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Resumo— A disponibilidade da informação do estado do canal
no transmissor (Channel State Information at the Transmitter
- CSIT) melhora o desempenho dos sistemas sem fio MIMO
multiusuário através do uso de técnicas de precodificação. A
maioria dessas técnicas assume que o transmissor conhece o
canal perfeitamente. Um CSIT preciso pode ser obtido de forma
confiável quando o canal muda lentamente; contudo, é muito
difícil obter tal informação quando os usuários se movimentam
rapidamente. Dessa forma, em tais cenários, CSIT imperfeito ou
parcial tem uma grande importância. Neste trabalho apresenta-
mos um modelo de canal dinâmico multiusuário que considera
processamento multicelular entre as BSs, no qual cada BS
transmite para todos os usuários. Este cenário é bastante visado
para o gerenciamento de interferência em redes sem fio das
próximas gerações.

Palavras-Chave— CSIT parcial, precodificação, canal de re-
torno restrito, sistema MIMO multiusuário, antenas distri buídas.

Abstract— Channel state information at the transmitter (CSIT)
can improve the performance of MIMO multiuser wireless system
by means of precoding techniques. Most of them assume the
transmitter knows the channel exactly. Accurate CSIT may be
obtained reliably when the channel changes slowly, but it ismuch
more difficult to detain in situations where the users are highly
mobile. Thus, partial or imperfect CSIT has a great importance
in such scenarios. In this work, we present a multiuser dynamic
channel model considering multicell processing among BSs,in
which each BS transmits to all users. This is the scenario envi-
saged for interference management in future wireless networks.

Keywords— Partial CSIT, precoding, limited feedback, multiu-
ser MIMO system, distributed antennas.

I. I NTRODUCTION

Multiple-input multiple-output (MIMO) systems are a key
component of future wireless communication systems, because
of their promising improvement in terms of performance and
bandwidth efficiency. Distributed antenna systems (DAS) isa
network of spatially separated antenna nodes connected to a
common source via a transport medium that provides wireless
service within a geographic area or structure [1].

The benefits of MIMO are further enhanced when the
transmitter, in addition to the receiver, also knows the com-
munication channel. Exploiting channel state informationat
the transmitter (CSIT) is of great practical interest in MIMO
wireless systems, since it helps increase the system capacity
and improve the system error performance. It has application
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in areas such as precoding [2], power control [3] and link adap-
tation [4]. Precoding is a processing technique that exploits
CSIT by operating on the signal before transmission. Most of
precoding designs rely on the assumption that the channel is
perfectly known at the transmitter [5] [6]. However, it is not
reasonable to assume that all channel coefficients to every user
can be made available to the transmitter. This is especiallytrue
if the number of transmit antennas or the number of users is
large.

In this work, a multicell multiuser dynamic model channel
is proposed and well-known precoder techniques are used to
valid the proposed model. Moreover, we consider a MIMO
system with a multicell processing scheme, in which each BS
transmits to all users.

The rest of the paper is organized as follows. In section
II, the multicell multiuser MIMO system considering DAS
is commented. In section III, the proposed channel model
is presented. Section IV explains about the power allocation
employed and the precoding techniques simulated. Simulation
results are in Section V. Finally, conclusions and perspectives
are stated in Section VI.

II. M ULTICELL MULTIUSER SYSTEM MODEL

Distributed antenna systems (DAS) is a new architecture for
future public wireless access, which refers to a generalized
MIMO system comprising an antenna array at one side of the
link and several largely separated antenna arrays at the other
side [1]. The main advantage of DAS is the macrodiversity,
which is inherent to the widely spaced antennas and offers the
capability to enhance signal quality, increase system capacity
and improve coverage.

In this work, we will consider a multiuser MIMO system
composed by three cells, in which the BSs process signals
jointly in order to enhance the system performance. This is
called multicell processing (MCP) and is an inherent feature
of DAS. Some important characteristics in this model must be
elaborated on:

1) The channel gains between any user and the distributed
antennas of the BSs may have different statistics, as
dictated by the characteristics of propagation, such as
path loss, shadowing, line-of-sight components, and the
system topology. Thus, the transmit power of BSs are
different and power constraints have to be enforced on
a per-BS basis;

2) The BSs are connected through high capacity links
(referred to as the backbone) to a central processing
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unit, which jointly processes the signals. In this work,
an ideal delayless, infinite-capacity backbone is assumed
to connect all BSs to the central unit.

Consider K cochannel mobile stations (MS) arbitrarily
distributed in the multicell system, composed byNb cells
whose BSs cooperate with each other. Each MS is equipped
with Nr receive antennas and each BS withNt transmit
antennas. Hereafter (Nt, Nr, Nb, K) will be used to represent
the overall structure of the system. In this work, we consider
that a scheduling algorithm selects the best user in each cell
to transmit before of the precoding. Thus, the number of cells
is equal to total number of users (Nb = K). Figure 1 shows
this representation for a case withNb = K = 3.
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Fig. 1. Multicell multiuser MIMO system model withNb = K = 3.

The channel is considered frequency-flat andHb,j is the
Nr × Nt channel matrix seen by mobile stationj from base
station b. It takes into account all signal losses: path-loss,
shadowing and small-scale fading. The last one is modeled
using Jake’s model [7].

As already mentioned, in a MCP scenario, the transmit
signal for each user is spread over allNb BSs. Thus,
the signal vector intended for userj can be expressed as

xj =
[

x
[1]T
j ,x

[2]T
j , ...,x

[Nb]T
j

]T

NbNt×1
where x

[b]
j ∈ CNt×1

is the transmitted signal intended for userj from BS b. It
is assumed a perfect synchronism among the signals from
different BSs to userj.

The received signal at MSj is:

yj = HΣjxj +
∑

k 6=j

HΣjxk + nj , (1)

where

HΣj = [H1,j,H2,j , . . . ,HNb,j ]Nr×NbNt
(2)

is the joint channel matrix for userj andnj is the background
noise.

Let Lj denote the number of data streams intended for user
j. For each MSj (j = 1, 2, . . . , K), an NtNb × Lj precoder
matrix Tj is designed based on the characteristics ofHΣj .
Thus, the transmitted signal for userj is equal toxj = Tjsj,
wheresj ∈ CLj×1 corresponds to the substreams of the MS
j.

Equation (1) can be rewritten as:

yj = HΣjTs + nj , (3)

where
T = [T1,T2, . . . ,TK ]NtNb×LT

(4)

is the joint precoding matrix and

s = [sT
1 , . . . , sT

j , . . . , sT
K ]TLT ×1 (5)

is the joint data streams vector andLT =
∑K

j=1 Lj .
The streams, for simplicity, are assumed to have i.i.d. zero-

mean unit-variance complex Gaussian entries, i.e., Gaussian
signalling assumption.

III. PARTIAL CSIT

A major challenge in wireless communication is the time-
variation of the channel. This time-variation creates difficulty
in obtaining channel information, which is required for best
performance.

Most of precoding techniques relies on the fact that the
transmitter knows perfectly the channel matrix [2] [5]. Howe-
ver, the random time-varying wireless medium makes difficult
and often expensive to obtain perfect CSIT. Therefore, the
transmitter has often only partial channel information and,
thus, schemes exploiting partial CSIT are both important and
necessary, and the obtained results are more modest. The first
use of partial CSI at the transmitter was introduced in [8],
where the Lloyd algorithm is used to quantize the CSI.

Some limited feedback multiuser MIMO schemes let users
quantize some function of the channel matrix and send this
channel information to the base station [9] [10]. The problem
occurs when the user signals can not be perfectly orthogona-
lized by precoder due to channel quantization error. In order
to avoid this error propagation, it is proposed schemes that
directly select a quantized precoder from a codebook at the
receiver, and feedback the precoder index to the transmitter
[11] [12]. However, it is too difficult to design the precoder
codebook.

Other approaches focused on mean matrix of the channel
[13], or on covariance matrix of the channel as a form of
feedback [14]. These information reveal a great deal about the
slow fading and the mean separability of the users.

The channel model proposed in [15] takes into account
channel time-variation. The model relies on stochastic proces-
ses and estimation theories. Derived from a potentially outda-
ted channel measurement and the channel statistics (mean and
covariance), this dynamic CSIT consists of a channel estimate
and its error covariance, acting as the effective channel mean
and covariance. Both parameters depend on a temporal corre-
lation factor, indicating the CSIT quality. Depending on this
quality, the model covers smoothly from perfect to statistical
channel information. This dynamic CSIT is applicable to all
Gaussian random channels, however it was only proposed for
MIMO single user system. In next subsection, the dynamic
CSIT is presented in a general multicell multiuser context.

A. Proposal: The Multicell Multiuser Dynamic CSIT

The joint channel matrixH can be decomposed as

H = H̄ + H̃, (6)

whereH̄ is the joint channel mean and̃H is the joint zero-
mean Gaussian component.
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The joint channel mean̄H is defined as

H̄ =
[

H̄T
Σ1, . . . , H̄T

ΣK

]T
(7)

= E

{

[

HT
Σ1, . . . , HT

ΣK

]T
}

(8)

and the joint channel covarianceR0 is defined as:

R0 = E{hhH} − h̄h̄H , (9)

where

H =
[

HT
Σ1, . . . , HT

ΣK

]T
(10)

andh = vec(H).
In begin of the simulation, it is assumed that the central unit

has a joint initial channel measurementH0 at time0, together
with the channel statistics̄H andR0. These statistical matrices
are obtained by averaging instantaneous channel measurement
over tens of coherence times and they remain valid for a period
of tens to hundreds coherence times, during which, the channel
is considered stationary.

However, it is not trivial to obtain these matrices in a
multicell multiuser scenario. Assume a simplified scenario
composed by2 cells with 1 user in each cell. Each BS has2
transmit antennas and each MS has1 receive antenna. So, in
the initial interval time, each MSj will send to the BSs its
corresponding channel mean matrix̄HΣj , channel covariance
matrix RΣj_0 and channel initial measurement matrixHΣj_0

which are given by following equations (considering the user
1):

H̄Σ1 =
[

H̄1,1 H̄2,1

]

(11)

RΣ1_0 = E{hΣ1h
H
Σ1}

RΣ1_0 =

[

E{h1,1h
H
1,1} E{h1,1h

H
2,1}

E{h2,1h
H
1,1} E{h2,1h

H
2,1}

]

(12)

HΣ1_0 = [H1,1_0H2,1_0] (13)

whereHi,j is the channel gain matrix from BSi to MS j.
The BSs will send this information to the central unit and

the central unit will form the joint channel mean matrix, the
joint channel covariance and the joint initial measurementin
following form:

H̄ =

[

H̄Σ1

H̄Σ2

]

=

[

H̄1,1 H̄2,1

H̄1,2 H̄2,2

]

, (14)

R0 = E{hhH}, (15)

where

H =

[

HΣ1

HΣ2

]

=

[

H
1,1
1,1 H

2,1
1,1 H

1,1
2,1 H

2,1
2,1

H
1,1
1,2 H

2,1
1,2 H

1,1
2,2 H

2,1
2,2

]

andH
t,r
b,j is the channel gain from transmit antennat of BS b

to receive antennar of MS j.

H0 =

[

H0_Σ1

H0_Σ2

]

=

[

H0_1,1 H0_2,1

H0_2,1 H0_2,2

]

(16)

Since these joint matrices are formed from the matrices sent
by the users, it is possible to note that some elements of the
joint covariance matrix (Equation (15)) will not be available in
the central unit. Such elements of the joint covariance matrix
are those that contain channel gains of different users, such
as the channel elementsE{H1,1

1,1H
1,1∗
1,2 } or E{H1,1

2,1H
1,1∗
2,2 }. It

is not possible for the central unit to calculate these elements

from the covariance matrices sent by each user.
Thus, we suppose that the expectation of the product of

these elements is equal to the product of the expectation of
the each element, i.e.,

E{Ht1,r1
b1,j1H

t2,r2∗
b2,j2 } = E{Ht1,r1

b1,j1} · E{H
t2,r2∗
b2,j2 }. (17)

This approximation is considered true since the channel
gains of users in different cells can be considered independent.
Also it is considered feasible since that the expectation ofthe
each channel element is available in the central unit from the
joint mean matrixH̄.

With the joint initial channel measurementH0 at time
0, together with the channel statistics̄H and R0 at the
transmitter, the estimate of the current channelHn at the
transmit timen is established.

The channel auto-covarianceRΣj_n of user j at time n

captures both the channel temporal correlation and the antenna
correlation; and correlates the initial channel measurement
with the current channel:

RΣj_n = E{hΣj_nhH
Σj_0} − h̄Σjh̄

H
Σj. (18)

Assuming that the channel gains between all transmit an-
tennas and the receive antennas of the same userj have the
same temporal correlation function at timen ρj_n, it is then
possible to separate the temporal correlation from the antenna
correlation in the channel auto-covariance as

RΣj_n = ρj_nRΣj_0, (19)

whereρj_n is a function of the Doppler spreadfdj
for userj at

time delayn. In Jake’s model, the channel temporal variation
is given by:

ρj_n = J0(2πnfdj
), (20)

whereJ0(.) is the zero-th order Bessel function of the first
kind [7] [16].

An estimative of the channel at timen together with the
estimation error covariance can be obtained from MMSE
estimation theory and the results are given as:

Ĥn = ∆nH0 + (1− ∆n)H̄, (21)

where

∆n =











ρ1_nINr
0 . . . 0

0 ρ2_nINr
. . . 0

...
...

. . .
...

0 0 . . . ρK_nINr











KNr×KNr

with Ik being the identity matrix of sizek × k. The error
covariance matrixRe_n is:

Re_n = (1NbNtKNr
− Λn) ⋆ R0 (22)

where
Λn = 1NbNt

⊗ (Υn ⊗ 1Nr
)

and

Υn =











ρ1_nρ1_n ρ1_nρ2_n . . . ρ1_nρK_n

ρ2_nρ1_n ρ2_nρ2_n . . . ρ2_nρK_n

...
...

. . .
...

ρK_nρ1_n ρK_nρ2_n . . . ρK_nρK_n











K×K

with 1k being a matrixk×k composed by1s and the operation
(⋆) meaning the point-to-point multiplication of the matrices.
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These two quantitieŝHn and Re_n work effectively as a
new channel mean and a new channel covariance, and thus are
referred to as the effective mean and the effective covariance,
respectively. Together, they constitute the CSIT. This CSIT
ranges from perfect channel knowledge whenρ = 1 to pure
statistics whenρ = 0. Since the CSIT depends onρ which
captures the channel temporal variation , it is called dynamic
CSIT.

Thus, the channel matrix at time instantn is given by:

Hn = Ĥn + R1/2
r,n HwR

1/2
t,n , (23)

where Hw is a KNr × NbNt joint channel matrix whose
entries have the real and imaginary parts independent and iden-
tically distributed as zero-mean Gaussian with unit-variance.
The matricesRt,n ∈ CNbNt×NbNt and Rr,n ∈ CKNr×KNr

are obtained by Kronecker decomposition of theRe,n =
RT

t,n ⊗ Rr,n.
In this work, we obtain the Kronecker decomposition by the

minimization of the term‖Re,n − RT
t,n

⊗

Rr,n‖F demons-

trated in [17]. Here,R1/2
t,n is the principal square-root ofRt,n,

such that,R1/2
t,n R

1/2
t,n = Rt,n; similarly for Rr,n.

IV. MIMO MU P RECODING TECHNIQUES

The necessity of the cheaper mobiles with low power
consumption increases the focus on system where the compu-
tationally demanding signal processing is performed at theBS.
Precoding is a processing technique that exploits the channel
state information at the transmitter (CSIT) by operating onthe
signal before transmission in order to mitigate or eliminate the
interference.

In the literature, there are various precoding techniques that
can be divided into linear and non-linear cases. The linear
precoding assumes that the transmitted signal is generatedby
a linear combination of input data symbols. Some examples of
these techniques are zero-forcing (ZF) [16], minimum mean-
square-error (MMSE) and block-diagonalization (BD) [18].
The non-linear precoding techniques are based on the concept
of coding technique proposed by Costa known as “dirty-
paper coding” (DPC) [19]. DPC techniques can achieve the
maximum sum rate of the system and provide the maximum
diversity order [20]. However, these techniques require the use
of a complex sphere-encoder or an approximate closest-point
solution, which makes them hard to implement in practice
[21]. Moreover, non-linear MU MIMO precoding techniques
require the instantaneous knowledge of the channel transfer
function at the BS.

On the other hand, linear MU MIMO precoding techniques
are less computationally demanding than DPC ones, and they
can use either instantaneous channel knowledge or long-term
statistics of the channel. Thus, such techniques are more
flexible and more favorable for practical implementation than
non-linear techniques.

Having per-base power constraints is an intrinsic characte-
ristic of MCP. A suboptimal way of obtaining the precoding
matrix T, defined in equation (4), is to use the already known
results for precoder techniques without considering theirscale
factors (which is the classical approach for global power
constraints), and afterwards the per-base power constraints can

be imposed by applying a power loading matrix. Thus, the
matrix T can be seen as a product of two others matrices,

T = FΩ, (24)

whereF is the precoder matrix without any power loading.
Such matrix is a collection of submatricesFj , grouped side-
by-side,

F = [F1,F2, . . . ,FK ]NtNb×LT
(25)

whereFj represents the precoding matrix for the userj. The
matrix Ω = µI is anLT × LT diagonal matrix withµ being
the power allocated equally for the original data streams. Let
PT = [PBS_1, PBS_2, · · · , PBS_Nb

]T be the per-base constraint
vector. Then the matrixΩ can be calculated as:

Ω = µI, µ = min
b=1,2,··· ,NB

√

(

PBS_b

‖F[b]‖2
F

)

, (26)

where F[b] contains the rows ofF corresponding to the
transmit antennas at BSb [22] and‖.‖F is the Frobenius norm.

The precoding matrixF is chosen according to existent pre-
coding techniques known as Zero Forcing (ZF) [16], Minimum
Mean Square Error (MMSE) [23] and Block-Diagonalization
[18]. ZF precoding eliminates all interference at the user
terminal, but suffers from the transmit signal attenuation.
Thus it is sub-optimal approach and results in a significant
performance degradation. MMSE precoder makes a tradeoff
between interference cancelation and transmitter power effici-
ency. In the same way as the receive spatial MMSE filter,
it approximates a matched filter at low SNRs and is near
optimal. At high SNRs, the MMSE precoder converges to a
ZF precoder. BD precoder is a ZF precoding technique that
was proposed to solve either the problem of maximizing the
total system throughput under a transmit power constraint or
to minimize the total transmit power for a predefined QoS
level [18].

V. SIMULATIONS AND RESULTS

The simulator follows a Monte-Carlo approach. It simulates
the downlink of a multicell multiuser MIMO system, where
base-stations can process jointly to precancel the effect of
interference among cochannel users. The multiuser dynamic
channel model is analyzed in such scenario.

The considered channel model is frequency-flat block fa-
ding, where in each block the channel varies following Jake’s
model. Thus, in each block, fast fading is present considering
the Doppler spread effect. During the simulation, the channel
is considered stationary during two thousand coherence times.

For simulation of the multiuser dynamic model, we have
the following steps:

1) The users send to BSs the channel statistics (meanH̄

and covarianceR0) at the beginning of simulation. Such
matrices keep valid during all simulation, where the
channel is considered stationary. (See Figure 2 )

2) At the beginning of each block fading, the users send
the corresponding initial measurement channelH0_Σj to
BS.

3) Since thatρ∆t = J0(2π∆tfd), the duration of the
blocks TB is equal toTB = ∆t = arg J0(ρ∆t)

2πfd
. Thus,

for eachρ∆t, the number of transmitted symbols per
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block changes. Table I shows the number of transmitted
symbols per block(NS) for eachρ∆t adopted.

4) During this block, the channel is estimated using equa-
tions (21), (22) and (23).

1000Tc

Block 1 Block B...

H0

S1 SS

�� �� H0H0

TB0

Stationary Channel: H and R0

TS

...

H0

Block 2

Fig. 2. Modeling of dynamic channel model.

TABLE I

EVALUATION OF THE NUMBER OF TRANSMITTED SYMBOLS PERBLOCK

ρ△t argJ0 (ρ△t) △t NS

0.8 0.92 1.5ms 146
0.9 0.64 1ms 101

0.99 0.2 0.3ms 31
0.999 0.06 9.96e − 2ms 10

0.9998 0.031 5e − 2ms 5

The parameters of the simulation are listed in Table II.

TABLE II

PARAMETERS OF THESIMULATIONS .

Parameter Value
Number of cells 3

Number of users per cell 1
Cell radius 1 km

Number of Tx antennas per BS 2
Number of Rx antennas per MS 2

Distance gain GPL = 128.1 + 37.6log
10

d
Shadow fading standard deviation 6 dB

Antenna gain 12 dB
Carrier Frequency 1.8 GHz

System Bandwidth 100 kHz
Rayleigh fading Yes

Users velocity 60 km/h
Doppler frequencyfD 100 Hz

Coherence Time 1

2fD
= 5ms

Noise power −103 dBm

A. Performance Metrics

In order to evaluated the simulation results, the average
spectral efficiency per user SEavg is adopted as performance
measure. Hence, we need to define the SINRi of receive
antennai as:

SINRi =
||Heqi,i||

2

∑

j 6=i ||Heqi,j ||
2 + ||n||2

. (27)

where Heq = HT is the equivalent channel obtained by
precoding matrix applied to the channel matrix.

The average spectral efficiency per user is given by:

SEavg =
1

K

NrK
∑

i=1

log2 (1 + SINRi) . (28)

The other performance measurement adopted is the bit error
rate (BER), which is calculated considering that the bits are
mapped into a QPSK modulation.

B. Results

Figure 3 compares uncoded BER curves of linear precoding
techniques using both perfect and dynamic CSIT withρ =
0.999 and considering the scenario(2, 2, 3, 3). In low SNRs,
the performance obtained with dynamic channel is similar
to the perfect channel. In high SNRs, the performance gap
between perfect and dynamic increases, mainly with BD pre-
coding. Since that BD was designed to maximize the capacity,
it is expected that the BER performance of this technique is
worse than the others ones (ZF and MMSE), which have been
projected to minimize the average quadratic error.
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BD − Dynamic Channel
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MMSE − Dynamic Channel
ZF − Perfect Channel
ZF − Dynamic Channel

Fig. 3. Uncoded BER curves of precoding techniques using perfect and
dynamic channel model (ρ = 0.999).

In order to evaluate the behavior of the performance results
when the channel temporal variation parameterρ varies, it
is simulated the scenario(2, 2, 3, 3) using MMSE precoding
technique and varying the parameterρ in this scenario. Figures
4 and 5 show the capacity and BER performance, respectively,
when the channel temporal correlation increases. Figure 4
shows the capacity obtained with MMSE for high SNRs (in
order to have a better view), it is possible to note that the
results are similar when theρ varies. Thus, the capacity
reduction is very small with the use of dynamic channel model.
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Fig. 4. Capacity curves of MMSE precoding technique using dynamic
channel model and varying the channel temporal variationρ.

Figure 5 shows the BER comparison when the parameter
ρ increases. It is possible to note that the BER performance
is very dependent ofρ. The BER curves whereρ = 0.9998
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andρ = 0.999 show that the results are not bad and, in such
cases, the size of channel block is equal to10 symbols and, in
this case, the receiver sends the initial measurement channel
H0 to each10 symbol intervals.
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Fig. 5. Uncoded BER curves of MMSE precoding technique usingdynamic
channel model and varying the channel temporal variationρ.

In the general manner, the performance results improve
when the channel temporal variation parameterρ increases.
This is explained because whenρ is equal to0 the channel
estimative coincides with channel mean̄H and provide less
performance gain. On the other hand, whenρ grows toward
to 1, the estimative moves toward the initial channel mea-
surementH0 and the error covariance becomes small (error-
free). Therefore, it is possible to note that the channel temporal
variation parameterρ acts as a channel estimate quality, since
that the CSIT ranges from perfect channel knowledge (when
ρ = 1) to channel statistics (whenρ = 0).

VI. CONCLUSIONS ANDPERSPECTIVES

In this work, the use of linear precoding techniques with
CSIT obtained in a dynamic way was evaluated. The scenario
considers a multiuser DAS with joint transmission scheme
(MCP). This scenario is of great interest due to some advan-
tages, such as, to obtain a good conditioning of the channel
matrix and to offer macrodiversity protection for shadowing
impairments and also due to considering a heterogenous
network and joint transmission scheme.

The multicell multiuser dynamic CSIT model was validated
and compared to the case with perfect channel model using
the precoders ZF, MMSE and BD. The results showed that
the BD precoding has the most accentuated performance loss.
This occurs because BD have been designed not to minimize
the BER, but to maximize the capacity. Thus, such technique
is sensible to BER when the channel is imperfect.

The influence of the update frequency of the joint initial
measurement matrixH0 (increasing the parameterρ) in the
performance results was evaluated and the results showed
that, when the update frequency increases, the performance
metrics become better. But, since the increase of the update
frequency causes more feedback information, it is necessary to
evaluate an equilibrium between performance versus amount
of feedback.

A perspective of the work is the investigation of the per-
formance measurements when the number of users per cell is

higher than one, since the approximation in equation (17) is
guaranteed to be true when there is only one user per cell.
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