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Abstract— Compressive sampling is a new framework that
exploits sparsity of a signal in a transform domain to perform
sampling below the Nyquist rate. In this paper we investigate
the applicability of the Compressed Sensing Framework to
audio compression by searching for a good sparsity basis
and a reconstruction technique fit to audio applications. We
also propose a new method for lossy audio compression of
real, non-sparse audio signals, based on our investigations.
The method uses the Modified Discrete Cosine Transform
(MDCT) as a sparse basis and the l-1 norm optimization for
signal reconstruction. We evaluate final audio quality withthe
Perceptual Evaluation of Audio Quality (PEAQ) algorithm. The
method we propose has the properties of reverse-complexity,
cryptography, error-resiliency and universality of encoder,
altogether without any additional hardware. .
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I. I NTRODUCTION

The well know Shannon/Nyquist Sampling Theorem
states that in order to perfectly reconstruct a periodic band
limited signal, it should be sampled with a rate at least twice
its highest frequency [1], [2]. Consequently, all sampling
hardware design for any class of signals (audio, video,
speech, MRI, RF, etc) obeys the Shannon/Nyquist Theorem
in order to guarantee lossless reconstruction.

The core tenet of signal processing is that signals often
contain some type of structure that enables efficient repre-
sentation (compression) and processing. For example, trans-
forms such as the Discrete Fourier Transform (DFT), the
Discrete Cosine Transform (DCT), the Short Time Fourier
Transform (STFT) and the Discrete Wavelet Transform
(DWT), exploit structures of signals of dimensionN for
sparse representation in aK dimension space. Therefore,
if we have the transform of the signal, we can transmit it
by sending only theK ≪ N transform coefficients.

The classical approach for signal processing systems is
to perform sampling, obeying Shannon/Nyquist Theorem
[2], [1], and compress the samples afterwards. CandÃ¨s,
Romberg and Tao [3] and Donoho [4] proposed a novel
approach, Compressed Sensing (CS), by which sampling a
signal, sparse or compressible in some basis, is a linear
random projection. CS combines steps of sampling and
compressing in order to sample below the Nyquist rate,
without aliasing or frequency loss. With CS framework

are associated the properties of universality, error-resiliency,
cryptography and reverse-complexity [4].

In this work, based on perceptual audio quality, we
empirically analyze the performance of a system that applies
compressed sensing to audio signals. This paper is organized
as follows: in Section II we make a review of the main
concepts behind Compressed Sensing; in Section III we
present related works found in the literature; the proposed
Audio Compressed Sensing method is described in sec-
tion IV; the results obtained with the proposed compression
are presented in Section V and in Section VI we present
some conclusions and propose future works.

II. COMPRESSEDSENSING

Considering the data of interest a real-valued unknown
vector x ∈ R

N, we acquire linear measurementsy = Φx,
where Φ is the M ×N measurement matrix andy ∈ R

M.
Since Φ maps vectors inRN to vectors in a smaller di-
mensional spaceRM, in order to recover signalx from
y, additional information is needed. To understand these
additional information we will review some concepts.

A. Sparsity

Definition 1: A vector f ∈ R
N is S-sparse on basisΨ if

||Ψf||0 = S
The l0 norm of a vector, denoted by||x||0 is the number

of non-zero components in this vector. Thus,||Ψf||0 is the
number of non-zero components in the projection off on
basisΨ.

Definition 2: The baseΨ is a sparsity basis off ∈ R
N if

f is S-sparse andS≪ N.
As signals can be represented on different basis, if we are

able to find sparse basis for a certain class of signals, we can
limit their sparsity to a maximum valueK. However, signals
of practical interest (image, audio, video) are almost sparse
since their components decay rapidly and we can discard
small coefficients with small loss on perceptual quality. Once
small components are forced to be zero, the new signal is
strictly sparse. We call almost sparse signals compressible
signals. Audio signals are compressible signals.
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B. Incoherence

Definition 3: Let Ψ,Φ ∈ R

√
N×

√
N be orthonormal basis.

The coherence between these basis is given by:

µ(Ψ,Φ) =
√

Nmax{ΦTΨ}. (1)

In other words, the coherence between two basis is the
highest value of all inner products between elements ofΨ
and Φ. If we have small coherence betweenΦ and Ψ, a
signal that is sparse onΦ domain is not sparse onΨ and
vice-versa. In a non-sparse representation, each element of a
vector carries information of any other element. Therefore,
a small portion of global signal information lies on every
sample. A good measurement basis must be incoherent with
any sparsity basis, so Bernoulli and Gaussian matrices are
well suited for that task [5].

C. Reconstruction

CS framework constrains the original signal to be sparse
in some sparsity basis. Thus, the reconstruction techniques
will use optimization in order to search for a vector that
is the most sparse possible. Two basic reconstruction al-
gorithms are used to recover the original signal: Basis
Pursuit [3] and Orthogonal Matching Pursuit [6]. Basis
pursuit tries to find a vector with lowerl1 norm that
satisfies the CS measurement. Orthogonal Matching Pursuit
tries to find each component individually, subtracting the
contribution of each component via the greedy method. Best
reconstruction results are achieved by Basis Pursuit, but
Orthogonal Matching Pursuit is the fastest between the two
algorithms.

III. R ELATED WORKS

To the best of our knowledge, only two works with
applications of Compressed Sensing (CS) to audio sig-
nals are found in the literature. Griffin and Tsakalides [7]
have investigated the best sparsity basis and reconstruction
algorithms for real audio signals from sensor networks,
concluding that DCT is the best one for most signals (except
impulsive signals), and Multiple Sensor Basis Pursuit is the
best method for reconstruction for audio multiple sensor
networks. As an application, they proposed an audio sensor
network as a location detection system. They used the
Signal-to-Distortion Rate (SDR) as an objective measure-
ment of audio quality, obtaining good SDR values.

Carmi, Kanevsky, and Ramabhadran [8] presented an
algorithm for lossy speech compression based on CS-based
Kalman Filtering that exploits sparsity of audio signal on the
DFT domain. Results are presented only as spectral plots of
original and reconstructed speech signals that do not tell
much about the quality of the technique.

IV. A UDIO COMPRESSEDSENSING

In order to adapt the Compressed Sensing framework
to audio signals, we followed the steps described in this
section.
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Fig. 1. Perceptual Audio Quality versus Sparsity rate S/N with size of
window N=512.
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Fig. 2. Perceptual Audio Quality versus Sparsity rate S/N for different
window size N of the MDCT.

A. Investigation of the best audio sparsity basis

We realized a simulation to compare Discrete Fourier
Transform, Discrete Cosine Transform and the Discrete
Modified Cosine Transform as audio sparsity basis. For each
audio window, we truncated the signal sparsity and measured
its Objective Difference Grade by the PEAQ [9] algorithm.
We tested 10 seconds long audio samples from the sound
quality evaluation material of EBU (European Broadcasting
Union) [15]. The following samples were tested:

• pop music: ABBA (Stereo).wav
• classical music: Piano (Schubert) (Stereo).wav, Clarinet

(arpegio;melodious phrase) (Stereo).wav, Orchestra (R.
Strauss) (Stereo).wav

• speech: Female Speech (English) (Mono).wav, Male
Speech (English) (Mono).wav

The results can be seen in figure 1. From this figure, we
can conclude that among the tested basis, the MDCT is the
best for audio sparsity basis. We also tested the influence
of the window size on the perceptual quality (figure 2),
observing that for sparsity levels below 20% large window
sizes improve quality.

B. Investigation of the reconstruction technique

We evaluated the performance of al1 minimization al-
gorithm. We fixed the frame size (N =128, 256, 512)
and varied the sparsity rate (S/N). For each sparsity rate
(S/N), we generated 100 random signals and tested for how
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Fig. 3. Reconstruction froml1 norm minimization - Compression rate
M/N x Sparsity rate.

many measurementsM/N we had a perfect recovery1 of
the original signal. A perfect recovery guarantees that the
algorithm performs a perfect recovery withM measurements
for input signal of sparsityS. The results are shown in
figure 3. For example, for a frame sizeN = 256, to perform a
perfect reconstruction of a signal with sparsity rate approx-
imately S/N = 0.18=⇒ S= 46, we will have to measure
approximatelyM/N = 0.5 =⇒ M = 128 samples.

C. Description of the Lossy Audio Compression System

1) Encoder: For simplicity, our encoder consists of a
sampling matrix. The chosen sampling matrix was the
pseudo-random Bernoulli matrix. Note that CS measurement
needsM measurements to work, and so the analogous
operation is equivalent to multiplying the discrete audio
signal sampled above the Nyquist rate by a Bernoulli matrix
with each line corresponding to a sample. The operation of
multiplying the audio signal by a pseudo-random sequence
must occur above the Nyquist rate so that the operation is
equivalent to the same operation on the discrete domain. Ob-
serve that the encoder demands a simple hardware, since it
only performs the product of the signal vector by the sensing
matrix, which implies in low computational complexity on
the encoder side. This is an interesting property for systems
that cannot dispose of complex acquisition hardware, typical
of Wireless Sensor Networks [14].

The encoder can also be designed for software imple-
mentation. In that case, the encoder operation would be just
the multiplication between the measurement matrix and the
discrete above-Nyquist sampled audio data, also blocked in
frames. This operation has a very low computational com-
plexity, characterizing a low-complexity encoder as well.

2) Decoder:The decoder consists of basically two func-
tional blocks: thel1 minimization and the inverse transform.
The l1 minimization block performs the following operation:

min
x̃∈Rn

‖x̃‖1 subject to‖ΦΨx̃−y‖2 < ε (2)

WhereΨ is the sparsity basis for audio signals andΦ is the
measurement basis used by the encoder.

1We assume a perfect recovery the one with maximum relative error less
than 10−6

In other words, the decoder finds thex̃ with lowest l1
norm and, when applied CS, gives the samey as from actual
measurements. This operation can recover the original audio
data x almost exactly (error bounded byε) or partially,
depending on the sparsity levelK and the number of
measurements.

In our decoder, thel1 minimization findsx̃ in the sparsity
basis domain, that is the transform domain, so we need to
apply the inverse transform to obtain the signal on the time
domain. Since the transform adopted is the MDCT, as it is a
lapped transform, a final step of overlap and add is needed.

Several properties come along with the Compressed Sens-
ing framework that is of direct interest to the data compres-
sion community.

3) Error Resiliency: Due to noise, errors may happen
when Bob transmits audio messages to Alice, so Alice
may receive corrupted samples. After decoding, the mes-
sage is surprisingly not lost, but only received with low
quality. This happens because CS measurements present
error-resiliency, since random measurements spread global
information among all samples, so each sample carries the
same amount of information, for a certain level of quality.
Therefore we can protect the audio from errors by increasing
the number of random measurements. The properties of error
resiliency and error correction are detailed in [12] [13]

4) Universal Encoder:Although Compressed Sensing is
not adaptive, it is universal in the sense that for any class
of audio signals the encoder will be exactly the same. In
CS, the sparsity level is the important parameter, and not
the band or where and how the frequency components are
distributed. As CS acquires signal by random matrices that
have low coherence with any other basis, no matter what
sparsity basis is used in the decoder (different sparsity basis
for different class of audio signals), the measurement and
sparsity basis will be incoherent. The same encoder can
encode any audio data (speech, solo instrument, music,
etc)and the design of the decoder will be different for differs
classes of signals. The property of universality by random
projections is discussed in [11] [5].

5) Reverse Complexity:Classically, the encoder is the
component with high computational cost, while the decoder
is typically low-cost. In our proposed model, the encoder
has very low-complexity and the decoder has a much
larger complexity. That property is suitable for applications
where a low-cost encoder is needed. However, in audio
data applications, sensors need a larger amount of memory
resources to be able to store the collected data and it is
highly ineffective to transmit raw data. Thus the proposed
technique can reduce the amount of memory needed and the
amount of data to transmit.

V. EVALUATION OF PERCEPTUAL AUDIO QUALITY OF

THE PROPOSED SYSTEM

The proposed system using as sparsity base the MDCT,
as sampling base the Bernoulli matrix andl1 minimization
as reconstruction technique, was tested with the same sam-
ples from European Broadcasting Union (EBU). We can
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Fig. 4. PEAQ ODG of proposed system for N=128, 256 and 512 window
size
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Fig. 5. Performance comparation between common CODECs and the ACS

see in figure 4 the perceptual quality of the system for
different Compression ratesM/N. The compression rate can
be understood as the subsampling factor for an equivalent
analog implementation of the system. We also made a
comparison between our system and common CODECs like
MP3, the results can be seen on figure 5. We can observe
that for small compression rates (below 0.13), the system
achieves better perceptual quality. Note that we propose
a sampling/compression as a one step system, and not a
software CODEC.

VI. CONCLUSION AND FUTURE WORK

In this paper, we evaluated the applicability of the Com-
pressed Sensing framework to sample and compress audio
signals in one step. We propose a novel technique for audio
compression that has the interesting properties of error-
resiliency, reverse-complexity and universality and it isthe
actual state-of-art of Compressed Sensing applied to audio
signals.

We investigated audio sparsity basis for the intended
application and found the MCDT to be the best one. Also,
we evaluated reconstruction techniques for audio signals and
have shown the relation between compression and sparsity
basis. Finally, we evaluated the perceptual audio quality of
the proposed Audio Compressed Sensing and showed that,
for a given compression rate, the proposed system performs
better than traditional CODECs.

The proposed technique can be applied just as it is in
this paper. Nevertheless, as a natural development of this
work, it can be extended to be part of a more complex audio

CODEC, possibly resulting in higher compression rates. For
research on sparsity basis, it can be thought as beyond
transform coding like Atomic Decomposition of signals by
Orthogonal Matching Pursuit [10], achieving higher levels
of sparsity and thus smaller number of measurements.
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