channel. Therefore, in order to implement practical
wireless systems that use multiple transmit and/or receive
antennas, it is essential to devise methods to correctly detect
symbols transmitted under such conditions.

Also, in order to mitigate channel effects, the receiver
must employ estimators for channel tracking and equalizers
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for ISI compensation. Usually, the estimators and equalizers
work separately, and, in this type of scheme, the correlation
between estimated channel and data symbols introduced by
using estimates from detection in channel estimation process
and vice-versa is not considered. An interesting alternative to
this usual approach is described in [3], where a joint semi-
blind detection and channel estimation is proposed using the
Bayesian estimation theory.

In Bayesian filtering [4], [5], the posterior density of the
state of a system is used to evaluate the time and measurement
updates. The filter evaluates the statistical expectation of these
conditional densities through multi-dimensional integrals, pro-
viding an optimal analytical solution to non-linear filtering
problems. However, the solution of these integrals involves
great computational cost resulting in a mathematical problem.
Therefore, approximations to the theoretical Bayesian filter are
necessary in order to obtain practical non-linear filters. In this
sense, a common solution for non-linear filtering problems is
provided by theextended Kalman filter(EKF) [6], which is
based on local linear approximations to the Bayesian filter
using the first order Taylor series. However, there is a wide
variety of scenarios where this first order approximation does
not suffice, leading to a large estimation error and thus limiting
the applicability of the EKF.

In order to overcome the limitations of presently known
filters, the cubature Kalman filter(CKF), presented in [7],
was recently proposed. The CKF is a Gaussian approximation
for the Bayesian filter that provides a more accurate filtering
than EKF, being able to solve a wider range of nonlinear
problems. To approximate the theoretical Bayesian filter, the
CKF assumes that all conditional densities are Gaussian,
transforming the multi-dimensional integral into a product
between a non-linear function and a Gaussian probability
distribution. Also, exploiting an efficient numerical integration
method known as cubature rules [8], the CKF requires little
computational cost.

Within this context, our goal is to efficiently perform a
joint channel estimation and data detection in multiple-input
multiple-output (MIMO) systems subject to fast frequency-
selective fading. In order to achieve this goal, we first model
the channel estimation and data detection in the state-space
form, noting that this leads to a non-linear filtering problem,
and allowing us to deal with both problems simultaneously.
Once the non-linear filtering problem is defined, we discuss
how the cubature Kalman filtercan be used to obtain mea-
surement updates of the estimation and detection processes.
Finally, we analyze the performance of the CKF for our
problem through numerical simulations, comparing the results
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with the EKF, which is the filter traditionally used in this type
of situation [9].

The remainder of this paper is organized as follows: Section
II describes the system model and the state-space formultaion.
Thecubature Kalman filterderivation for the considered prob-
lem is presented in Section III. Section IV reports simulation
results and, finally, Section V concludes the paper.

II. SYSTEM MODEL

We consider a MIMO system withNT transmitting antennas
and NR receiving antennas interfering with each other. Due
to ISI, a signal received by an antennai is also subject to
interference from symbols transmitted previously. The rela-
tionship between received and transmitted signals at timek
can be expressed as:

yk =

L−1
∑

l=0

Hl,kxk−l + nk (1)

=
[

H0,k H1,k . . . HL−1,k
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where L is the number of channel paths,yk =
[

y1,k y2,k . . . yNR,k

]T
is the vector of signals received

by theNR antennas,xk =
[

x1,k x2,k . . . xNT ,k

]T
is the

vector of signals transmitted by theNT antennas,Hl,k is a
NR × NT matrix, ∀l = 0, . . . , L − 1, whose element that lies
on the i − th row andj − th column is denoted byhi,j,l,k,
corresponding to the value of thel − th channel coefficient
between thej−th transmitting antenna and thei−th receiving
antenna at timek, andnk =

[

n1,k n2,k . . . nNR,k

]T
is

a vector of white, Gaussian, circularly symmetric, zero mean,
i.i.d noise samples, with variance equal toσ2

n.
In addition, in order to represent the time variation of

the MIMO channel taps, we assume the typical wide-sense
stationary uncorrelated scattering (WSSUS) model [10]. Inthis
model, the channel taps have time-autocorrelation properties
that are governed by the Doppler rate and are given by

E[hi,j,l,kh∗
i,j,l,k+∆k] ≈ J0(2πfDTs|∆k|) (2)

whereJ0 is the zero-order Bessel function of the first kind,
fDTs is the normalized Doppler rate andTs is the baud
duration.

We consider that the channel coefficients remain constant
during N ≥ 1 symbols and follow the time-autocorrelation
function (2) for time evolution. Thus, we can stack theN

received vectors, and write the received signals as a linear
combination of the transmitted symbols, obtaining

ỹk = Hx̃k + ñk (3)

where ỹk =
[

yT
k yT

k−1 . . . yT
k−N+1

]T
is a

column vector containing the N received vectors,
x̃k =

[

xT
k xT

k−1 . . . xT
k−N−L−2

]T
is a vector

containing N + L − 1 stacked transmitted vectors,

ñk =
[

nT
k nT

k−1 . . . nT
k−N−L−2

]T
is the noise vector

and
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is a block Toepletiz matrix with each block representing the
channel coefficients.

Also, definingvec(·) as the operator that stacks the columns
of a matrix on top of each other, the column vector

hk = vec(
[

H0,k H1,k . . . HL−1,k

]

)

represents the channel coefficients. As described in [14],
we can approximate the channel dynamics by a first order
autoregressive process (AR), and its time evolution can be
written as

hk = βhk−1 + wk (4)

whereβ = J0(2πfDTs), wk is a vector of white, Gaussian,
circularly symmetric, zero mean noise samples, with covari-
ance matrixW = σ2

wINRNT
, andσ2

w = (1 − |β|2).
Finally, (3) can be rewritten as a combination of the channel

coefficients as follows:

ỹk = Xhk + ñk (5)

where
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
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⊗ INR

and⊗ denotes the Kronecker product. Note that (4) and (5)
suggests the formulation of a filtering problem to perform the
channel tracking as in [11]. However, in a practical commu-
nication system, some elements inX may not be known by
the receiver, preventing a linear state-space modeling.

In order to develop the joint estimation and detection state
model, the augmented state vector,zk, is defined as

zk =
[

x̃T
k hT

k

]T
. (6)

Observe that in order to obtain the augmented state-equation,
it is necessary to describe the dynamic behavior of the vector
x̃k, that contains the stacked transmitted symbols. For such,
note that, as time evolves, new transmitted symbols are added
to the top ofx̃k, while existing symbols are shifted towards
the bottom. Consequently, defining0i×j as ai-by-j matrix of
zeros, this time-shifting structure can be modeled as

x̃k = Fxx̃k−1 + uk , (7)

where

Fx =

[

0NT×NT (N+L−2) 0NT×NT

INT (N+L−2) 0NT (N+L−2)×NT

]

is a shift matrix and

uk =
[

xT
k 01×NT (N+L−2)

]T
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is a non-Gaussian noise with covariance matrix given by

U = E[ukuH
k ]

= σ2
u

[

INT
0NT×NT (N+L−2)

0NT (N+L−2)×NT
0NT (N+L−2)×NT (N+L−2)

]

.

With the dynamic behavior of̃xk and hk in hand, (given
by (7) and (4), respectively), it is possible to write the state
transition matrix from timek − 1 to time k as

F =

[

Fx 0
0 Fh

]

(8)

whereFh = β.
Therefore, using (5)–(8), we define the process and obser-

vation equations for the problem of joint channel estimation
and data detection as

zk = Fzk−1 + qk (9)

ỹk = C(k, zk) + ñk (10)

where
C(k, zk) = Xhk = Hx̃k

and

qk =
[

uT
k wT

k

]T
,

Q = E[qkqH
k ] =

[

U 0
0 W

]

.

Note that the process equation described in (9) is linear and
allows us to estimate the predicted state (ẑk|k−1) and the pre-
dicted error covariance (Pk|k−1) using Kalman filtering theory
[9]. The observation equation, on the other hand, is a nonlinear
function of the state variables, since it involves a multiplication
between state vector elements. Consequently, for measurement
updates, the Kalman filter can not be used and the optimal
solution can only be achieved through Bayesian filtering.

III. C UBATURE KALMAN FILTER

The Bayesian filtering paradigm evaluates the time and
measurement updates by calculating the statistical expectation
of the predicted state density based on past input-measurement
pairs. As discussed earlier, this requires calculating multi-
dimensional integrals in order to obtain the predicted mea-
surement and error covariance matrices associated with the
Kalman gain. Approximating this statistical description,the
CKF assumes that the conditional densities are Gaussian.
Thus, definingak|k−1 as the estimate of a terma at time k

given observation up tok−1, the innovation covariance matrix,
the cross covariance matrix and the predicted measurement are
as follows

Pyy,k|k−1 =

∫

Rnz

(Hk|k−1x̃k|k−1)(Hk|k−1x̃k|k−1)
T (11)

∗N (zk; ẑk|k−1, Pk|k−1)dzk

−ŷk|k−1ŷT
k|k−1 + σ2

nINR
,

Pzy,k|k−1 =

∫

Rnz

zk(Hk|k−1x̃k|k−1)
T (12)

∗N (zk; ẑk|k−1, Pk|k−1)dzk

−ẑk|k−1ŷT
k|k−1

and

ŷk|k−1 =

∫

Rnz

Hk|k−1x̃k|k−1 ∗ N (zk; ẑk|k−1, Pk|k−1)dzk ,

(13)
where
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As mentioned before, an analytic solution for these integrals
is mathematical intractable. However, in order to numerically
calculate such integrals, a third degree spherical-radialrule,
called cubature rule [7], can be used. According to the cubature
rule, a standard Gaussian weighted integral can be computed
as follows:

∫

Rn

f(x)N (x; 0, I)dx ≈
m

∑

i=1

ωif(ξi)

where

ξi =

√

m

2
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0
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−1











and
ωi =

1

m
, i = 1, 2, . . . , m = 2 ∗ S.

whereS is the state dimension.
Therefore, (11), (12) and (13) can be approximated as:

ŷk|k−1 =
1

m

m
∑

i=1

C(k, Sk|k−1ξi + ẑk|k−1) , (14)

Pyy,k|k−1 =
1

m

m
∑

i=1

[C(k, Sk|k−1ξi + ẑk|k−1) (15)

∗C(k, Sk|k−1ξi + ẑk|k−1)
T ]

−ŷk|k−1ŷT
k|k−1 + σ2

nINR
,

and

Pzy,k|k−1 =
1

m

m
∑

i=1

[(Sk|k−1ξi + ẑk|k−1) (16)

∗C(k, Sk|k−1ξi + ẑk|k−1)
T ]

−ẑk|k−1ŷT
k|k−1 ,

whereSk|k−1 is a square-root of the predicted error covariance
Pk|k−1.

In scenarios with high SNR, i.e., whenσ2
n is small, this

filter may become numerically unstable. In order to mitigate
such effects, we use thesquare-root cubature Kalman filter,
which is a square-root version of the CKF. This algorithm
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TABELA I

SQUARE-ROOT CUBATURE KALMAN FILTER ALGORITHM

Time Update
ẑk|k−1 = Fk,k−1ẑk−1|k−1

Pk|k−1 = Fk,k−1Pk−1|k−1FH
k,k−1 + Qk

Measurement Update
Pk|k−1 = Sk|k−1ST

k|k−1

Zi,k−1|k−1 = (Sk|k−1ξi + ẑk|k−1)(i=1,...,m)

Zk|k−1 = 1
m

[

Z1,k−1|k−1 − ẑk|k−1 . . . Zm,k−1|k−1 − ẑk|k−1

]

Yi,k−1|k−1 = C(k, Zi,k−1|k−1)(i=1,...,m)

Yk|k−1 = 1
m

[

Y1,k−1|k−1 − ŷk|k−1 . . . Ym,k−1|k−1 − ŷk|k−1

]

ŷk|k−1 = 1
m

∑m
i=1 Yi,k−1|k−1

Rk = SR,kST
R,k

Syy,k|k−1 = Tria (
[

Yk|k−1 SR,k

]

)

Pzy,k|k−1 = Zk|k−1Y
T
k|k−1

Wk = (Pxz,k|k−1/ST
xz,k|k−1

)/Sxz,k|k−1

ẑk|k = ẑk|k−1 + Wk(yk − ŷk|k−1)

Sk|k = Tria (
[

Zk|k−1 − WkYk|k−1 WkSR,k

]

)

Pk|k = Sk|kST
k|k

efficiently performs the joint estimation and data detection
since the SCKF treats the nonlinearity inherent to the problem.
DefiningTria (X) as a general triangularization algorithm [12],
the steps are shown in Table 1.

The use of triangularizations for covariance updates, and the
use of the least-squares method for calculating the Kalman
gain used in the algorithm improves the numerical stability
of the SCKF. Furthermore, its computational complexity, in
terms of flops, is similar to the EKF, growing proportionally
to the cube of dimension of the statez that is composed by
the channel paths and vectors stacked for observation.

In order to correctly detect the received symbols, it is
important to note that the estimated stacked vectors

ˆ̃xk =
[

x̂T
k x̂T

k−1 . . . x̂T
k−N−L−2

]T

contains the estimation of the current transmitted symbols
vector and the estimation of vectors transmitted in past time
instants. This fact suggests that a vector estimated in a
later moment provides a better estimative for the transmitted
symbols. Thus, a fixed delay in detection is introduced, and the
final estimative for vector̂xk is obtained at timek+N +L−2,
where a decision device gives the detected symbols.

IV. SIMULATIONS AND RESULTS

In this section, we report the results obtained by applying
the algorithm in Table 1, to the problem of joint channel
estimation and data detection in MIMO wireless communi-
cation system subject to fast frequency-selective fading.We
suppose a communication system as described by (3), in an
environment with 2 transmitting and 4 receiving antennas, in
which 1 × 106 QPSK symbols are sent in frames composed
by 25 training symbols and 125 data symbols. The channel
coefficients were generated by an autoregressive process asin
(4), with 0 dB average power, and we assume that the receiver
knows the noise varianceσ2

n.
Two scenarios were considered: a normalized Doppler rate

fDT = 0.001 with N = 6 stacked vectors andfDT = 0.01
with N = 10. For both scenarios, the algorithm’s performance
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Fig. 1. Mean Square error of channel tracking forfDT = 0.001.
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Fig. 2. Mean Square Error of channel tracking forfDT = 0.01.

can be observed from theMean Square Error(MSE) of the
channel coefficients andSymbol Error Rate(SER) analysis.
The MSE and SER values for each SNR considered are
compared to perfect conditions, i.e, for channel estimation,
we consider the case when all symbols are known by the
receiver (Best Estimation - BE) and for symbol detection,
we plot the performance of a Kalman equalizer with perfect
knowledge of channel state information (KF-CSI). In addition,
for comparison purposes, the performance of a receiver using
the extended Kalman filter(EKF) for joint estimation and
detection [13] is also shown.

Fig. 1 presents the MSE of the channel estimation per-
formed by the CKF, the EKF, and by an estimator with
complete knowledge of all symbols, representing the best
possible channel estimative (BE) for a normalized doppler rate
of 0.001. It is clear that the estimation provided by the CKF is
better than the estimation provided by the EKF, being closer
to the best possible channel estimative, which indicates the
ability of the CKF in satisfactorily tracking the variationof
channel coefficients. Figure 2 depicts the MSE performance
of the CKF and the EKF forfDT = 0.01. Note that for higher
SNR’s, the EKF error performance stops improving, while
the MSE values for CKF continues to decrease. This can be
explained mainly by the fact that very accurate measurements
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Fig. 3. Symbol error rate for detected symbols.

in some nonlinear filtering problems may result in numeric
instability, which ends up interfering on channel estimation.
Thus, besides being a better estimator, this result shows that
the square-root cubature Kalman filteris also less prone to
numerical instabilities.

The symbol error rate for detected symbols using the CKF,
the EKF and a Kalman equalizer with perfect channel knowl-
edge (KF-CSI) is presented in Fig. 3. As expected, for slower
channel variations, all filters have better performances. When
the normalized channel Doppler rate is0.001, the difference
between the CKF and the KF-CSI is of approximately 3dB,
while the difference between the EKF and the KF-CSI is
of approximately 6dB. When we increase the frequency of
channel variation tofDT = 0.01, this difference is of about
7dB for the CKF and 9dB for EKF. Analyzing the SER values,
the CKF once again outperforms the EKF.

V. CONCLUSIONS

In this paper, thecubature Kalman filter(CKF), was used
to perform joint channel estimation and data detection in fast
frequency-selective MIMO environments. In order to jointly
estimate the channel and detect the symbols, the problem
was modeled in the state-space form by defining an extended
state-equation containing both the channel coefficients and the
transmitted symbols. This formulation leads to a nonlinear
observation equation, which prevents the use of the well-
known Kalman Filter.

Once the estimation problem was defined, thecubature
Kalman filter (CKF) was presented, along with its square-
root version. Thesquare-root cubature Kalman filter(SCKF)
is a variation of the traditional CKF, and was used in order to
guarantee numerical stability.

Simulations proved the ability of the CKF to efficiently track
fast channel variations and correctly detect symbols with alow
error rate. Furthermore, the CKF outperformed theextended
Kalman filter (EKF), presenting a smaller MSE for channel
estimation and a smaller SER for symbol detection than the
EKF, which is the commonly nonlinear filtering solution. The
simulations also show that the CKF is less susceptible to
numerical issues than the EKF, despite the fact that both
algorithms have comparable computational complexities.
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