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Abstract— A review of OFDM synchronization algorithms
applied to IEEE 802.16 standard is presented. An extended
Morelli algorithm is proposed and compared with classical syn-
chronization methods: Schmidl and Tufvesson (Matched-Filter).
The timing metric of that extended algorithm is close to matched-
filter timing detection. The frequency offset is calculated using a
BLUE approach, resulting in an estimation range of [−G/2, G/2]
subcarriers, where G is the number of repeated patterns in the
preamble. The detection probabilities in Rice, Rayleigh and static
ISI channels is also simulated, and interesting results are obtained
for each algorithm studied.

Keywords— OFDM, WiMAX, software defined radio, synchro-
nization, FPGA.

I. INTRODUCTION

Time detection of arriving symbols and estimation of the
carrier frequency offset (CFO) between transmitter and re-
ceiver is the starting point - and probably the most important
point - of a reliable communication system. OFDM modulation
technique is known to be sensitive to CFO [1], as the frequency
offset causes loss of orthogonality among subcarriers, causing
inter-carrier interference (ICI).

In the last years, many advances have been achieved on the
OFDM synchronization techniques. Many of these advances
were possible by the use of preambles with special features.
Some of these advances still cannot be used in practice,
because they are not yet included in any standard body. For
example, the works in [2], [3] and [4], achieved better detec-
tion characteristics over Schmidl algorithm basically by doing
changes in the preamble as well as some minor modifications
on the timing metric.

Considering the preambles in IEEE 802.16 systems [5] as
a fixed system setting, only a few algorithms can be explored.
These are mainly prior-1999 algorithms, such as Schmidl [6],
Morelli [7] and Tufvesson [8] algorithms. Schmidl uses a 2-
part preamble and calculates the time and frequency offsets
between transmitter and receiver. This algorithm expands
the theory developed by Moose [9]. Morelli algorithm con-
siders that the signal is synchronized in time a priori,
then calculates the frequency offset using a Best-Linear-
Unbiased-Estimator (BLUE) approach. Tufvesson’s method
uses a matched filter for timing synchronization, and cal-
culates the frequency offset using a Maximum-Likelihood
estimate similar to Schmidl/Moose method. The Extended-
Morelli algorithm proposed in this work is a joint-detection
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algorithm that uses a Maximum-Likelihood timing estimation
along with a BLUE frequency offset estimation.

Also, in order to make calculations less complex, most
algorithms consider the channel as Additive-White-Gaussian.
In general, this is not the case in real communication sys-
tems, so it is important to compare the algorithms’ behaviour
under other channel types, such as Rice, Rayleigh and cable
channels.

II. SYSTEM DESCRIPTION

OFDM signals are generated by Inverse Fast Fourier Trans-
form (IFFT) of a set of subsymbols {Xi}, which are mod-
ulated in BPSK, QPSK, QAM, or any other modulation
technique, following the equation:

x(k) =
1√
N

N−1∑
i=0

Xie
j2�ik/N , (1)

where N represents the number of subcarriers, x(k) is the
time-domain OFDM signal that has a duration of Ts seconds,
and lenght of N samples.

Before transmission, x(k) is enlarged by L samples, also
known as “cyclic prefix”. The last L samples are copied to
the start of the symbol, generating a N + L length symbol.
The cyclic prefix must be longer than the channel impulse
response, in order to mitigate inter-symbol-interference (ISI).

At the receiver, the signal is sampled with frequency N/Ts
Hertz, and a frequency offset � is also added. This frequency
offset is normalized in respect to the subcarrier spacing 1/Ts.
The received signal can be expressed in the form:

r(k + �) = s(k + �)ej2��k/N + w(k + �), (2)

where w(k) is white Gaussian noise with zero mean and power
�2
w = E{∣w(k)∣2}, � is the time delay between transmitter and

receiver. Also, s(k) is defined as:

s(k) =
1√
N

N−1∑
i=0

HiXie
j2�ik/N , (3)

where Hi is the digital frequency-domain channel response.
The received signal power is defined as �2

s = E{∣s(k)∣2}, so
the signal-to-noise-ratio can be expressed as SNR = �2

s/�
2
w.

The synchronization is performed by the aid of a preamble
with G equal parts. This preamble can be synthesized sending
pseudo-noise sequences on the subcarriers with index multiple
of G, and setting zero on the remaining subcarriers. In IEEE
802.16 systems, a preamble with G = 4 equal parts (P4x64)
is described [5].
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III. ESTIMATION METHOD

The proposed estimation method can be considered an
extension of Morelli’s Algorithm [7]. Morelli’s algorithm
considers the received signal r(k) to be prior synchronized
in time, so the aid of another synchronization method is
necessary, adding up the receiver complexity.

In fact, the correlation method used in [7] resembles others
synchronization algorithms such as Schmidl [6] and Van-
de-beek [10] methods. By making some adjustments in the
calculations presented in [7], one can obtain both time and
CFO estimation, without increasing the complexity too much.
This method will be referred as Extended Morelli algorithm,
or E-Morelli from now on.

A. Timing estimation

The received signal must be delayed and self-correlated
according to the equation:

Rm(k) = 2

k+mN/G+L−1∑
i=k

r(i)r∗(i+N −mN/G)

mN/G+ L
, (4)

the energy can be calculated by:

Em(k) = �

k+mN/G+L−1∑
i=k

(
∣r(i)∣2 + ∣r(i+N −mN/G)∣2

)
mN/G+ L

,

(5)
and the m-th correlation:

�m(k) = ∣Rm(k)∣ − Em(k), (6)

for 0 ≤ m ≤ G− 1.
Equation 6 is in fact the Van-de-Beek ML-estimation metric

[10]. When m = 0, correlation is performed between cyclic
prefix and the last L samples of the symbol; the Equation 6 is
reduced to Van-de-Beek Maximum-Likelihood timing metric:

�VdB(k) = 2

∣∣∣∣∣
k+L−1∑
i=k

rkr
∗
k+N

∣∣∣∣∣− �
k+L−1∑
i=k

(
∣rk∣2 + ∣rk+N ∣2

)
.

(7)
The overall E-Morelli timing metric can be defined as:

�T(k) =

G−1∑
m=0

�m(k), (8)

and the delay estimation �̂ can be obtained by:

�̂ = arg max {�T(k)} . (9)

The time estimation error can be defined as Δ� = � − �̂.
When −L < Δ� < 0, the synchronization performed within
the limits of the cyclic prefix, and just some phase offset is
added in the received signal. When �̂ falls outside the cyclic
prefix range, the signal will suffer interference and therefore
poor performance is achieved [11].

The main difference between Morelli and E-Morelli corre-
lations is the increased length of the moving sums, now L
samples longer. This increase generates a sharp edge on the
timing metric, which reduces time estimation variance. The set
of correlations {Rm(k)} can explore the repetitive nature of
the P4x64 preamble pattern defined in IEEE 802.16, therefore
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Fig. 1. Extended Morelli Correlations.

calculating four correlations with different window lenghts: L
for �0, (N/4 +L) for �1, (N/2 +L) for �2, (3N/4 +L) for
�3. A realization of the explained set of correlations is shown
in Fig. 1.

B. CFO estimation

The CFO is estimated using a BLUE estimator based on
correlation performed in Equation 4. This method is similar
to Morelli’s correlation in [7], and produces the same results
in respect to estimator variance and error. The CFO estimation
can be obtained by

�̂ =
G

2

1

�

H∑
m=1

w(m)�(m), (10)

where

�(m) =
[
∕ Rm(�̂)− ∕ Rm−1(�̂)

]
2�

(11)

for 1 ≤ m ≤ H . The weights w(m) are calculated as shown
in [7]:

w(m) = 3
(G−m)(G−m+ 1)−H(G−H)

H(4H2 − 6GH + 3G2 − 1)
. (12)

The CFO estimator range is [−Gfs2N , Gfs2N ] Hertz, where fs =
N/Ts is the sampling frequency. This CFO estimator is the
same estimator of Morelli Algorithm in [7], consequently it
achieves the same Cramer-Rao low bound and variance.
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Fig. 2. Variance of timing estimator.

IV. SIMULATION RESULTS

In this section, we compare three algorithms: Schmidl [6],
Tufvesson [8] and E-Morelli. In each SNR point, 10,000
realizations were performed, in order to extract some important
statistics, such as timing and CFO estimation variance, and
detection probabilities under four different channels.

A. Timing Estimator Statistics

One important feature in synchronization algorithms is the
timing estimator variance. The estimator’s variance must be
low enough in order the signal detection occurs inside the
cyclic prefix. Another important feature is the probability of
detection: the algorithm must be robust enough to detect the
incoming packets even under bad channel conditions.

In Figure 2, each SNR point was produced after 10.000
realizations of each algorithm. We can see that the variance
of Schmidl algorithm [6] does not tend to zero as SNR
increases. This result was expected, as the timing metric for
this algorithm reaches a plateau of maximum length L. The
Tufvesson[8] and E-Morelli algorithms tend to zero variance
as SNR increases. This represents a more stable behaviour in
the timing estimate.

B. Frequency Estimator Statistics

Another important point in synchronization is the frequency
estimation variance. A high variance means higher residual
error that the next processing stages in the receiver must cope
with. In Fig. 3, we can see that E-Morelli method has the
lower estimator variance. Schmidl and Tufvesson aproaches
have virtually equal variances.

In Figs. 3, 4 and 5, we can see that when using AWGN,
static ISI an Rice channels, the variances tend to decay as
SNR increases. But in Fig. 6, when simulating under Rayleigh
channel, the variances reach a floor and do not tend to decay
as SNR increases.

C. Detection Probabilities

This metric can be defined as:

Pd = P {−L ≤ Δ� ≤ 0} , (13)
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Fig. 3. Variance of CFO estimator under AWGN channel.
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Fig. 4. Variance of CFO estimator under static ISI channel.
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Fig. 5. Variance of CFO estimator under Rice channel.

as Δ� is a random discrete variable, we can write:

P {−L ≤ Δ� ≤ 0} =

0∑
i=−L

P {Δ� = i} . (14)

The probabilities P {Δ� = i} can be estimated by simulation
of histograms, so a close value of Pd can be achieved.

The variable Δ� depends on the algorithm tested, as well
as channel characteristics. Some algorithms generate a lower
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Fig. 6. Variance of CFO estimator under Rayleigh channel.
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Fig. 7. Detection Probabilities for AWGN channel.

variance Δ�, while some channels tend to raise the variance
of Δ�. In the next sections, we study four channels: AWGN,
static ISI, Rice, and Rayleigh channels.

1) Detection in AWGN Channel: In Fig. 7, estimation of de-
tection probabilities in a SNR range of [-20dB,20dB] is shown.
The algorithm that performed best was the Tufvesson[8], fol-
lowed by E-Morelli and Schmidl [6]. This result was expected,
as the matched filter is widely used in telecommunications as
an optimum method for signal detection under AWGN.

The probability of detection only points out how much an
algorithm is capable of detecting an incoming packet, and
does not assure that the frequency estimate is good enough
for reliable communication. In fact, although some algorithms
are able to detect preambles under negative SNRs, few com-
munication systems operate in such an extreme interference
region.

2) Detection in an ISI Channel: a simple static ISI channel
was simulated as a 10th order low-pass FIR. The low-pass
characteristic was choosen because many transmission lines
present this behaviour. The channel frequency response is
illustrated in Fig. 8. The simulations were performed using
a 16-sample cyclic prefix, hence the first 10 samples of the
cyclic prefix are distorted by ISI, and 6 samples are free of
interference. The results are presented in Fig. 9.

In this type of channel, higher frequencies suffer a larger
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Fig. 8. Static ISI channel transfer function.
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Fig. 9. Detection Probabilities for static ISI channel.

distortion due to white noise which is added after filtering. A
sharp fall in performance is noticed, because the higher fre-
quencies of the received preamble are distorted. The Tufvesson
method is not optimum anymore, and also suffers degradation:
it reached 100% detection in 5dB of SNR, but in the pure
AWGN channel, reached this point around -5dB. The matched
filter is not “matched” anymore with the signal being received,
so this loss in performance is expected.

3) Detection in Rice Channel: The Ricean channel used
here is described in [12]. This is a line-of-sight channel, which
means a portion of the signal travels through a direct path and
another portion through a difuse path. It was also added a
Doppler spread of 100Hz. The model used for simulation can
be found in [13].

The curves for detection probability in Fig. 10 resemble
the ones for AWGN channel. When a large portion of the
signal travels by the direct path, the channel behaviour tends
to AWGN. When the inverse occurs, it tends to behave as a
Rayleigh channel. In this simulation, we used a ratio K ≈ 16
between the direct signal power and the difuse signal power.

4) Detection in Rayleigh Channel: The channel simulated
here is described in [12]; a typical urban Rayleigh non-line-
of-sight channel. A Doppler frequency of 100Hz was added
as well. The channel profile is detailed in Table I.

In Fig. 11, we can see that the detection probability for
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Fig. 10. Detection Probabilities for Rice channel.

TABELA I
RAYLEIGH CHANNEL GAIN PROFILE.

Tap Delay (�s) Average Power (dB)

g0 0 −3.5366
g1 0.5 −4.4428
g2 1.0 −11.6020
g3 1.5 −10.2797
g4 2.0 −14.7055
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Fig. 11. Detection Probabilities for Rayleigh channel.

Schmidl algorithm reaches a maximum plateau. This happens
because even in high SNRs, this channel can exhibit relatively
high signal to interference ratio (SIR), due to multipath
reflections and fading.

Another interpretation for Schmidl’s algorithm behaviour is
that, under Rayleigh channel, the instantaneous SNR drops
occur frequently - the so-called fading effect -. When the
channel is in a deep SNR drop, the additive noise is so high
that timing and frequency estimates become poor. This effect
tends to affect the final result, even if the average SNR is
increased. It is important to note that increasing the average
SNR does not change how frequently the instantaneous SNR
drops, as the fading is controlled by Doppler frequency.

The other algorithms react better than Schmidl because they
have better performance under higher additive noise. So even

under an instantaneous SNR drop, E-Morelli or Tufvesson
algorithms are able to react better than Schmidl.

V. CONCLUSION

Considering the algorithms compared in this work, in gen-
eral, the Tufvesson approach has the best timing estimate,
while E-Morelli has the best frequency offset estimate. In fact,
E-Morelli timing estimate is close to the Tufvesson estimate,
in order that no difference would be noticed between both,
under usual SNR conditions.

Most systems operate under fair SNR conditions; in this
case, E-Morelli would show the same performance as the
Tufvesson in the time estimate, but better performance in
frequency estimate, e.g. lower variance and larger frequency
acquisition range. For the channels simulated in this work, if
SNR > 5dB both algorithms reach 100% detection probabil-
ity.

In general, we conclude that if good SNR occurs, E-Morelli
algorithm is a better choice when compared to Tufvesson and
Schmidl.
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