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Arithmetic Fuchsian Code
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Resumo— Neste trabalho apresentaremos uma nova classe de
códigos a partir de grupos Fuchsianos. Esta nova classe de
códigos é bem similar a obtida pelos códigos de Alamouti. Tem
taxa-máxima, porém perde a propriedade de ortogonalidade.
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Abstract— In this work we present a new class of codes via
Fuchsian groups. These codes are very similar to the ones
obtained by Alamouti. This new class of codes has the property
of full-rate, but without the property of orthogonality.

Keywords— Alamouti code, Fuchsian group, Quaternion alge-
bra.

I. INTRODUCTION

We focus on the coherent multiple input-multiple output
(MIMO) case, i.e., it is assumed that the receiver has recovered
the exact information about the state of the channel (this is
also known by perfect channel state information). In practice
this can be obtained by introducing some pilot symbols that
enable accurate channel estimation, so that we can assume
that the channel matrix H is known at the receiver. Space
Time block codes (STBCs) are used to provide diversity
along time and space, and it is possible to consider systems
with multiple antennas at both the transmitter and receiver
ends, in order to increase the data rates. The coding problem
became more complex and the code design criteria for such
scenarios showed that the challenge was to construct fully-
diversity codes, i.e., sets of matrices such that the difference
of any two distinct matrices has full rank. This required new
algebraic tools, namely division algebras. Division algebras
are non-commutative algebras that naturally yield families
of fully-diversity codes, thus enabling to design high rate,
highly reliable STBC from a particular family of algebras,
namely cyclic algebras built over number fields, for n transmit
antennas, n×n space time codewords that send n2 information
symbols encoded into n2 signals.

STBCs was originally introduced as orthogonal. The class
of codes that satisfies this criterion is called orthogonal space
time block codes (OSTBCs). This means that the STBC
is designed such that the vectors representing any pair of
columns are take from the coding matrix is orthogonal. The
result of this is simple, linear, optimal decoding at the receiver.
Its most serious disadvantage is that all but one of the codes
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that satisfy this criterion must sacrifice some proportion of
their data rate.

Alamouti code [1] was the first STBC introduced for two
transmit antennas, 2 × 2 space time codewords that send 2
information symbols encoded into 2 signals, i.e., rate R = 1.
These codewords are obtained by multiplication in the ring of
quaternions. As the quaternions form a division algebra, such
matrices must be invertible, i.e., the resulting STBC meets the
full diversity, and more, theses matrices are orthogonal, i.e.,
the resulting is an OSTBC.

However, Alamouti code is the only know OSTBCs with
rate R = 1 used for 2 antennas. Some OSTBCs for higher
number of antennas were proposed, but all theses codes are
having rate (R < 1). To cope up with the increasing demand
of high data rate and quality communication we need high date
rate codes. High data rate SBTCs have been proposed in the
literature using extension of fields and division algebras [2],
[3]. These codes are claimed to provide high data rate codes
with rate R > 1 and better code again for arbitrary number
of transmit antennas. But these codes not have property of
orthogonality.

In [2], Sethuraman and Rajan showed the Alamouti code is
unique from the point of view of division algebras. We pro-
pose, here, a new class of codes based on arithmetic Fuchsian
groups, which is isomorphic to division algebras. This gives
rise to what we call arithmetic Fuchsian codes for this new
classes of codes. These codes have the property of full-rate, but
without the property of orthogonality. However, these codes
matrices are equivalent to code matrices of Alamouti code.

We show that this is possible because the concept of
arithmetic Fuchsian groups has two faces. An arithmetic
Fuchsian group can be see as a discrete subgroup ΓH2 of
PSL (2, R) = SL(2, R)/ {±I}, where I is the identity matrix,
and each matrix is associated to an isometry that preserving
orientation on the upper-half plane H2. Also an arithmetic
fuchsian group can be see as a discrete subgroup ΓD2 of
PSL (2, C) = SL(2, C)/ {±I}, where I is the identity matrix,
and each matrix is associated to isometric that preserving
orientation on the unit disc D2 = {z ∈ C : |z| < 1}.

There is a correspondence between these two points of
view. We know H2 and D2 are two Euclidean models for
hyperbolic plane and exists an isometry f between H2 and
D2. Consequently, we have that the space matrices given by
arithmetic Fuchsian group ΓH2 is equivalent to space matrices
given by arithmetic Fuchsian group ΓD2 . We show that the
matrices that belongs to the ΓH2 are identified by elements
of Hamilton quaternion, what is used to the construction of
Alamouti code. However, we used matrices that belongs to
the ΓD2 for the construction of our arithmetic Fuchsian code.

This work is organized as follows. In Section II we present
the concepts of division algebra and Alamouti code. In Section
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III we present the concepts of Fuchsian group and quaternion
order. In Section IV we present the quaternion order from a
fundamental polygon. In Section V we present a new class of
codes via arithmetic Fuchsian groups.

II. DIVISION ALGEBRA AND ALAMOUTI CODE

Let D be a ring. We say that the ring D is a division
ring, if every nonzero element has a multiplicative inverse. A
commutative division algebra is just a field, but in this work,
we are interested in non-commutative division rings.

Example 1: Hamilton quaternions denoted by H was the
first division algebra proposed. As, we know, H is an 4-
dimensional vector space over the real numbers R with basis
{1, i, j, ij}, satisfying i2 = j2 = −1 and ij = −ji,
that is, H = {x0 + x1i + x2j + x3ij|x0, x1, x2, x3 ∈ R}. The
Hamilton quaternions is also denoted by H � (−1,−1)R. We
can be identified the real numbers R with a subset of H with
x1 = x2 = x3 = 0. Also, we can check that the multiplicative
inverse x−1 of a nonzero quaternion x = x0+x1i+x2j+x3ij
is the quaternion x−1 = (x0

z )− (x1
z )i− (x2

z )j− (x3
z )ij, where

z = x2
0 + x2

1 + x2
2 + x2

3. Thus, as every nonzero element has
a multiplicative inverse, it follows that H is indeed a division
algebra.

The following proposition gives a very broad principle that
can be used to construct full-rate codes from a division algebra.

Proposition 1: [3] Let f : D → Mn(F ) be a rings
homomorphism from a division algebra D to the set of n×n
matrices over a field F . If E is any finite subset of the image of
D under this map, then E has the property that the difference
of any two elements in it will be of full rank.

If D is a division algebra then its center Z(D) is the set
{x ∈ D|xd = dx, ∀d ∈ D}. We have that Z(D) is a field, and
therefore D has a natural structure of a Z(D)-vector space.
In this paper, we will only consider division algebras that are
finite dimensional as a vector space over its center (see [3]
and [4], for more details).

If D is a division algebra over a field F , then its center is
F . It is well known that the dimension [D : F ] is always a
perfect square. Thus, if [D : F ] = n2, then the square root of
the dimension is n, and is know as the degree or the index of
the division algebra. In Example 1, the center of H is just the
real numbers R. Observe that H is of dimension four over its
center R and therefore H is of index two.

Now, we describe a fundamental class of division algebras,
the class of cyclic division algebras. Recently, several authors
constructed STBC from cyclic division algebras.

A cyclic division algebra D over a field F is a division
algebra that has a maximal subfield K , where K is Galois
over F , with Galois group Gal(K/F ) being cyclic.

Example 2: Hamilton quaternions H is a cyclic division
algebra. For instance, observe that the subset of H given by
H1 = {x01 + x1i + 0j + 0ij|x0, x1 ∈ R} is isomorphic to the
complex numbers C. Let us identify the complex numbers C

(by abuse of notation) for this subset. Observe that C is of
dimension 2 over the its center R, that is, C is a maximal
subfield of H. We have that R ⊆ C is indeed a Galois
extension, whose Galois group is {1, σ}, where σ is a complex
conjugation. Thus, H is a cyclic division algebra.

Let D be a cyclic division algebra with center F , of index
n, and with maximal cyclic subfield K , where F ⊆ K . If
Gal(K/F ) is generated by σ, then σn = 1. We have that D
is naturally a vector space over F . Also, it is well know that
D has the following decomposition as K-spaces

D = K ⊕ zK ⊕ z2K ⊕ · · · ⊕ zn−1K, (1)

where z is an element of D such that

kz = zσ(k), (2)

for all k ∈ K and zn = γ for some γ ∈ F ∗ = F − {0},
and zi stands for the set of all elements of the form z k for
k ∈ K . The division algebra D, with this decomposition, is
often written as (K/F, σ, γ).

Example 3: If H is the Hamilton quaternions, then
H can be regrouped as {x0 + x1i|x0, x1 ∈ R} +
{x2j + x3ij|x2, x3 ∈ R} = {x0 + x1i|x0, x1 ∈
R} + j {x2 + x3i|x2, x3 ∈ R}. In Example 2, we saw
the subset H1 = {x0 + x1i|x0, x1 ∈ R} was identified by the
complex numbers C. Similarly to Example 2, it is easy to
show the subset {x2 + x3i|x2, x3 ∈ R} of H is identified by
the complex numbers C. Thus, H = C ⊕ iC, i.e., H has a
decomposition in C-vector spaces. Moreover, if γ = −1, then
H is a cyclic algebra of kind (C/R, σ,−1).

A. Alamouti Code

In this subsection, we show how to build the Alamouti
code. For this we consider the linear map τ : H → M2(R)
that associates the basis elements 1, i, j, ij to the matrices
M0, M1, M2, M3 ∈ M(2, R), respectively, where

M0 =
[

1 0
0 1

]
, M1 =

[
l 0
0 −l

]

M2 =
[

0 1
−1 0

]
, M3 =

[
0 l

l
√

t 0

]
,

and l2 = −1. Thus τ is an embedding of H in M2(R), and
therefore

τ (x0 + x1i + x2j + x3ij) =

[
x0 + lx1 x2 + lx3

−(x2 − lx3) x0 − lx1

]
(3)

where x = x0 + x1i + x2j + x3ij ∈ H.
We have that τ is a ring homomorphism and τ(H) = E =

M2(R). By Proposition 1, we conclude the matrices space E
has the property that the differences of any two elements of E
has full-rank. Thus the matrices that belongs to the matrices
space E form an Alamouti code.

III. ARITHMETIC FUCHSIAN GROUP AND QUATERNION

ORDER

A Fuchsian group Γ is a discrete subgroup of PSL (2, R) =
SL(2, R)/ {±I}, where I is the identity matrix, that is, Γ
consists of isometries on H2 = {z = x + iy ∈ C : y > 0},
upper half-plane Euclidean model for the hyperbolic plane,
endowed with the Riemannian metric ds2 = (dx2 + dy2)/y2,
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preserving orientation and action on H2 by homomorphism

[5], given by Möbius transformation TA (z) =
az + b

cz + d
, where

A =
[

a b
c d

]
,

a, b, c, d ∈ R and det(TA) = ad − bc = 1.
We will use also the Poincare disc model (another Euclidean

model for hyperbolic plane), D2 = {z ∈ C| |z| < 1}, with
the Riemmanian metric ds2 = dz/ |z|, where the Möbius

transformations is given by TA(z) =
az + c

cz + a
, with a, c ∈ C

and |a|2 − |c|2 = 1. Moreover, the mapping f(z) =
zi + 1
z + i

,

is an isometry between H2 and D2.
In this work, associated with the Fuchsian group Γ, we

show that there is a fundamental region P (polygonal shape
containing 4g edges). Therefore, the quotient space H 2/Γ
with the metric of Riemann surface with genus g ≥ 2 may
be modeled in the hyperbolic plane [5]. The pairing of the
4g edges of hyperbolic polygon P4g , considered in Section
IV, leads to an oriented compact surface H2/Γ4g, with genus
g, where Γ4g is the Fuchsian group associated with a self-
dual hyperbolic tessellation {4g, 4g}. Also, for each g, the
Fuchsian group is co-compact, and therefore the hyperbolic
area μ(P4g) = μ(H2/Γ4g) is finite.

A. Quaternion Order

Hamilton quaternions is a special example of a quaternion
algebra. Now, we give a general definition. We say the set A
denoted by A = (t, s)F is a quaternion algebra, where A is a
4-dimensional vector space over a number field F with basis
{1, i, j, ij}, satisfying i2 = t, j2 = s, ij = −ji, and (ij)2 =
−ts, where t, s ∈ F ∗. If x ∈ A, then x = x0+x1i+x2j+x3ij,
with x0, x1, x2, x3 ∈ F , and x = x0 −x1i−x2j −x3ij is the
conjugate of x. The reduced trace and the reduced norm of
x, denoted, respectively, by Trd(x) and Nrd(x), are defined
as Trd(x) = xx and Nrd(xy) = x2

0 − tx2
1 − sx2

2 + tsx2
3.

There is a linear map τ : A → M2(F
(√

t
)
) (see [6] and

[7]) that associates the basis elements 1, i, j, ij to the matrices
M0, M1, M2, M3 ∈ M2(F

(√
t
)
), respectively, where

M0 =
[

1 0
0 1

]
, M1 =

[ √
t 0

0 −√
t

]
,

M2 =
[

0 r1

r2 0

]
, M3 =

[
0 r1

√
t

−r2

√
t 0

]
,

s = r1r2 and τ is an embedding of A in M2(F (
√

t)). Thus

τ(x0+x1i+x2j+x3ij) =
[

x0 + x1

√
t r1(x2 + x3

√
t)

r2(x2 − x3)
√

t x0 − x1

√
t

]

where x = x0 + x1i + x2j + x3ij ∈ A.
Moreover, since τ satisfies the conditions τ(i2) =

(τ(i))2, τ(j2) = (τ(j))2 and τ(ij) = τ(i)τ(j), it follows that
τ is an algebra homomorphism. Also, τ is onto M2(F ) if and
only if t = k2, for some k ∈ F ∗.

This shows that there are two possibilities for a quaternion
algebra A over F . Either it is isomorphic to the matrix algebra
M2(F ) (in this case we say that A is non-ramified), or to a
sub-algebra of M2(F (

√
t)), with

√
t 
∈ F , having the structure

of a division algebra isomorphic to Hamilton quaternions H.
In this case, we say that A is ramified for some t ∈ F .

If A � (t, s)F is quaternion algebra over a number field
F , and σ : F → K is an homomorphism of F into another
field K , we define Aσ = (σ(t), σ(s))σ(F ) , and Aσ ⊕ K =
(σ(t), σ(s))K .

In what follow, F will be a totally real number field of
degree n. This means that F is a field extension of Q of
degree n, so that all n distinct embedding of F into C are
embedding ϕi, for i = 1, 2, · · · , n, into R, where ϕ1 is the
identity. Let A be a quaternion algebra over F such that for
i = 1, 2, · · · , n there exists R-isomorphisms ρi defined by

ρ1 : Aϕ1⊕R → M2(R) and ρi : Aϕi⊕R → H, (4)

where i = 2, · · · , n.
In this case, we say A is non-ramified in ρ1 and ramified

in the remaining ρi’s. We denote by NrdH and TrdH, the
reduced norm and the reduced trace of H, respectively. Thus,
if x ∈ A, then

NrdH(x) = det(ρ1(x)), T rdH(x) = tr(ρ1(x)). (5)

ϕi(NrdH(x)) = NrdH(ρi(x)), ϕi(TrdH(x)) = TrdH(ρi(x)). (6)

B. Arithmetic Fuchsian Group

Let OF be the ring of integers of F . An order O in A over
F is a free OF -module containing 1 with rank 4n.

Given an order O in A, we define its group of units O1 =
{x ∈ O|Nrd (x) = 1} and set Γ (A,O) = ρ1

(O1
)
/ {±I}. It

is known (and proved by Takeushi in 1975, [8]) that Γ (A,O)
is a Fuchsian group, that is, a discrete subgroup of PSL (2, R).
Since every Fuchsian group may be obtained in such a way,
we say the a Fuchsian group Γ is derived from a quaternion
algebra if there is a quaternion algebra A and an order O ⊂ A
such that Γ has finite index in Γ (A,O). The group Γ is called
arithmetic Fuchsian group.

The next theorem is important to characterize the Fuchsian
groups that are derived from a quaternion algebra.

Theorem 1: [5] If Γ is a Fuchsian group associated to
a fundamental region with finite hyperbolic area, then Γ is
derived from a quaternion algebra A over a totally real number
field F if and only if Γ satisfies the following conditions

1) if F = Q(tr(T )), where T ∈ Γ, then F is a number
field of finite degree and tr(Γ) is in OF , and

2) if ϕ is an embedding of F in C different from the
identity, then ϕ(tr(Γ)) is bounded in C.

IV. QUATERNION ORDER FROM FUNDAMENTAL POLYGON

P4g

Let Sg be the fundamental group of a compact closed
surface of genus g. It has a presentation as Sg =
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〈a1, b1, a2, b2, · · · , ag, bg|
∏g

i=1[ai, bi] = I〉 with [ai, bi] =
aibia

−1
i b−1

i . Let us consider a regular polygon Pg with 4g
edges and angles with measure equal to 2π/4g. Hence, the
corresponding fundamental region of self-dual tessellations of
the hyperbolic plane is denoted by {4g, 4g}.

Now, we determine the generators of Fuchsian group Γ 4g,
where edge-pairing generators of a regular polygon P g with
4g edges (fundamental region of Γ4g) are hyperbolic transfor-
mations, Ti (whose trace tr(Ti) associated to Ti is such that
tr(Ti) > 2), where g is the genus of compact surface H2/Γ,
and whose hyperbolic area is μ(H2/Γ4g) = 4π(g − 1).

If TAi , TBi , where i = 1, · · · , g, are the hyperbolic transfor-
mations determined by matrices Ai, Bi, such that TAi (ui) =
u

′
i and TBi (vi) = v

′
i , then the group Γ4g generated by

TAi , TBi , where i = 1, · · · , g, is canonically isomorphic to
S4g (see [5], p. 94). Considering the Poincare model D 2, and
assuming that 0 ∈ D2 is the barycenter of Pg, we can find
an explicit formula for the matrices Ai and Bi that generates
the transformations TAi and TBi , for i = 1, · · · , g. Following
exactly the same kind of procedures done by Katok for the
case g = 2 (see [5, Example C, p. 95]), we have the following
result.

Proposition 1: The elements a, c of matrix A1 =
[

a c
c a

]
are given by

|a| = tan
(

(2g − 1)π
4g

)
and arg(a) = − (g − 1)π

2g
,

|c| =

√
tan2

[
(2g − 1)π

4g

]
− 1 and arg(c) = − (g − 1)π

4g
,

and other generator matrices are given by A i = C4iA1C
−4i

and Bi = C4i+1A1C
4i+1, for all i = 1, · · · , g, where C is

the rotation matrix given by

C =
[

e2πi/4g 0
0 e−2πi/4g

]
.

Example 4: If g = 2, then the matrix A1 associated to
generator transformation TA1 ∈ Γ8 is given by

A1 =

[
(2+

√
2)(1+i)
2

− 4√2((2+
√

2)+i(2+
√

2))
2

− 4√2((2+
√

2)−i(2+
√

2))
2

(2+
√

2)(1−i)
2

]
,

and the other matrices A2, B1 and B2 are given by conjuga-
tion.

Example 5: If g = 3, then the matrix A1 associated to
generator transformation TA1 ∈ Γ12 is given by

A1 =

[
(2+

√
3)+i(3+2

√
3)

2
q[(−1+

√
3)+i(1+

√
3)]

2
q[(−1+

√
3)−i(1+

√
3)]

2
(2+

√
3)−i(3+2

√
3)

2

]
,

where q =
√

3 + 2
√

3 and the other matrices A2, A3, B1, B2

and B3 are given by conjugation.

Now, taking the correspondent real matrices of PSL(2, R)

by isometries f : H2 −→ D2 given by f(z) =
zi + 1
z + i

, we

have the following equality

Γ = P−1Γ4gP, (7)

where P is the invertible matrix associated to the isometry f
and is given by

P =
[

i 1
1 i

]
.

Thus, Γ = P−1Γ4gP is a subgroup of PSL(2, R), where g =
2, 3, and the generator matrices are given by P −1AiP = Di

and P−1BiP = Ei. In particular, we have that if A1 ∈ Γ8

then

P−1A1P = D1 =

[
(2+

√
2)+(−2−√

2)
4√

2
2

(2+
√

2)−(
√

2)(
4√

2)
2

(−2−√
2)+(

√
2)( 4√2)

2
(2+

√
2)+(2+

√
2) 4√2

2

]
,

and if A1 ∈ Γ12 then

P−1A1P = D1 =
[

(2+
√

3)+p(1+
√

3)
2

(3+2
√

3)+p(−1+
√

3)
2

−(3+2
√

3)+p(−1+
√

3)
2

(2+
√

3)−p(1+
√

3)
2

]
,

where p =
√

3 + 2
√

3.

Remark 1: If we compute all the generator matrices M =
Di or M = Ei, for i = 1, · · · , g, of Γ4g it is easy to check
that the matrices are given by

1) if g = 2, then

M =
1
2

[
a + b

√
t c + d

√
t

−(c − d
√

t) a − b
√

t

]
, (8)

where, a, b, c, d ∈ Z[
√

2] and
√

t =
√√

2 = 4
√

2, and
2) if g = 3, then

M =
1
2

[
a + b

√
t c + d

√
t

−(c − d
√

t) a − b
√

t

]
, (9)

where, a, b, c, d ∈ Z[
√

3] and
√

t =
√

3 + 2
√

3.
Also, it is easy to show the product of these matrices are of
type M and belong to group Γ.

Remark 2: We have that a geometric equivalence between
the Euclidean models H2 and D2 and also an equivalence
between the matrices space Γ and Γ4g, where P is an invertible
matrix by consequence of Equation (7).

Lemma 1: [5] If H � (−1,−1)R and H1 =
{x ∈ H : NrdH(x) = 1} then TrdH(H1) is bound in C.

Proof: If x = x0 + x1i + x2j + x3ij ∈ H1, where i2 =
j2 = (ij)2 = −1, and NrdH(x) = x2

0 + x2
1 + x2

2 + x2
3 = 1,

then |x0| ≤ 1, and hence TrdH(x) = 2x0 ∈ [−2, 2]. Since the
converse statement is obviously true it follows that TrdH(x) =
2x0 ∈ [−2, 2].

Theorem 2: If g = 2, then the group Γ8 is derived from
quaternion algebra A over a totally real number field Q(

√
2).

Proof: In this prove we will adopt exactly the same kind of
procedures done by Katok for the case g = 2 (see [5, Example



XXVII SIMPÓSIO BRASILEIRO DE TELECOMUNICAÇÕES - SBrT 2009, DE 29 DE SETEMBRO A 2 DE OUTUBRO DE 2009, BLUMENAU, SC

C, p. 95]). Thus, first we shown that the conditions (1) and
(2) of Theorem 1 are satisfied for elements of Γ8. By, Remark
1, the elements of Γ8 are given by

M =
1
2

[
x0 + x1

4
√

2 x2 + x3
4
√

2
−(x2 − x3) 4

√
2 x0 − x1

4
√

2

]
,

where x0, x1, x3 and x4 ∈ Z[
√

2] and tr(M) = x0 =
a1 + a2

√
2 ∈ Z[

√
2]. In this way, we have that Q(tr(Γ8)) =

Q(a1 + a2

√
2) = Q(

√
2), and tr(M) ∈ Z[

√
2]. Since Q(

√
2)

is a totally real quadratic extension of Q, it follows that the
condition (1) of Theorem 1 is satisfied. Let ϕ2 : Q(

√
2) −→

Q(
√

2) be non-identity embedding seeding ϕ2(
√

2) = −√
2.

By Remark 1, the generators of Γ8 and therefore all elements
of Γ8 are embedded into M2(K), where K = Q(

√
2)(

√√
2).

Thus, ϕ2 extends to an isomorphism Ψ2 : K −→ C, where

Ψ2(
4
√

2) =
√
−
√

2 = i
4
√

2.

Following exactly the same kind of procedures done by Katok,
the elements of Γ8 are mapped in matrices in M2(C) of type

M =
[

Ψ2(a) Ψ2(b)
Ψ2(−b) Ψ2(a)

]
, with a, b ∈ Ψ2(K),

where we denote this set by AΨ2⊕R ≈ H (see [5, Example C,
p. 149]). Now, if T ∈ Γ, then tr(T ) = a+a and by Lemma 1,
we have that Ψ2(a) + Ψ2(a) ∈ [−2, 2]. However, a + a ∈ K .
In this way, Ψ2(a) + Ψ2(a) = Ψ2(a + a) = ϕ2(a + a), this
is, ϕ2(a + a) ∈ [−2, 2]. Therefore ϕ2(tr(Γ)) are bound in C.

Similarly we have the next theorem.
Theorem 3: If g = 3, then the group Γ12 is derived from

quaternion algebra A over a totally real number field Q(
√

3).

Theorem 4: If Γ is a Fuchsian group whose generators are
matrices in PSL(2, R) of the type

M =
1
2

[
a + b

√
t r1(c + d

√
t)

r2(a − d
√

t) a − b
√

t

]
,

where a, b, c, d ∈ OF , with
√

t 
∈ OF, r1 = 1 and r2 = −1,
then, Γ is identified by quaternion order O � (t, s)OF of
quaternion algebra A � (t, s)F , where s = r1r2.

The product of two matrices of Theorem IV assumes the
same form M . Furthermore, all the elements of Γ may be
obtained directly by relation of the products of the generator
matrices and this fact guarantee that all the elements of Γ
assume the same form M .

Example 6: If we applied the Theorem 4 and the Remark
1 over matrices belongs to the Γ8, we have Γ8 � A8 =
(
√

2,−1)
Z[
√

2].
Example 7: If we applied the Theorem 4 and the Remark 1

over matrices belongs to the Γ12, we have that Γ12 � A12 =
(3 + 2

√
3,−1)

Z[
√

3].

Also, we have that Z[A8] = Q(
√

2) and Z[A12] = Q(
√

3),
and by Equation (6) there exists an R-isomorphisms ρ2 defined
by ρ2 : Aϕi ⊕ R → H.

V. ARITHMETIC FUCHSIAN CODES

Based on the previous sections, we now explain how to build
a new class of codes that we will call arithmetic fuchsian codes
from arithmetic fuchsian groups.

If g ∈ Γ ⊂ PSL(2, R), where

g =
1
2

[
x y
z w

]
,

then

P−1gP =
[

(x + w) + i(y − z) (y + z) + i(x − w)
y + z) − i(x − w) (x + w) − i(y − z)

]
(see [9] for more details).

Example 8: If g ∈ Γ8 ⊂ PSL(2, R), where

g =
1
2

[
a + b 4

√
2 c + d 4

√
2

−(c − d 4
√

2) a − b 4
√

2

]
,

for a = a1 + a2

√
2, b = b1 + b2

√
2, c = c1 + c2

√
2 and

d = d1 + d2

√
2 ∈ Z[

√
2], then

P−1gP =

[
m1

4
√

2m2
4
√

2m3 m4

]
, (10)

where m1 = (a1 + ic1) +
√

2(a2 + ic2), m4 = m1, m2 =
(d1 + ib1) +

√
2(d2 + ib2)), m3 = m2, where m denotes the

complex conjugation of the element m, and a1 + ic1, a2 +
ic2, d1 + ib1, d2 + ib2 ∈ Z[i].

Example 9: If g ∈ Γ12 ⊂ PSL(2, R), where

g =
1
2

[
a + b

√
3 + 2

√
3 (c + d

√
3 + 2

√
3)

−(c − d
√

3 + 2
√

3) a − b
√

3 + 2
√

3

]
,

for a = a1 + a2

√
3, b = b1 + b2

√
3, c = c1 + c2

√
3 and

d = d1 + d2

√
3 ∈ Z[

√
3], then

P−1gP =

[
m1

√
3 + 2

√
3m2√

3 + 2
√

3m3 m4

]
, (11)

where m1 = (a1 + ic1) +
√

3(a2 + ic2), m4 = m1, m2 =
(d1 + ib1) +

√
3(d2 + ib2)), m3 = m2, and a1 + ic1, a2 +

ic2, d1 + ib1, d2 + ib2 ∈ Z[i].

VI. CONCLUSIONS

In this work we have combined the ideas of the Alamouti
code with the arithmetic Fuchsian groups. We used concept
of arithmetic Fuchsian groups to show that the groups Γ8 and
Γ12 are isomorphic to Hamilton quaternions H. We identified
H by the matrices space E, whose elements are codewords of
Alamouti code. However, by Equation (7), we have that the
matrices space Γ is equivalent to the matrices space Γ4g (for
case g = 2, 3). In Section II we presented the construction
of Alamouti code from elements of E (remember E is the
image of H by an onto map). We have that the finite set of
matrices given by matrices in the Equations (10) and (11) are
equivalents to finite set of matrices (codeword) of Alamouti
code. However, the Alamouti code has rate 1, and the new
code has 4 information symbols belongs to the Z[i] given by
a1 + ic1, a2 + ic2, d1 + ib1, d2 + ib2 what are encode, and
therefore this code has full-rate. But this code has not the
property of orthogonality.
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