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Chaotic Equations Initial Conditions Analysis for
Cryptography Applications.
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Resumo— Nesta última década, muitos artigos em que
equações caóticas são usadas como a ideia central em algoritmos
criptográficos surgiram. Embora muitos destes algoritmos usem
as Condições Iniciais (IC) de equações diferenciais caóticas como
chave criptográfica, um estudo preciso das ICs válidas (aquelas
que conduzem ao caos) não foi realizado. Neste artigo, é analisada
a equação diferencial caótica mais elementar, descoberta por
Linz e Sprott, com o objetivo de determinar V

IC
(a região de

Condições Iniciais Válidas) e a sua importância na determinação
do espaço de chaves para algoritmos criptográficos baseados em
caos.

Palavras-Chave— Caos, criptografia, fluxo caótico, condições
iniciais, atrator, espaço de chaves criptográficas.

Abstract— In the last decade, many articles appeared which
apply chaotic equations as the core of encryption algorithms.
Although many of these algorithm use the Initial Conditions (IC)
of chaotic differential equations as secret key, a precise study of
the Valid ICs (those leading the behavior of the equation to
chaos) has not being made. In this paper we analyze the most
elementary piecewise linear chaotic flow, proposed by Linz and
Sprott, with focus on the determination of the V

IC
(the region

of Valid Initial Conditions) and its influence in determining the
key space of chaos-based encryption algorithms.

Keywords— chaos, encryption, jerk, piecewise linear chaotic
flow, initial conditions, attractor, key space.

I. INTRODUCTION

Lorenz 1963 seminal article [1] started chaos theory and
its application to many disciplines, including mathematics,
mechanics, biology, ecology, astronomy, telecommunications
and cryptology. Since Lorenz, more than twenty differential
equations systems with chaotic behavior have being reported
[4], [5], [6], [26]. Chaos and Encryption are intimately tied
[27], [28] — confusion and diffusion are properties strongly
related to the chaotic properties of ergodicity and sensitivity
to initial conditions [29]. This relation lead many researchers
to develop chaos based encryption algorithms: Baptista [12]
algorithm, by mapping plain text to the number of iterations
performed on the Chaotic Logistic Equation [12] to move
the cipher key dependent chaotic attractor’s (or path) initial
state (or initial condition, IC) x0, to a final state related to
the plain text; the cipher text in the scheme by Alvarez et all
[13] is a triplet composed by x0, a given threshold U and a
parameter B used by the transmitter to locate the plain text on
a binary chain C constructed according to the threshold U . In
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Pontifı́cia Universidade Católica do Rio de Janeiro, Brazil, [c]Department
of Computer Science, The University of York, United Kingdom. E-mails:
elvio@ciscea.gov.br, weiler@cetuc.puc-rio.br.

[14] Jakimoski and Kocarev proposed a procedure to create
chaos ciphers and Wong, [15], improves Baptista [12] cipher
by dynamically updating the look-up table that assigns plain
text to the corresponding attractor regions. Wong’s cipher was
further improved by methods which use control parameters
and hashing schemes [16], [17], [20], [21] and in [30] Li
et all proposed a real-time scheme that applies a cascade of
chaotic maps, mixing stream and block cipher techniques.

The chaotic differential equation’s behavior is very
sensitive to IC variations — a known fact, from the nonlinear
dynamics, is that this chaotic behavior even disappears for
certain IC. The Key Space, a factor responsible for the
strength of the encryption scheme, is determined by the size
of the set of valid IC that drives the system to chaos. The
motivation behind this study is the characterization of the
region of IC values that renders a chaotic system behavior
— we will use the notation V

IC
when referring to the set of

valid IC’s.

This paper is organized as follows: Section II presents the
elementary, piecewise linear, chaotic equation discovered by
Linz and Sprott [11], which will be used as study case in
this article. Section III characterizes the region of V

IC
, with

respect to the three-dimensional chaotic attractor of Linz and
Sprott. Section IV presents a practical example of key space
calculation for a given chaos-based encryption algorithm.
Section V presents the conclusions.

II. LINZ AND SPROTT ELEMENTARY SYSTEM

As the result of extensive numerical search, Linz and Sprott
[11] found the simplest known non-polynomial, autonomous,
three-dimensional, dynamical system that exhibits chaos.
Equation (1), describing the system, is a piecewise linear
chaotic dynamics that contains only one control parameter A,
and only one nonlinearity.

x′′′ + Ax′′ + x′ + |x| − 1 = 0 (1)

Equation (1) can also be written in the form







x′ = y

y′ = z

z′ = −Az − y − |x| + 1.

(2)
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The selection of this chaotic equation as case study, relies
on the fact that it has simple expression and it yields to a
low complexity hardware implementation [5], [10]. Fig. 1
displays a top view of the chaotic attractor for A = 0.6,
x0 = (x0, y0, z0) = (0, 0, 0) in Equation (1). Although Linz
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Fig. 1. Top view of the chaotic attractor of Linz and Sprott’s equation
obtained with A = 0.6 and (x0, y0, z0) = (0, 0, 0).

and Sprott precisely characterizes, on their work, the range of
values of the parameter A, which yields the system to chaos,
the characterization of the region V

IC
, which is the subject of

the present work, is missing.

III. VALID INITIAL CONDITIONS REGION

This chapter has two related purposes: (i) to show how
to determine if a given IC leads the dynamical of Linz and
Sprott’s Equation (1) to a chaotic or non-chaotic behavior
and (ii) to characterize (by simulation) the region of all valid
IC of Linz and Sprott’s chaotic equation.

It is worth mentioning that all chaotic flows have
inherently the following characteristics: determinism,
sensitive dependence on IC, non-periodicity, and “stability”
with some tension and boundedness. From a mathematical
perspective, chaos orbits do not have to be bounded. From
a practical point-of-view, however, stability is so important
that it is better to impose stability constraints such that
chaos motion of the chaotic attractor is locally unstable
but globally it is stable. As such, chaos can be seing as a
bounded phenomenon, involving a kind of loose stability.
Fig.1 illustrates a bounded chaotic attractor with the variable
x restricted to the interval (−1.29, 2.47) and the variable y

restricted to the interval (−1.95, 1.43). The chaotic attractor
set, say A, is a three-dimensional set of points with values of
z in the range (−1.83, +1.53), as sketched on Fig. 2.

The trajectories of states of Equation (1), or paths, depend
on the IC used, and can constitute a chaotic attractor like the
paths exhibited on Fig. 1 and Fig. 2, or exhibit a non-chaotic
behavior. The paths generated by a chaotic equation, can be
classified, for purposes, in one of the three categories listed
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Fig. 2. Three-dimensional chaotic attractor for x0 = (0,0,0).

next, revealing a system with a non-chaotic behavior.

1) [Convergency] The three-dimensional attractor con-
verges to an specific point;

2) [Cyclicity] The three-dimensional attractor cycles indef-
initely;

3) [Divergency] The three-dimensional attractor diverges
to plus or minus infinity;

The non-chaotically behavior verification was performed
by examining the final states of the simulated equation as
well as examining the maximum Lyapunov Exponent. This
exponent was obtained with the algorithm proposed by Wolf
et all [32], considering that the Equation (1) has a single
independent term.

In the selected study case, except for two non-chaotic
convergent points, (1, 0, 0) and (−1, 0, 0), that correspond
to poles of Equation (1), all non-valid IC’s drive the system
to divergency.

It should be noticed that all states belonging to a chaotic
attractor also belong to V

IC
. Furthermore, the path τi having

as origin an IC point belonging to a given path τj belonging
to the attractor will coincide from this IC point on, with the
path τj . The reason for this behavior relies on the fact that,
like in a Markov Chain, the next state is only dependent on
the current state.

This property leads us to the conclusion that the region V
IC

minimally contains all points of the three-dimensional chaotic
attractor (as pointed out later, this region contains the three-
dimensional chaotic attractor). This situation is summarized
on Table I where xmin and xmax represent the minimum and
maximum values obtained while simulating Equation (1). The
same notation is applied with respect to the other dimensions
variables y and z.

What has been shown quantitatively on Table I, is qualita-
tively exhibited on Fig. 3 — that shows, three-dimensionally,
the volume V

IC
printed in shades of color with the chaotic

attractor printed in black on the bottom part of Fig. 3.
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TABLE I
LIMITS OF THE KEY SET (PARALLELEPIPED) IMBEDDED IN V

IC
.

xmin xmax ymin ymax zmin zmax

Attractor −1.29 2.47 −1.95 1.43 −1.83 1.53
Valid IC −6.50 39.5 −33.5 4.50 −3.19 30.2
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Fig. 3. Three-dimensional chaotic attractor imersed in region V
IC

.

Points in Fig. 4 correspond to the intersection of the 3-D
region V

IC
, shown in Fig. 3, and the plane z = 0. The

large, outer, red area surrounding the green area corresponds
to non-valid diverging IC (V

dIC
). The green inner area

surrounded by V
dIC

corresponds to the V
IC

in this plane
z = 0. Also shown in this figure, are two non-valid converging
IC’s, marked by a red circle, namely points (1, 0, 0) and
(−1, 0, 0). All points in the red area enclosed by the green
area are IC points that drive Equation (1) to a diverging,
non-chaotic trajectories, which loop around the attractor once
before diverging to minus infinity.
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Fig. 4. Intersection of the 3-D region V
IC

with the plane z = 0.

Fig. 5 is an enlargement of Fig. 4 which, besides displaying
the chaotic attractor, also shows the intersection of A with the
plane z = 0. The black points highlight these intersections.
One can see, by examining this picture, that the green area V

IC

contains the attractor (points displayed in black), corroborating
an statement made before on this section.
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Fig. 5. Intersection of the 3-D Attractor and plane z = 0, and the intersection
of V

IC
and plane z = 0

IV. KEY SPACE CALCULATION

We will now consider the algorithm proposed by Baptista
[12] to determine the key space K and its relation to V

IC
. Let

the string (a1, a2, . . . , aS) be the plain text to be encrypted.
The chaotic equation used in [12] is the so called Logistic
Equation — we replaced this, in our study, by the Linz
and Sprott equation (1). Given an initial condition x0, a
partition L = {L1,L2, . . . ,LS} of the chaotic attractor A,
Baptista algorithm associates each letter ai from the plain
text to a curve Li and the cipher text ci is made equal to
`i ∈ N, the integer number of iterations required to drive
the state of the system from x0 to state xi ∈ Li. The secret
key k = (A, x0, L) ∈ K is then a triplet formed by the
parameter of Linz and Sprott’s Equation A, the IC x0 and,
the partition L.

The next two figures present two slices of the three-
dimensional region V

IC
at z = −2.0 (Fig. 6) and z = −1.5

(Fig. 7). The intersection of V
IC

and the two planes delimit
two large and connected parallelepiped sets arbitrarily chosen
based on the values shown on Table II — as before notice that
xmin, xmax, ymin, ymax, zmin and zmax are the limits of a
parallelepiped belonging to the green 3-D region presented
on Fig. 6 and Fig. 7.

TABLE II
LIMITS OF THE KEY SET (PARALLELEPIPED) IMBEDDED IN V

IC
.

xmin xmax ymin ymax zmin zmax

0.500 1.500 −0.125 1.375 −2.000 −1.500

The cardinality of the key set depends, of course, on the
arithmetic precision (δ) and on the number of iterations (η)
— usually a large number is necessary to uncorrelate the
initial and final state. The trade-off between key space size
and encryption speed has, as always, to be considered. To
qualitatively illustrate the influence of the number of iterations
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Fig. 6. Slice of the 3-D valid-IC Region, at z = −2.0, where the lower
frontier of the Key Space set lies.
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Fig. 7. Slice of the 3-D valid-IC Region, at z = −1.5, where the upper
frontier of the Key Space set lies.

on the correlation between states, Fig. 8 to Fig. 11 display the
dispersion observed among states. The red rectangle centered
on (1.0, 1.0) is a cluster of 594 points, each point separated
from its nearest neighbor, by a distance of 2−5. Each one
of these 594 red points, when used as IC, produces one of
the 594 final states displayed in blue on Fig. 8 which depicts
the simulation results after 30 iterations — notice the 594 final
states are grouped on the second quadrant (V -shaped set). The
volumetric dispersion (measured by the multiplication of the
standard deviation, along dimensions x, y and z) of these final
states is small, approximately 3.95 × 10−2.

The dispersion of equivalent set of points after 100 and
500 iterations are shown on Fig. 9 and Fig. 10. Now the
final internal states (594 blue points) experimented volumetric
dispersions near 1.71 × 10−1 and 5.08 × 10−1, respectively.
Finally, Fig. 11 presents the same information after 1100
iterations, when the final states are spread all over the chaotic
attractor (the volumetric dispersion is about 8.28× 10−1).

From the graph of the volumetric dispersion depicted as a
function of the number of iterations, on Fig. 12 one can see
that, after a large enough number of iterations, the final internal
states are scattered all over the chaotic attractor volume.

When the selected precision grows higher, the IC points
are closer to each other and a larger number of iteration is
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Fig. 8. Volumetric dispersion (3.95 × 10−2) of final states of Linz and
Sprott’s equation after 30 iterations ( δ = 2−5).
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Fig. 9. Volumetric dispersion (1.71 × 10−1) of final states of Linz and
Sprott’s equation after 100 iterations (δ = 2−5).
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Fig. 10. Volumetric dispersion (5.08 × 10−1) of final states of Linz and
Sprott’s equation after 500 iterations (δ = 2−5).

required to ensure that the dispersion is large enough. Fig. 13
exhibits the volumetric dispersion, for three different precision
values: δ = 2−20 (red cycles), δ = 2−30 (blue diamonds) and
δ = 2−40 (green squares). The values of volumetric dispersion,
after, respectively, η = 290, η = 430 and η = 505 iterations,
start to increase rapidly, as shown.

Chaotic equations are very sensitive to variations on the
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Fig. 11. Volumetric dispersion (8.28 × 10−1) of final states of Linz and
Sprott’s equation after 1100 iterations (δ = 2−5).
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Fig. 12. Volumetric dispersion of final states of Linz and Sprott’s equation,
versus number of iterations (in natural logarithmic scale) (δ = 2−5).
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Fig. 13. Time evolution (in logarithmic scale) of the volumetric dispersion
of the final states, of Linz and Sprott’s equation. δ = 2−20 (red cycles),
δ = 2−30 (blue diamonds) and, δ = 2−40 (green squares).

value of the IC’s — a slight change on IC, δ = 2−40 for
instance, drives the final states, in a butterfly effect1 [33]

1“The flapping of a single butterfly’s wing today produces a tiny change
in the state of the atmosphere. Over a period of time, what the atmosphere
actually does, diverges from what it would have done. So, in a month’s time,
a tornado that would have devastated the Indonesian coast doesn’t happen. Or
maybe one that wasn’t going to happen, does.”

manner, to a large dispersion, as Figs.12 and 13 illustrate.
The graphic of the dispersion as a function of the variation

of IC’s of the chaotic Linz and Sprott equation displayed on
Fig. 14 is also an evidence of this sensitivity. This graph plots
the distances between every IC state and the correspondent
final state, after iterating the chaotic equation 1815 times —
minimum distance between distinct IC’s (precision) is set to
δ = 2−40.
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Fig. 14. Variation of the distances between the IC state x0 =
(0.25, −0.375, 1.5) and the correspondent final state, xη , after η = 1815
iterations (δ = 2−40).

The dispersion of the final states of the chaotic equations
when distinct IC are used can guide the choice for the
number of iterations. The plots of number of iterations
versus minimum distance between IC to achieve volumetric
dispersions of 0.5 (square marks), 0.7 (circle marks) and
0.8 (diamond marks), is displayed on Fig. 15. A good
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Fig. 15. Number of iterations necessary to disperse the final internal states
over the chaotic attractor as function of the distance between successive Initial
Conditions.

trade-off between the number of iterations and the minimum
distance between IC is observed, from the results on Fig. 15,
to be η = 1053 and δ = 2−45. With this choice of parameters
a key set with cardinality ×2135 or, equivalently, 135 bits
long key can be constructed.
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If we use the whole volume of the attractor of Fig. 15,
instead of only the volume of the parallelepiped specified by
Table II , the key set can reach a cardinality of, roughly, 2150

or, equivalently, a 150 bits long key.

V. CONCLUSIONS

In this paper, a characterization of the three-dimensional
region of Initial Conditions that leads the elementary chaotic
flow, discovered by Linz and Sprott, to a chaotic attractor is
presented, delimiting thus a spatial region with IC suitable
for use with encryption algorithms. A simple analysis has
shown how to obtain a key set with keys of 135 bits long
(this number can be even large if parameters other than the
binary representation of the chaotic equation solution are
used). Further work, under way, seek to characterize the valid
IC region in three-dimensional regions, for other commonly
used chaotic equation.
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