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A Matrix Laurent Series-based Fast Fourier
Transform for BlocklengthBl=4 (mod 8)

H.M. de Oliveira, R.M. Campello de Souza and R£€Qdiveira

o ) theory of algorithms [6], and more specificallytire Signal
Abstract— General guidelines for a new fast computation of Processing field [7, 8].

blocklength 8n+4 DFTs are presented, which is based on a
Laurent series involving matrices. Results of non-ivial real
multiplicative complexity are presented for blocklegths N<64,
achieving lower multiplication counts than previousy
published FFTs. A detailed description for the casem=1 and
m=2 is presented.

Resumo— Linhas gerais de uma nova transformada rapida
de Fourier para sequéncias de comprimentor8+4, baseada em
séries matriciais de Laurent, sdo apresentadas. Rétados de
complexidade expressos em multiplicagBes reais nfiodais séo
apresentados para comprimentos de bloco inferioreg 65,
exigindo menos multiplicagbes do que FFTs prévias. Uma
descri¢do detalhada do algoritmo € feita para os sas em que
m=1 em=2.

Index Terms— fast algorithms, FFT, Laurent series,
Heideman bound.

|. INTRODUCTION
FOURIER transforms have been playing a major role i

quite a lot of areas, especially in the fields é&dkto

Signal Processing [1, 2]. In practical cases, v&ation is
not carried out analytically, but rather numerigadind, in
most times, there is no analytical expression efdignal to
be analyzed. The successful application of transfor
techniques is mainly due to the existence of theadled fast
algorithms [3, 4]. Therefore, techniques for conmmyt
discrete transforms with a low multiplicative comxity,
have been an object of interest for a long time.

This paper proposes a new fast algorithm for comgut

the Discrete Fourier Transform (DFT) of sequencés o 1+

particular lengths\, namely those for whiciN = 4(mod8),
but can also be extended fRr= 0(mod4).

Let N be the number of time-domain samples of
sequencev = (v,), n=0,1,2,..N-1. The DFT ofv is given

by the sequenc&/ =(V,), of length N, in the frequency
domain, defined by

V, = fvn exr{ )

In 1965, J.W. Cooley and J.W. Tukey introduced
revolutionary idea which later became known as fde
Fourier transform (FFT) [5]. The FFT is a milestanethe
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With the advent of VLSI and the development of BifeP
(Digital Signal Processor, processorschip) to implement
signal processing techniques, the DFT became thst mo
attractive tool for spectrum evaluation [9-11]. Tlest
reduction of DSPs and the astonishing capacityeaeli by
up to date processors (e.g., dozens of GFlops—&igtang-
point operations per second—and TFlops) [13], tugretvith
novel and efficient signal processing techniqussturning
real-time application feasible for several kind sifnals.
Therefore, discrete transforms become the widedptaal
in spectral analysis [14].

There are several standard FFT algorithms in
literature, including Cooley-Tukey, Good-Thomas ahd
Winograd-Fourier algorithm (WFTA) [15]. A lucid tottial
review of fast Fourier techniques by Duhamel anttésg is
available in [16].

In 1987, Heideman investigated the arithmetical
complexity of the DFT and derived lower bounds be t
multiplicative complexity for computing it [17]. teiper(N)
he the minimal multiplicative complexity of the eta
computation of a blocklength DFT.

the

Theorem (Heideman). For N = - ps , where

i=1,...m are distinct primes and, i=1,.../n are positive

integers, it follows that

Hoer (N) =2N —i Zi«;{gc{ﬁ p; ,4}}.

|‘|km:1¢(dk)
dlem(d,, d,,...,d)

PIDY 2

AP Apf) )

Pgcd(pt 4))  Aged(p 4) Aged(prr 4))
avhere ¢.) is the Euler totient  function
(@x¥)=|{n eMn<x"gdc(n,x)=1}), gcd.,.) denotes the
greatest common divisor anldm(.,.) the least common

multiple.

Proof. See [17, M.T. Heideman, p.9®.

This proof is based on evaluating the multiplicativ
complexity of a set of polynomial products.

a |n 2000, de Oliveira, Cintra, Campello de Souza [l19,
introduced an algorithm based on multilayer decaositjpm
to calculate the DFT via the discrete Hartley tfams
(DHT), which meets the minimal complexity
blocklengths up tt&N=24 [20].

Another approach to quantize a Fourier series stmsi
digitalizing the basis of signals used in the degosition
[21]. Matrices so derived are alwayguasidiagonal
matrices” and their inverses arguastidentity matrices”.

for
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The Modbius inversion formula was also used to d@eriviwhose elements ar&é, ) where J is the Kronecker
guesstimates of the DFT from the coefficients oé& th M

guantized series. The analysis is rather similath® one
proposed by Cintra and col. in the framework ofnaed
Hartley transform [22, 23].

Il. DFT AS A MATRIX LAURENT SERIES

The first step towards the FFT proposed in thisspépto
rewrite eqn(1) in matrix form:

V, 1 1 1 1 A
V, 1 W W?2 wh \'A
vV, [=|1 w?  w* W2y, ]
_VN_l_ 1 W N-1 WZ(N—l) ) W(N—l).(N—l) | _VN iy

2

or (V,)=[DFT].(V,).Since W:=e ' N has orderN,
there are onlyN distinct powers of W in the set
{WO WEW2Z W3 W(N—l).(N—l)}'

This paper deals with blocklengths=4 (mod 8) so as to
guarantee that there exists always a powa gfelding the

eigenvalues of the DFT, i.et]l, £j [24]. These terms do not

contribute to the multiplicative complexity, becaus
WO :1' WN/4 =_j , WN/Z :—l andW3N/4 = J . (2)

symbol.
Finally, we define a matri,, associated with each class

Cn, for nFO,il,tZ,...i(': —1j /2:

4(1-m)
Mn=2 (=) ¥ x(Mm).

For instancem=0 corresponds to the additive part of the
DFT transform matrix:
Mo =1-X0(M) - j-/YN/4(M) _1-/YN/2(M) + j'/YSN/4(M)'

Consider a (possibly infinite) matri expressed in terms
of block matrices in the form:

A:(..., A—la Ao, Alu

whereA, areN xN submatrices oA.

From the matrixA, the following formal power series is
called Laurent series of the matAx26, 27]:

A(2) = iA z.

| =—c0

3)

),

Thus,A(2) is a Laurent series with matrix coefficients. In

N,
particular cases wherg(z) := Z A 7', Ni,N, OZ, then
=N,

g::Nz'N1+l

The exponents ofV in expression (2) generate a set ofs the genus of(z) andA [27].

four points that lie on the real or imaginary axibis fact is
associated to the set
Co:={0, N/4,N/2, 3N/4}
and we are looking for particular symmetries in foer
guadrants of the Argand-Gauss plane [25].
The set of exponents of the distinct powers \Wf

{WO,Wl,WZ,...,W(N‘l’} (the N-th roots of unity), is then

partitioned intoN /4 (disjoint) classes (worth to remark that

4 |N):
Cn={XONN[O,N) | 4<=4m (mod N)}, where &V is the set

of natural numbers and=0+1+2,... + (N _1]/ 2.
4

Proposition 1 The above mentioned class&%.J engender
a partition of the ensemble of integers {0,1,2N-1}, i.e.,

N/4-1
Om#m, C,NC, =0 and | Jc, ={012..,N-1}-
m=—(N /4-1)
Proof. Suppose (byeduction ad absurdujrthat there exists

a pairm#m’ such thatC_NC_ # 0. Therefore, there is a
common elementxJC_ and x(C,, such that # = 4m

(modN) and &« = 4m’ (mod N). Therefore /= 4m’ (mod
N), which is the same as = m’ (modN/4), a contradiction.
The cardinality of a se€, for eachm is |C||=4. There are

N/4 disjoint classes, so thﬁt N(jlcm =4(N/4)=N and
m=-(N/4-1)

the classes@,} form a partition of {0,1,2,..N-1}. =
For the sake of simplicity, we deal only with thatnix of
exponents oW in the DFT matrix. Let us define a¥xN

matrix M:=(kn (mod N)), whose elements belong to the set {WO,Wl,WZ,WS,...,W(N_l)'(N_l)}'

{0,1,2,...N-1}.
We also define an operatgy, over anNxN matrix for
eachl=0,1,2,...N-1, which yields a newxN binary matrix

Let us now namdll as the matrix associated with the
submatriceM,,,:

WL::(M_NM—L---,M—l’MO’Ml""MN’4-1

2 2
The Laurent series of the matilk is
1
m(2=M —(N/4—1)/2'W+“'

1
+M_,.—+
22

M_l.1+M0 +M.z+M,.z% +...
z

+Mn /4—1)/2-2(N farz,

which has genug=N/4 (in the filter bank framework, the
notation of Laurent series is referred to as thypiase
representation [1]).

The evaluation of the discrete Fourier spectrum
corresponds to a product of the discrete-time datpence

by the DFT transform matrix [DFT]ﬁi(z)|Z=W , that is, the
DFT transform matrix is
+(N/4)-1)/2 m
n(|,., = (5)

~((N/4)-1)/2
Since the multiplications bW" andW™=(W")" for a fixed
value ofm are essentially equivalent, these matrices can be
combined by considerinfm_,,m,} and writing this coupled
matrix in the standard echelon form (SEF, refefnede as
rref, row-reducedechelonform as in Matlab and Mathcad
software).

Steps of simplification consider only powers of:

wewt w2 we, . weol
{WO WEWL W2 W2 W (N/4-D12 W—(N/4—1)/2}.
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_ 21 and i 27 00 000O0OOOOOU OO
OeW=cos— <= OMW=sin—o- 01 23456 7 8091011
Forn = o(mods) there is a lack of symmetry, with more 02 468100 2 46 8 10
. . . . 0 3 6 90 6 9 03 6 9
positive than negative terms in expression (5). For 0 4 8 04 0 480 4 8
instance, forN=8, the decomposition takes the form:
. i |0 5 10 3 8 6 11 4 9 2 7
WL(Z)|Z:W:|\/|O+|\/|1w. For N=16 the algorithm yields M= 6 06060606 0 6
”L(Z)lz-w:M_NV+M0+M1W+M2W2- In general, the 07 2 94116 18310 5
- . . . . 0 8 408 408 40238 4
only asymmetric class in the series that is appehol¢he 09 6 30096 30096 3
symmetric classes By, N=8. 010 8 64 2 01086 4 2
01110 9 8 7 6 5 4 3 2 1
Ill. THE NEW FFT ALGORITHM
The fast algorithm is written in terms of the megs M} There are onlyN/4=3 classes, namely:
according with the following decompositions: Co=(0, 3, 6, 9), 824=12=36 (mod 12)
Ci=(1, 4, 7, 10), #28=16=40 (mod 12)
DeDFT:{De(Mo) 5 ol + M-m)-coszﬂ} C4=(112,5, 8). 4=#20=6=32 (mod 12).
m=1 N In this particular case, the greatest indexN&i{1)/2=1.
(N/a-1)/2 ~2/m Indeed, C4, Co, C; are a partition of {0,1,2,...,11}, as
+{ kz; Om(M,, —M_,)sin N } expected.
) (142 It is straightforward to observe that giv€p the elements
DmDFT={Dm(MO)+ > Dm(Mm+Mm).co@} of C; can be directly derived by adding 1 (mNJito each
m=1 N element ofCy; C_; by subtracting 1 (mo#ll) to each element
(N/an/2 . 2m of Cp, and so on.
-1 2 OeM,-M_,)sin ' In order to clarify the approach, we take the $etawers
- N of W:
The matrices and + are then '
. . I:le(M O) De(M m= M —m) ‘ . {:I.,W,WZ,WS,W4,W5,W6,W7 ,WS,WQ,WlO,Wll}.
written in SEF, as well as the corresponding mesric . ) . _ .
Since w° =1, w®=-j, W®=-1, w°=j, the following

Om(M,) and Om(M =M __ ).
The multiplicative complexity of the fast transfooan be
computed by

classes are considered:

C={0,3,6,9} = 1,4,-1,j

Ny C={1,4,7,10} =  W=1W, W'=-.W, W'=-W, W=j.W.
(52 De(Mm+Mm)J+an k{ue(mm_Mm)) 6 Cim(L2.5.85 WSW, W=, W=w, WejW.

> ran
m=L Om(M,, +M_,,) Om(M, ~M._,,) The operations involving product by the eigenvalues

In every case examined so far, no reduction ok &&s  (elements of2,) and/or the conjugacy of a complex must not
achieved when stacking the matrices(M ,+M_,) and pe considered as a float-point multiplication.

Dm(M nEIM _m), and the multiplicative complexity of the The matrices of interest in the algorithm are:
FFT was always given by

(Ma)r2 OM; =1x, (M) =1xs(M) = j.x3(M) + j.xs(M).
) This additive matriXviy is then separated into its real and
2 mzl rank(@eM , +M__ ) +rank(Om(M _ +M_)). maginary parts.

In the naive exampl&l=8, there are only two matrices 111111111l
associated with the multiplicative terms, namely: 0 0000 -1000 0
01000 -10 0 10 0 -100 1 00 -1 0
De(Ml): Dm(Ml):( J 10 -1010 -1010 -10
000100 0-1 100 100 1 001 0 0
so only two multiplications dos¢:/4)=sin(n/4)) are Demy=|t © 0 000 -1000 0 0
required. It is worth to observe that the numberredil Pt -1 .11 -11 -1 -
multiplications is two unities less than that omenputed by 60 000-1000 00
eqn.6 whem = 0(modd4), because a multiplication by o0 1001 00100
. 10 -1010-1010 -10
exp( 774) is included. 10 0 100 1 00-10 o0
10 0 000 -1000 0 0]

IV. AN FFT FOR BLOCKLENGTH N12 which fu_rnishesank(De(Mo) )=6:

For N=12, we start gathering the elements of exponents i o ]
the class {0, 3, 6, 9}, which are not associatedhwi In SEF, the real part of the matrixief (M)

multiplications (see eqn 1): this corresponds ® $BtC,. 100000000000
The matrixM with the exponents of the terms of the DFT 010001010001
matrix is 001000000010
000100000100
000010001000
000000100000
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On the other hand, 0 000OO0OOUOTO OO0OO0OO0O

0000 O0OOO0OGOUOTU OO 0O 0 0000-100000 1

0 00-1000001 00 0 000OOOOG O O0OO0O0O

000 0OOT OO OGO OTU OO 0O 00000 O0OOUOUO0OO00O0O

0-101 0-1010-10 1 0 000OOO0OOG O O0OO0O0O

0000 OO OGO OUOTU OO 0O De(M_l):o—1000001oooo

0 00-10000O01 0 0 0 000OOOOGOTUO0OO0O0O
Dm(MO):oooooooooooo 00000 T1O0UO0TO00O0O0-1

0001 000O0UO0-=-100 0 000OOO0OOGOTUOO0OO

000 0OOT OO OGO OTU OO 0O 0 000OOO0OOG O O0OO0O0O

01 0-101 0-101 0 -1 0 000OO0OO0OOUOUO0O00O0O

0000 O0OOOGOUOTU OO 0O 0 1 000 0 0-1000 O]

0001 00O0UO0TO0-10 0] so, rank(Oe(M ,))=2; besides, the SEF of the matrix is

; exactly the same as the one[o§M,), i.e., Lk=LI.

N

which in turns yield-ank( Om(M ) )=

In SEF, the imaginary matrix is: 00 000O0O0OO0DO0O0 O
00 -1200 0 0O 100 O
0100010 -10 00 -1 0-100100-10010
(000100000—100) 000000000000
00 1 00100100 1
00 001 0O0O0OOO0S-10
O M, =1y,(M)-1Lx,(M) = jx,(M)+ j.x;o(M), M=o 6 0 00 000000 O
[0 0 000 O0O0O0O000O0 O] 00 -100000 100 O
01 000 O0OO0O-10000 61 0010010010
00 0O0OO0OOOUOT OOO DO 00 0 0OOOOOOOTG OO
0 000OOOUOU OGO OOO O 00 1 00-100100 -1
00000 OOTU OO OO0O O _000010000.0.—10_ .
ey - 00000100000 -1 So thatrank(Om(M _,))=6; Surprisingly, the SEF of this
Y710 0000000D0O00 O matrix is the same as the one @Mm(M,), i.e. LI,=LI,. If
0-10000 010000 fact, Om(M_,) is essentially a row (or column) permutation
0 0000DO0DOGOTO0O0O0DO
90000000000 O of Om(M,). In order to evaluate the multiplicative
00000 OOTU OO OO0GO O complexity of the FFT of blocklength 12, we detammithe
0 0000-100000 1 rank of the matrices:
so,rank(0e(M,) )=2; the SEF of which is De(M mt+tM _m), and Dm(M mt M_m),
|_|1;:(0 100000 -1000 o]_ D&M, ~M_y), and Om(M, - M_,).
0000010 O0O0O0©O0-1 The four preaddition matrices associated with the
[o0o 000 000 0O 0 0] multiplicative branches of the algorithm are:
00 00-1000 001 0 rref Og(M, +M_ )= (01000-10-10001) (7a)
00 -100 1 0O -100 1 010001010001
00 00O OOO O OO O
0 -100-100-100-1o0 rref Om(M,-M_)=/0 01 0 0 0 0 0 0 0 1 0
Dm(M1)=00100000_1000 [000010001000
0 0 000 000 0000 rref OeM, -M )= (0100010-1000-1) (7b)
00 00-100O0 O0O0OT1 o0
00 -100 -100 -100 -1 01000-101000 -1
00 000 00O 0OTO O O rref Om(M,+M_)=l0 01 00 0 00 O O -1 O
01 00-1001 0O0-10 00001 0 0O0-100 0
0o 100000100 0] For the sake of simplicity, such matrices can biipthe
condensed form:
and,rank( DIT(Ml) )26; the SEF of which is [(0 10 F10-1 Q=+ 1)], and
01 00000210O0O00O0 (0101101011
LI2=l0 0 100000000 0 o s
000010000000 0,10, +10
000001000001 0, 10, ¥10,)
000000001000 Figures 1 and 2 present the block diagrams ofFfR€
000000000010

algorithm, separating real and imaginary parts agatpns.
) ) The total multiplicative complexity is eigheal floating-
©® M_, =1y,;(M)-Lxs(M) = j.x,(M)+ jxs(M) point multiplications, which meets Heideman’s love&und
[17] and very far from the 144 multiplications réea for
computing the DFT by its definition.
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Cy={0,5,10,15}C,={1,6,11,16} andC.,=(19, 4, 9, 14)

\'
v C={2,7,12,17} andC.=(18, 3, 8, 13).
The corresponding matrices
V.
2 LINEAR
“a :IE COMBNATION [—— rref Oe(M, +M_,), rref Oe(M, -M_,)
’—> R rref Om(M, + M), rref Om(M, -M_,)
\?D 3‘ 5 %) ii— rref Oe(M, +M_,), rref Oe(M, -M_,)
sin(?) - rref Om(M, +M_,), rref Om(M,-M_,)
’—\ ADD/ i can easily be find:
?:qz - SUBTRACT 010, ¥ 10-10, *1
. T | — 010, ¥ 10-10, +1 ;| 0, 10,5 £10 _
sin(Z) — 0,10,F10, -10,+10, | |0;10; +10, 10, +10,
v F 3 Y3 5 3 2
- ‘ 0,10, +10,
Ay % 0, 10, 10,
u %T/ﬂ 0,10, 10, |
W sintg? Table 1 presents the number ofal floating-point
:,5—“02 X multiplication required to compute the FFT for
- ki blocklengths\ <60
L 9 =
cos{‘%)

Table 1. Complexity of the Laurent series-based &lgorithm in terms
Figure 1. Scheme of the real part computation of a DR¥12). The small  of the number ofeal floating-point multiplications. Values dflog;N are
circles into theX-box denote subtraction. There are four multiplmas for ~ given as a benchmark.

computing JeDFT. The outputs are the twelve coefficients, Wwhare

computed by a suitable binary linear combinatiompfits (Eqn 7a). N.log2N #(N)
—_— N (rounded) Laurent-
FFT
¥ 1 43 8
W
Q:jE |- 20 86 32
v COMBINATION [ 28 1% r2
2 36 186 88
NETWORK | ——
‘HD:IE T 44 240 200
. 52 296 288
coste) 60 354 208
%
4 R . . .
Vaj@ g’% P A comparison with Heideman’s bound (Theorem 1) was
- SUBTRACT [ not performed in Table 1 becaugg-r gives the minimal
v, easln number ofcomplexmultiplications.
i
¥ — Z X Table 2. Complexity of the Laurent-based FFT atgoniin terms of the
Vi number of real non-trivial floating-point multiplications compateto
cos(%) radix-2 FFT. Rader-Brenner algorithm complexity][8&s also included.
; Radix-2 Rader-  Heideman #(N)
Ve 4 ‘ o N  NlogpN (real Brenner -Burrus Laurent-
O ) \f‘r nontrivial) u(N) based FFT
\’114“0 8 24 4 4 4 2
sin(%) 16 64 24 20 20 12
32 160 88 68 64 54
Figure 2. Scheme of the imaginary part computation of a IR¥12). 64 384 264 196 168 224

The little circles into the>-box denote subtraction. The computation of
OmDFT requires four floating-point multiplication¥he outputs are the The fast algorithm introduced here can be usededisfov
twelve coefficients, which are computed by a sué&dimear combination block MN= d hich h f
of inputs (Eqn 7b). Fig.1 has similar blocks, spiat implementation is any bloc _engt =0 (mo 4)* which assures t ? prese_nce 0
favoured to reduce the spatial complexity of theare. the four eigenvaluesof the DFT, but there is no ideal
i ) , . symmetry in the formal series. Therefore, even ghothis
The —complexity, in terms of real floating-point Fet \yag not conceived primarily for blocklengthttaze a
multiplications is given by 2(1+3)=8. According thi this power of two [1], [31], the algorithm can also beed and
approach, the coupled samples are: _ complexity results are shown in Table 2, in comgmariwith
ViEVs V7V Vo V10,5 Vg £V, the standard radix-2 Cooley-Tukey FFT algorithm.eTh
The presentation here was split in two figures SA® eigeman-Burrus bound [32] on the minimal numberead
clarify the intrinsic nature of the proposed FFGaalthm: multiplications needed to compute a lentth2" DFT is
the barely required modification in thée-part circuit to U (N):4N—2{(Iog N)2 +(log N)+2}- Thus. even if such
compute the correspondingm-part is to reverse the signal, ' 2 2

. . lengths are not the main concern of this algorith
of particular input samples. 9 9 e

number of multiplications required by this new FigSTeven

belowy (N). However, no conflicting facts exists in here,
V. COMMENTS ON THE FFT FOR FURTHER BLOCKLENGTHS '

For N=20, there are exactly/4=5 classes, corresponding to
m=0,+1,+2:

because particular symmetries (such a3"'*) were
probably not taken into account in [32]. This isroborated
in the companion paper [34], which describes the



XXVII SIMPOSIO BRASILEIRO DE TELECOMUNICAGOES - SBr2009, DE 29 DE SETEMBRO A 2 DE OUTUBRO DE 2009BAENAU, SC

implementation of the 16-DFT performing

12<y @6) =20 real multiplications [34] (simulink available

at URL http:/immww2.ee.ufpe.br/codec/Procedure_FFThtm

VI.

A new fast transform algorithm for the DFT of lehéi=4
(mod 8) is presented, which is based on symmetfidhe
matrices associated with a Laurent series-typeldpreent,
thus providing an FFT for lengths other than thstamnary
power of two. A naive and illustrative instancepigsented

CONCLUSIONS

in detail for N=12, but the entire procedure is systematic.

The multiplicative complexity of the FFT is evaledt
which achieve values less théhlog,N, for N=12, 20, 28,

36, 44, 52, 60. FON=16, 32, 64, the new FFT outperforms
the best known algorithms. The arithmetic complexit

(flops) of this FFT is currently under investigaticAlbeit
there exists scores of different and smart teclasgfor
spectrum analysis, including the arithmetic apphno§es,
29] or wavelet transforms [30], which are among et
choices, the FFTs still is an extremely widespreeatinique.
The FFT presented here is also easy to implemémy &SP
or low-cost high-speed Integrated Circuits.
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