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Abstract— Coordinated Multi-Point (CoMP), also termed Dis-
tributed Antenna System (DAS), has emerged in recent years
in the 3rd Generation Partnership Project (3GPP) Long Term
Evolution (LTE) as a promising architecture to enhance the
link performance and, consequently, the capacity of wireless
communication systems. A CoMP system consists of several
Antenna Ports (APs) geographically spread over a coverage area
and connected through a fast backhaul to an Enhanced Node
B (eNB). The optimal placement of a number of distributed
APs depends, e.g., on the distribution of the User Equipments
(UEs) and the metric to be optimized and, in some cases, cannot
be determined analytically. In order to solve the AP placement
problem, global optimization techniques can be employed, as it
is the case of the Particle Swarm Optimization (PSO) technique
used in this work considering various scenarios with different
number of APs, UE distributions, and optimization metrics. The
obtained results shown that PSO can be a very suitable tool
effectively for the planning of CoMP systems.

Keywords— Coordinated Multi-Point, Antenna Port and Par-
ticle Swarm Optimization.

I. I NTRODUCTION

CoMP, also termed DAS, has emerged in recent years,
e.g., in the 3GPP LTE [1], as a promising architecture to
enhance the link performance and, consequently, the capacity
of wireless communication systems. A CoMP system consists
of several APs geographically spread over a coverage area and
connected through a fast backhaul to an eNB, which might
also have an AP [2]–[8]. CoMP systems decrease the average
access distances between APs and UEs and, at the same time,
they allow for handling the coverage efficiently, decreasing
transmit powers, and/or increasing system capacity.

The actual number and placement of APs depend on the
average geographical distribution of UEs over the coverage
area and the metric to be optimized. Such a metric can include
Quality of Service (QoS) requirements and depends on aspects,
like the propagation environment, that must be taken into
account during the network planning stage.

This work proposes to employ PSO as a means to quasi-
optimally place a number of APs over a certain coverage
region. As it will be seen later in this work, applying PSO
with an adequate optimization metric can improve significantly
the spectral efficiency of the system, thus making of PSO a
valuable tool during the network planning stage.

The rest of this paper is organized as follows. Section II
presents the system model considered in this work including
the considered scenario described in Section II-A, the PSO
modeling is discussed in Section II-B, and the formulation
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of the AP placement problem in Section II-C. In Section III,
some results on the performance of the proposed algorithm are
presented. Finally, some conclusions are drawn in Section IV.

II. SYSTEM MODEL AND AP PLACEMENT PROBLEM

A. General scenario

We consider the Downlink (DL) of a single CoMP cell with
a numberM of APs, which are indicated bym = 1, 2, . . . , M ,
and are controlled by an eNB. The CoMP system has a total
transmission powerP and serves a numberJ of single-antenna
UEs, which are indicated byj = 1, 2, . . . , J .

TheseJ UEs are distributed over the coverage area accor-
ding to some spatial UE distribution. The average path loss
of a UE j distantdj,m kilometers of an APm is denoted by
PLj,m(dj,m) in dB and byplj,m(dj,m) in linear scale. It is
assumed that all theM APs cooperatively transmit to any UEs
j using Maximum Ratio Transmission (MRT) [9]. Denoting
by P the total transmission power of the cell and byσ2 the
average noise power in the system, the Signal-to-Noise Ratio
(SNR) γj of the UE j, considering MRT, can be written in
linear scale as

γj =
P

σ2

M
∑

m=1

1

plj,m(dj,m)
. (1)

The SNR given by (1) will be used by the PSO algorithm.

B. Particle Swarm Optimization (PSO)

PSO is a technique by Kennedy and Eberhart [10], which
is based on a social-psychological metaphor and which has
its roots on artificial life and evolutionary computation. PSO
often finds application in pattern recognition and image pro-
cessing problems [11]. The advantages of PSO over some
other evolutionary optimization techniques are not only its
implementation easiness, but also the reduced number of
parameters to adjust [12].

A classical structure for applying PSO consists on creating
a population of N particles that adapts by stochastically
returning towards successful regions previously found in the
search space. The PSO algorithm is iterative and each particle
i has:

• a positionPn representing a possible solution of the pro-
blem;

• a velocityVn;
• and a previous best positionP⋆

n.

There is also a global best positionP⋆
g, which is the best

position among allP⋆
n at the moment. These variables can be

a matrix, a vector or a scalar, depending on the coding of the
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search space. The efficiency of each particle as solution of the
problem is measured by a so-called fitness functionφ(Pn),
which is then used to determineP⋆

n and P
⋆
g. The P

⋆
n and

P
⋆
g values are used iteratively in the PSO algorithm to move

towards the global optimum, i.e., the overall best positionin
the search space. Without loss of generality, the term metric
will also be used to denote the fitness function.

At each iterationk, the velocity of each particlen is updated
using its current velocityVn[k], positionPn[k], and previous
best positionP⋆

n[k], as well as the global best positionP⋆
g[k].

The new positionPn[k +1] of the particle is obtained simply
adding the new velocity to the current position, as explained
in the sequel.

An inertia weightw can be used to control the impact of
the previous velocity on the current velocity [13]. Typically,
w is reduced linearly during the simulation as

w[k] = w0 −
k

K
(w0 − wK), (2)

wherew0 andwK are the initial and final weights, respectively,
andK is the maximum number of iterations. The weightsw0

andwK are usually set to respect0 ≤ wK < w0. In this way,
a global and a local search are pursued at the beginning and
at the end of the optimization process, respectively.

The velocity and position of each particle are updated as

Vn[k + 1] = w[k] ·Vn[k]

+ c1 · ϕ1 · (P
⋆
n − Pn[k]) (3a)

+ c2 · ϕ2 · (P
⋆
g − Pn[k]), and

Pn[k + 1] = Pn[k] + Vn[k], (3b)

wherec1 andc2 are two positive constants inherently used by
the PSO algorithm andϕ1 and ϕ2 are two random variables
uniformly distributed in the interval[0, 1]. Alternatively, a
maximum and/or a minimum value ofVn can be defined in
order to prevent too much divergence of the solutions. TableI
presents a pseudocode of the PSO algorithm.

TABLE I

PSEUDOCODE FOR THEPSOALGORITHM .

1) Randomly initializePn, Vn, P⋆
n andP⋆

g ∀n ∈ {1, 2, . . . , N}
2) For each particlen

a) If φ(Pn[k]) ≶ φ(P⋆
n), setP⋆

n = Pn[k]
b) If φ(Pn[k]) ≶ φ(P⋆

g), setP⋆
g = Pn[k]

3) For k = 1 to K

a) Updatew[k] using (2)
b) For each particlen

i) Update the particle velocityVn using (3a)
ii) Update the particle positionPn using (3b)
iii) If φ(Pn[k]) ≶ φ(P⋆

n), setP⋆
n = Pn[k]

c) For each particlen
i) If φ(Pn[k]) ≶ φ(P⋆

g), setP⋆
g = Pn[k]

The operator≶ is generally used for minimization and maxi-
mization problems. If the desired problem is a minimization
one,≶ must be replaced by<. Otherwise,≶ must be replaced
by >.

C. APs Placement Problem

Determining an optimal APs placement can be easy or hard
to solve depending on three main characteristics:

• the UE distribution over the coverage area;
• the numberM of APs;
• the metricφ(·) to be optimized.

As a simple example, consider a uniform distribution of UEs
over a circular sector, defined by its radiusR and its an angle
Θ, and one AP to be placed. In this scenario, the problem of
minimizing the average access distanced(·) of the UEs can
be solved analytically. The access distance of a UE is defined
as the distance between this UE and the closest AP to it. The
solution of this problem can be written as

[r∗AP , θ∗AP ] = arg min[d(rAP , θAP )], (4)

whererAP andθAP are, respectively, the radius and the angle
of AP position. Instead of minimized(·), we will minimize
d2(·), which will produce the same result. Considering all the
points of the desired area, represented by the polar coordinates
r andθ, d2(·) is given by

d2(rAP , θAP ) =

∫ Θ

0

∫ R

0

[r2
AP − 2rAP · r·

cos(θ − θAP ) + r2]r · dr · dθ.

(5)

Solving the integrals, we obtain

d2(rAP , θAP ) = r2
AP ·

R2

2
· Θ − 2rAP ·

R3

3
·

[sin(Θ − θAP ) + sin(θAP )] + Θ
R4

4
.

(6)

This function is continuous and its derivatives of first
and second order exists and are continuous too. In order to
determine a minimum point, the gradient operator have to be
used. The gradient vector is given by (7).

∇d2(rAP , θAP ) =

[

∂d2(rAP ,θAP )
∂rAP

1
rAP

·
∂d2(rAP ,θAP )

∂θAP

]

(7)

Equaling the two components to zero, we obtain a solution:

θAP =
Θ

2
, and (8a)

rAP =
4R

3Θ
· sin(

Θ

2
), (8b)

which can be a minimum, a maximum or a cell point of the
function d2(·). To determine what this point is, the Hessian
matrixH(d2(rAP , θAP )), which will be denoted byH(d2(·)),
have to be calculated according to (9a).

H(d2(·)) =





∂2d2(·)
∂r2

AP

1
rAP

∂2d2(·)
∂rAP ∂θAP

1
rAP

∂2d2(·)
∂θAP ∂rAP

1
r2

AP

∂2d2(·)
∂θ2

AP



 (9a)

H(d2(·)) =

[

R2Θ4 0
0 R2Θ4

]

(9b)

This matrix is positive defined [14] and the found solution is,
therefore, a minimum point ofd2(·). Note that if Θ = 2π,
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which will corresponds to a circular area, the AP has to be
placed at the center of the area.

In some cases, an analytical approach, such as the previ-
ously presented one, is infeasible. In these cases, PSO can
comes in play to solve the problem numerically. ConsiderM
APs with positions described by Cartesian coordinates. Thus,
we describe a generic solution of the problem as

Pn[k] =

[

x
(1)
n [k] x

(2)
n [k] . . . x

(M)
n [k]

y
(1)
n [k] y

(2)
n [k] . . . y

(M)
n [k]

]

, (10)

wherex
(m)
n [k] andy

(m)
n [k] are respectively the horizontal and

vertical coordinates of themth AP of the nth particle at
iteration k. Vn, P

⋆
n and P

⋆
g have the same dimensions of

Pn.
The PSO has to place the APs in the coverage area as to

optimize the fitness of the best global positionP⋆
g. Thus,

it is necessary to define a suitable fitness functionφ(·).
Some possible fitness functions or, equivalently, optimization
objectives, are:
• minimize the average access distance among the UEs and

APs;
• maximize the lowest SNR among all UEs;
• maximize the average SNR of the UEs;
• maximize the average Signal to Interference plus Noise

Ratio (SINR) of the UEs.
According to the adopted fitness function, the PSO algo-

rithm might obtain different results, i.e., different topologies
for the set of APs. This work considers two different fitness
functions: average access distance and lowest SNR of the UEs,
represented, respectively, byφ1 andφ2. These two metrics will
lead a minimization and a maximization problem respectively.
Mathematically these problems can be formulated as follows:

Minimize: φ1 =
1

J

J
∑

j=1

dj , and (11a)

Maximize: φ2 = min([γ1, γ2, · · · , γJ ]), (11b)

where dj denotes the access distance of the UEj. The
obtained solutions for these two problems are termed Access
Distance Minimized (ADM) and Lowest SNR Maximized
(LSM) respectively.

III. R ESULTS

In order to determine an adequate topology for a set of
M APs, the PSO algorithm of Table I is applied here in a
scenario consisting of 20000 UEs spread over the coverage
area according to uniform and non-uniform distributions, con-
sidering different fitness functions, and considering a variable
number of APs. The average path loss of a UEj distantdj,m

kilometers of an APm has been modeled according to the
Okumura-Hata model of [15] and is given by

PLj,m(dj,m) = 128.1 + 37.6 log10(dj,m) in dB. (12)

The main parameters considered in the simulations are
summarized in Table II. The constantsc1 and c2 are set to

be 2 in order to keep the stochastic factor’s mean equals to
1 [10]. A convergence test was made rangingwK . The values
of 0, 0.6 and 1.2 was analysed in a scenario consisting of
4 APs, UEs uniformly distributed andφ1 as the metric to
be optimized. Figure III shows the average access distance
of the UEs versus the number of iterations of PSO. As we
can see, whenwK is set to be 0, PSO algorithm has a faster
convergence. Therefore,w0 =1.2 andwK =0 were used, as
proposed in [16].
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Fig. 1. Average access distance versus number of iterationsof PSO for
different parameters.

TABLE II

SIMULATION PARAMETERS.

Parameter Symbol Value

System

Total transmit power P 21.25 dBm
Coverage radius R 1 km
Noise power σ2 -123.24 dBm
Number of UEs J 20000

PSO

Number of particles N 200
Number of iterations K 100
Initial inertia weight w0 1.2
Final inertia weight wK 0
Constants c1, c2 2

The APs placement problem has three main characteristics:
number M of APs, average distribution of the UEs over
the coverege area and the metric to be optimized. In the
following, these characteristics are varied and, then, thePSO
is used to determine the optimal placement of the APs. This
procedure will show that PSO can adapts its solution to any
APs placement problem. First, we fix the number of APs
to M = 4 and analyze the solution for the AP placement
problem found by the PSO algorithm for three different UEs
distributions: uniform, hot-spot and centralized distributions.

Considering a uniform distribution, all points within the
coverage area have the same density of UEs. The hot-spot
distribution considers a smaller area, within the total area of
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(a) Uniformly distributed UEs.

 

 

UE
AP

y
(m

et
er

s)

x (meters)

-1000
-1000

-500

-500

0

0

500

500

1000

1000

(b) 75% of the UEs at the hot spot.
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(c) Centralized distribution.

Fig. 2. Topologies for different UEs distributions.
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(a) Hot-Spot distribution.
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(b) Centralized distribution.

Fig. 3. CDF for different UEs distribution and different solutions.

the cell, with higher density of UEs. The radius of this region
was set to beRhs = 50 m. The UEs distribution inside the
hot-spot is uniform. Finally, the centralized distribution have
a greater density of UEs at the center of the coverage area
and this density decreases with the growth of the distance
between a desired point and the center of the coverage area.
The obtained AP topologies are shown in Figures 2(a), 2(b)
and 2(c).

Considering a uniform distribution,M = 4 and the ave-
rage access distance as the metric to be optimized, the APs
placement problem can be solved analytically. To solve this
problem, we need to split the coverage area in four equal
circular sectors. The new problem is to positionate one AP in
each sector in order to minimize the average access distance
of the UEs. This new problem corresponds to the problem
solved analytically in Section II-C, withΘ = π/2. The
solution for this problem, according to (8), isθAP = π/2
andrAP = 0.6 km. PSO obtains the same solution as we can
see in Figure 2(a). Let this solution be detoned asS1.

However, the other two problems are not as simple as the
problem aforementioned. Figures 2(b) and 2(c) show the ob-
tained topologies for these problems by PSO. Suppose that the
PSO tool is not available and that is required that the problems
of hot-spot and centralized distribution have to be solved.In
this case, considering that an analytical approach is not feasibe,
we could apply the solutionS1 to these two problems. The
PSO solution for these two problems are named, respectively,
S2 and S3. Figure 3(a) shows the Cumulative Distribution
Function (CDF) of the SNRs of the UEs spreaded over the
coverage area forS1 andS2. SolutionS2 provided an average
SNR of 45 dB versus 37.3 dB of solutionS1, that is, a gain of
7.7 dB. The same analysis can be done in Figure 3(b). Solution
S3 provided an average SNR of 32.6 dB versus 27.6 dB of
solutionS1. A gain of 5 dB. The crossing between the curves
in Figures 3(a) and 3(b) occurs due to the better coverage
of S1 at the edge of the cell. This is becauseS1 places the
APs closer to the cell edge thanS2 andS3. However, in both
situations, most of the UEs are not close to the cell edge.

In the following, we consider a uniform distribution of the
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UEs and two different optimization objectives i.e., different
metrics: φ1 and φ2. These two objectives were analyzed
consideringM = 4, 5, and7 APs. Two different cases are
considered: one in which no AP is forced to lie in the center of
the coverage area and another in which this occurs. This latter
case resembles current cellular networks and it is of interest
here because it might be seen as a system upgrade phase,
i.e., a system APs deployed in a previous phase must have
their positions preserved in the new extended topology. The
description of the obtained AP topologies is shown in Table III.

TABLE III

RADIUS (IN KM ) OF AP DISTRIBUTION AROUND THE CENTER OF THE

COVERAGE AREA.

Number of APs One AP fixed at
the center of the

coverage area
ADM LSM

M=4 M=5 M=7 M=4 M=5 M=7

0.60 0.62 – 0.70 0.74 0.67 No
0.62 0.66 0.69 0.46 0.70 0.86 Yes

For all the obtained topologies, adjacent APs are separated
angularly ofα = 2π/M ′, whereM ′ is the total number of
APs M minus the number of APs at the center of the CoMP
cell, if any. For a visualization example, see Figure 2(a), in
which the radius of the APs distributed around the center of
the coverage area is 0.60 km andα = π/2.

Observing the results presented in Table III, it can be noted
that although no AP is forced to lie in the center of the
coverage area in the first case, this situation occurs when
considering the ADM metric andM = 7 APs.

In order to compare the ADM and LSM topology solutions
and give an idea of the coverage situation in each case, the
CDFs of the SNR of the UEs forM = 4, 5, and7 APs are
presented in Figure 4. The SNR of each UE is calculated
according to (1).

We can verify the SNR levels perceived in the CoMP cell
by considering, e.g., the 10th percentile of the CDFs presented
in Figure 4, i.e., the SNR level perceived by 90% of the UEs.
From these results, the adequacy of each metric as a means
to quantify the obtained coverage can be compared. Table IV
summarizes these values for each metric and topology.

TABLE IV

10TH PERCENTILE OFSNR (IN DB) FOR EACHAP DISTRIBUTION.

Number of APs One AP fixed at
the center of the

coverage area
ADM LSM

M=4 M=5 M=7 M=4 M=5 M=7

22.5 24.0 – 22.6 23.1 24.9 No
19.9 22.2 25.5 19.6 22.3 24.8 Yes

It can be noted that the ADM solution was better in the
cases of 5 and 7 APs. The solutions that place one AP at
center were worse than the other ones, except for the case of
ADM with 7 APs. In this case, the solution with one AP at
center is the optimum one. The results show that, although the
LSM maximizes the lowest SNR (as we can see in Figures
4(a), 4(b) and 4(c)), it does not ensure the best coverage.
Moreover, results presented at Table IV show that the coverage
is improved with the growth ofM .
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Fig. 4. Cumulative Distribution Function of UEs’ SNRs.
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IV. CONCLUSIONS

This work presented an important application of PSO. It was
shown that a PSO solution for the APs placement problem
can bring a huge gain of spectral efficiency to a CoMP
system. PSO can find the same solution of a problem solved
analytically and can find a solution for problems infeasible
analytically. The main parameters of the APs placement pro-
blem were varied and the results showed that PSO can adapts
its solution to any APs placement problem. The technique
presented in this work have shown consistent results even in
complex scenarios. Due to this, it could be used as an efficient
tool at the network planning stage.
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