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Resumo— Este artigo apresenta a distribuiç̃ao de desvane-
cimento κ-µ Extrema, utilizada para descrever a propagaç̃ao
de rádio móvel sob condiç̃oes severas de desvanecimento. Tais
condições ocorrem principalmente em ambientes confinados, em-
bora podem ser encontradas eḿareas abertas cujos dispersores
movem-se rapidamente. S̃ao realizados ajustes para dados de
campo presentes na literatura e outros coletados a partir de
medições realizadas pelos autores. Resultados de comparação
entre a distribuição κ-µ Extrema e outro modelo proposto
recentemente, chamado Two-Ray, mostram que a distribuiç̃ao
κ-µ Extrema é mais flexı́vel e adequada para modelar condições
severas de desvanecimento.

Palavras-Chave— Distribuiç ão κ-µ Extreme, Distribuição Two-
Ray, Desvanecimento Hyper-Rayleigh, Canais com desvaneci-
mento, Medidas de campo.

Abstract— This paper presents theκ-µ Extreme fading distri-
bution, which is used for characterizing mobile radio propagation
under severe fading conditions. Such conditions occur specially in
enclosed environments, although they may be found in open areas
in which the scatters move rapidly. The distribution is adjusted to
field data extracted from the literature and also to data collected
from measurements performed by the authors. Comparison with
another model recently proposed elsewhere, namely the Two-Ray
model, shows that theκ-µ Extreme distribution is flexible and
suitable to better model the severe fading conditions.

Keywords— κ-µ Extreme Distribution, Two-Ray Distribution,
Hyper-Rayleigh Fading, Fading Channels, Field trials.

I. I NTRODUCTION

Wireless communication services expand at a rapid pace
and their applications seem limitless. Previously restricted
to outdoor environments, they soon reached indoor ones,
including shopping malls, airports, and, more recently, enclo-
sed environments, namely airplanes, trains, and buses. Along
with those services, other wireless applications such as in
Wireless Sensor Networks (WSN) [1] and Wireless Local
Area Networks (WLAN) [2] have been also widely deployed
throughout a variety of possible scenarios.

In this context, the characterization of the wireless propa-
gation conditions, in particular the fading conditions, continue
to raise interest [1], [2], [3]. Nevertheless, as opposed tothose
initial scenarios, namely outdoor and indoor, for which the
propagation conditions are reasonably well known, those for
enclosed environments have yet to be better understood [3],
[4]. Questions arise that concern the appropriateness of the lar-
gely used small scale fading distributions, such as Nakagami-
m [5], Weibull [6], and others, as applied to the enclosed
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environments. This question has been recently addressed in
[7].

Enclosed environments are known to be characterized by
very severe fading conditions. Unlike the homogeneous ones,
whose different combinations of large number of multipath
components lead to known fading channels, enclosed en-
vironments may present only a few number of dominant
paths, therefore rendering the approximation by the Central
Limit Theorem [3] inappropriate. As a consequence, the radio
channel in such conditions are not correctly described by
those known distributions [3], [7]. Additionally, traditional
propagation models (e.g, Plane Earth [8]) predict that direct
and reflected waves may be combined to yield nulls at some
reception points. With only few waves being combined, the
occurrence of nulls becomes frequent and must be accounted
for. In [7], the severe fading conditions – worse than that
predicted by the Rayleigh case – in enclosed environments
was namedhyper-Rayleigh fading[3], [7], [9].

An initial approach towards describing mobile propagation
under the mentioned severe fading conditions was carried out
in [3]. In that work, a new probability distribution, theTwo-
Raydistribution, was proposed as a worst-case scenario fading
model. TheTwo-Raymodel consists of a special case of the
Two-Ray With Diffuse Power(TWDP) model [4], assuming (i)
no diffuse power and (ii) the two dominant components with
identical magnitudes and random phase [3].

The Two-Ray model is indeed simple, but has some limitati-
ons: it neither predicts a received signal with magnitude larger
than twice the magnitude of a single dominant component nor
is flexible to adjust to conditions other than the limited two-
ray scenario. In real world, several degrees of severe fading –
or hyper-Rayleigh – conditions exist that will certainly depart
from that predicted by the Two-Ray model.

This work assesses the feasibility of the use of theκ-µ
Extreme distribution – a particular case of theκ-µ distribution,
obtained for extreme values of its parameters [10] – for
describing mobile propagation under severe fading conditions,
including the conditions one might experience within enclosed
environments.

The remainder of this paper is structured as follows. In
Section II, theκ-µ Extreme distribution is revisited, including
its derivation from theκ-µ distribution. In Section III, plots
of Rayleigh, Two Ray, andκ-µ Extreme CDFs are compared.
In Section IV, a curve fitting comparison between theκ-
µ Extreme model and the Two-Ray model is performed,
using field measurements presented in [7]. In Section V, a
validation through new field measurements is done in order to
demonstrate the use of theκ-µ Extreme model as a general
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severe fading model. Finally, in Section VI, conclusions are
presented.

II. T HE κ-µ EXTREME DISTRIBUTION REVISITED

The κ-µ Extreme distribution was first proposed in [10]
and arises as a particular case ofκ-µ distribution, for which
the parameters assume extreme values, as shall be revisited
next. The κ-µ distribution is a general fading distribution
that represents the small-scale variations of the fading signal
under line-of-sight (LOS) and multiple clusters of multipath
conditions [10]. As its name implies, it is written in terms
of two physical parameters, namelyκ and µ. The parameter
κ > 0 concerns the ratio between the total power of the
dominant components and the total power of the scattered
waves, whereas the parameterµ > 0 is related to the
multipath clustering. It includes as special cases important
other distributions such as Rice (µ = 1) and Nakagami-m
(κ → 0). Its flexibility renders it suitable to better fit field
measurement data in a variety of scenarios, both for low-
[10] and high-order statistics [11]. For a fading signal with
envelopeR, with r̂ =

√

E(R2) being therms value ofR, the
κ-µ envelope probability density function (PDF)fP(ρ) of the
normalized envelopeP = R/r̂ is given by [10]

fP(ρ) =
2µ (1 + κ)

µ+1

2

κ
µ−1

2 exp (µκ)
ρµ exp

[

−µ (1 + κ) ρ2
]

× Iµ−1

[

2µ
√

κ (1 + κ)ρ
]

, (1)

in which µ = E2(R2)(1 + 2κ)/V ar(R2)(1 + κ)2, Iν(·) is
the modified Bessel function of the first kind and orderν [12,
Equation 8.406] andE(·) andV ar(·) denote the expectation
and variance operators, respectively. As detailed in [10],for a
given Nakagamim parameter, an infinite number of curves of
theκ-µ distribution can be obtained for appropriate values ofκ
andµ. The mentioned parameterm, as well known, constitutes
the inverse of the variance of the normalized power of the
fading signal, i.e.,m = V ar−1(P2), and is given in terms of
κ andµ as [10]

m =
µ(1 + κ)2

1 + 2κ
. (2)

The κ-µ Extreme distribution is obtained by keepingm
constant and allowingκ → ∞ (very strong LOS) andµ → 0
(very few multipaths). As a result, its normalized envelope
PDF fP(ρ) is expressed as [10, Equation 16]

fP(ρ) =
4mI1(4mρ)

exp [2m(1 + ρ2)]
+

[

1 −
√

2mπ

exp(m)
I0.5(m)

]

δ(ρ), (3)

where δ(·) is the Dirac delta function. UsingI1/2 =

[exp(m) − exp(−m)] /
√

2πm [12, Equation 8.447] in (3), the
κ-µ Extreme normalized envelope PDF can be expressed in a
simpler manner as

fP(ρ) =
4mI1(4mρ)

exp [2m(1 + ρ2)]
+ exp(−2m)δ(ρ). (4)

Its cumulative distribution function (CDF) is obtained as
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Fig. 1. κ-µ Extreme probability density function.

FP(ρ) = 1 − Q0(2
√

m, 2
√

mρ), (5)

in which

Q0(a, b) = a

∫

∞

b

exp

(

−
x2 + a2

2

)

I1(ax)dx (6)

is thezeroth MarcumQ-function [13]. In Appendix I, a series
representation for theκ-µ Extreme CDF is derived as

FP(ρ) = 1 − exp(−2m)
∞
∑

k=0

(2m)k+1

(k + 1)!k!
Γ(k + 1, 2mρ2), (7)

where Γ(α, x) =
∫

∞

x
e−ttα−1dt is the incomplete Gamma

Function [12, Equation 8.350.2]. Alternatively, by makinguse
of Γ(1 + k, x) = k!e−x

∑k
n=0

xn

n! [12, Equation 8.352.2] for
integer values ofk, the κ-µ Extreme CDF can be expressed
by

FP(ρ) = 1−exp
[

−2m(1 + ρ2)
]

∞
∑

k=0

(2m)k+1

(k + 1)!

k
∑

n=0

(2mρ2)n

n!
.

(8)
The jth moment,E(Pj), of P is written in closed-form

formula as

E(Pj) =
jmΓ(j/2)

(2m)
j
2

× 1F1(1 − j/2; 2;−2m), (9)

j > 0 and E(P0) = 1, in which 1F1(·; ·; ·) is the confluent
hypergeometric function [14, Equation 13.1.2]. Of course,
E(Rj) = r̂jE(Pj). Interestingly, in theκ-µ Extreme distri-
bution, the relationm = V ar−1(P2) is maintained. Figures
1 and 2 depict samples of the various shapes of theκ-µ
Extreme PDF and CDF,fP(ρ) andFP(ρ), as functions of the
normalized envelope,ρ, for different values ofm. Note that
the impulse at the origin indicates that a non nil probability
exists for signal nulls.
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Fig. 2. κ-µ Extreme cumulative distribution function.
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Fig. 3. κ-µ Extreme median as function of the parameterm.

III. R AYLEIGH , TWO-RAY, AND κ-µ EXTREME

In [3], [7], the Two-Ray and Rayleigh curves were com-
pared. Plotted as functions of the envelope normalized with
respect to their median values, the Two-Ray CDF was shown
to be above the Rayleigh CDF, justifying the name hyper-
Rayleigh fading. It must noted, however, if the envelopes
are normalized with respect to their rms values, these two
curves would cross each other at a certain point. In this
section, we compare the Rayleigh, Two-Ray, andκ-µ Extreme
CDFs. In order to do so, first the median value of theκ-
µ Extreme distribution must be determined. Unfortunately,
no closed-form expression can be encountered. The equation
ρmed = F−1

P (1/2) is found by numerical means and plotted
as a function ofm in Figure 3. The plots of the three CDFs
can be seen in Figure 4. Note that a number of hyper-Rayleigh
situations can be found for theκ-µ Extreme case. In particular,
for m = 1, the following can be noted: below 0 dB, theκ-µ
Extreme curve lies above the Rayleigh curve, and above 0 dB,
it follows Rayleigh.
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Fig. 4. Rayleigh, Two-Ray andκ-µ Extreme CDFs as function of the
normalized envelope with respect to its median value.

IV. A PPLICATION I: ENCLOSEDENVIRONMENTS

In [7], field measurements were presented for wireless
sensor applications in which the received signal experienced
hyper-Rayleigh fadings. The fading data was collected aboard
a large transport helicopter at the 2.4 GHz ISM band and
illustrated in Figure 4 of [7].

In order to compare the curve fitting performance of the
κ-µ Extreme distribution and the Two-Ray distribution, the
experimental points from these curves were carefully extracted
and used to adjust the distributions. Figure 5 illustrates the col-
lected data along with the Two-Ray distribution. In such a case,
all curves are normalized with respect to its respective median
(ρmed = r/rmed), therefore passing through coordinate (0 dB,
0.5).

Figures 6 to 10 show field measurement data from [7] for
which the κ-µ Extreme CDF was adjusted to give its best
fit. For comparison, the Two-Ray curves are also plotted.
Table I presents the Mean Square Error (MSE) obtained from
the fading data adjustment. The fitting was performed using
logarithmic scale, in an attempt to better adjust the tail of
the fading data. Despite the irregular behavior of fading data
presented in Figures 6 to 10, it can been seen through Table I
that, in three out of the five cases, theκ-µ Extreme distribution
presented better agreement to the measured data than the Two-
Ray distribution.

For Fading data #1and #2, Figures 6 and 7, respectively,
the adjustment by theκ-µ Extreme distribution resulted in
significant less MSE than the adjustment by the Two-Ray
distribution. Specifically forFading data #1, theκ-µ Extreme
distribution was able to well represent the tail of the measured
data, as it can be seen in Figure 6. As for theFading data
#2, the tail of measured data presented extreme unexpected
behavior, making impossible for both distributions to perform
a suitable fit.

For Fading data #3, illustrated in Figure 8, theκ-µ Extreme
distribution also presented better adjustment performance than
the Two-Ray distribution, although the MSE resulted from the
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Fig. 5. Cumulative distribution of fading data presented in[7] and the Two-
Ray CDF.
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Fig. 6. The κ-µ Extreme distribution (m = 1.94) and the Two-Ray
distribution adjusted toFading data #1.

adjustments did not differ in so great magnitude as in the
previous cases. Similar to theFading data #2, theFading data
#3 also presents an abrupt decay at the curve tail.

Finally, for Fading data #4and#5, the Two-Ray presented
better adjustment results than theκ-µ Extreme distribution.
Despite the MSE results, both distributions presented similar
agreement, as it can be seen through Figures 9 and 10.
Specifically for the values of20log(ρmedian) > 0, which
represent the cases of constructive composition of the received
signal, the fading data’s behavior was better represented by the
κ-µ Extreme distribution, which occurred in all other cases.

The results pointed out two main limitations of the Two-
Ray model. The first one is the prediction of received signals
whose envelope is restricted only to the interval0 ≤ r < 2.
Consequently, for the cases of constructive composition of
the received signal, which corresponds to the region where
20log(ρmedian) > 0, the Two-Ray distribution assumes such
behavior which was not observed in any cases of fading data.
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Fig. 7. The κ-µ Extreme distribution (m = 1.70) and the Two-Ray
distribution adjusted toFading data #2.
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Fig. 8. The κ-µ Extreme distribution (m = 1.46) and the Two-Ray
distribution adjusted toFading data #3.

The second main limitation is the lack of a fading parameter,
which implies no flexibility for curve fitting. Therefore, the
Two-Ray model shows itself suitable for representing only a
few case of severe fading conditions. In the other hand, the
fading parameterm of the κ-µ Extreme distribution, whose
calculation is straightforward given the fading data, allows
greater flexibility to fit measured data in such cases.

TABLE I

PERFORMANCECOMPARISON OFFIELD MEASUREMENTADJUSTMENT

Curves m κ-µ Extreme MSE Two-Ray MSE
Fading data #1 1.94 0.0061 0.0946
Fading data #2 1.70 0.0014 0.0380
Fading data #3 1.46 0.0037 0.0099
Fading data #4 1.45 0.0102 0.0070
Fading data #5 1.33 0.0179 0.0045
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Fig. 9. The κ-µ Extreme distribution (m = 1.45) and the Two-Ray
distribution adjusted toFading data #4.
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Fig. 10. Theκ-µ Extreme distribution (m = 1.33) and the Two-Ray
distribution adjusted toFading data #5.

V. A PPLICATION II: OTHER SEVERE FADING CONDITIONS

Several other situations for severe fading conditions may
be found in practice. In order to investigate these conditions
and validate theκ-µ Extreme model, a series of field trials
were conducted at the University of Campinas (Unicamp),
Brazil. To this end, a parking lot with cars aligned and moving
vehicles was chosen. Both transmitter and receiver were placed
below the height of the cars and a LOS condition was always
in place. The mobile reception equipment was especially
assembled for this purpose. Basically, the setup consisted
of a vertically polarized omnidirectional receiving antenna,
a low noise amplifier, a spectrum analyzer, data acquisition
apparatus, a notebook computer, and a distance transducer for
carrying out the signal sampling. The transmission consisted
of a CW tone at 1.8 GHz. The spectrum analyzer was set to
zero span and centered at the desired frequency, and its video
output used as the input of the data-acquisition and processing
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Fig. 11. Empirical versus theoretical cumulative distribution functions (m =

3.53).
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equipment. The local mean was estimated by the moving
average method, with the average being conveniently taken
over samples symmetrically adjacent to every point. From the
collected data, the fading parameterm was estimated. In such
a situation, the received signal was found to vary drastically.
More specifically, due to the severe variation of the received
signal, a great deal of points were found to be below the
receiver sensitivity.

The empirical cumulative distribution function was com-
pared against the corresponding theoretical formulas (8) and
[3, Equation 5] and plotted as a function of the normalized
envelopeρ (dB) with the same parameterm estimated from
the experimental data. In addition, the MSE was computed
for each case. Figures 11 and 12 show some sample plots
comparing the experimental and theoretical CDF data. TableII
presents the respective errors and empirical fading parameters.
Observe theexcellentfit and how the theoretical curves tend
to keep track the tail of the empirical data.
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TABLE II

PERFORMANCECOMPARISON BETWEENEMPIRICAL AND THEORETICAL

DATA

Field Trials m κ-µ Extreme MSE Two-Ray MSE
Fig. 11 3.53 0.0030 1.1321
Fig. 12 3.25 0.0017 0.8554

VI. CONCLUSIONS

This paper presented theκ-µ Extreme fading distribution.
Derived from the generalκ-µ distribution for its parameters
assuming extreme values, theκ-µ Extreme distribution pre-
sents a fading parameter which can be used for adjustment to
experimental data. Adjustments to field measurements previ-
ously presented in literature have shown the flexibility of the
κ-µ Extreme distribution to adequately fit to experimental data
in severe fading conditions.

APPENDIX I
DERIVATION OF A SERIES EXPANSION FORκ-µ EXTREME

CDF

By definition [15],

FP(ρ) =

∫ ρ

−∞

fP(ρ)dξ (10)

=

∫ ρ

−∞

(

4mI1(4mξ)

exp[2m(1 + ξ2)]
+ exp(−2m)δ(ξ)

)

dξ.

Making use of I1(z) =
∑

∞

k=0
(z/2)2k+1

k!(k+1)! [12, Equation
8.447], theκ-µ Extreme CDF becomes

FP(ρ) =

e−2m − 4me−2m

∫ ρ

−∞

(

∞
∑

k=0

(2mξ)2k+1

k!(k + 1)!
e−2mξ2

)

dξ. (11)

As the term inside the integral is absolutely convergent,

FP(ρ) =

e−2m − 4me−2m
∞
∑

k=0

∫ ρ

−∞

(2mξ)2k+1

k!(k + 1)!
e−2mξ2

dξ. (12)

Solving the integral,

FP(ρ) = e−2m − 4me−2m×
∞
∑

k=0

(2m)2k+1

k!(k + 1)!
(2−2−k)m−k−1

[

k! − Γ(k + 1, 2mρ2)
]

,

(13)

where Γ(α, x) =
∫

∞

x
e−ttα−1dt is the incomplete Gamma

Function [12, Equation 8.350.2]. Rearranging Equation 13,the
κ-µ Extreme CDF is finally obtained:

FP(ρ) = 1 − e−2m
∞
∑

k=0

(2m)k+1

(k + 1)!k!
Γ(k + 1, 2mρ2). (14)
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