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Abstract— Compressive sampling is a new framework that —are associated the properties of universality, errotiesiy,

exploits sparsity of a signal in a transform domain to perfom cryptography and reverse-complexity [4].

sampling below the Nyquist rate. In this paper we investiga In this work, based on perceptual audio quality, we
the applicability of the Compressed Sensing Framework to  empirically analyze the performance of a system that applie
audio compression by searching for a good sparsity basis compressed sensing to audio signals. This paper is orghnize
and a reconstruction technique fit to audio applications. We  as follows: in Section Il we make a review of the main
also propose a new method for lossy audio compression of concepts behind Compressed Sensing; in Section Il we
real, non-sparse audio signals, based on our investigatiesn  present related works found in the literature; the proposed
The method uses the Modified Discrete Cosine Transform Audio Compressed Sensing method is described in sec-
(MDCT) as a sparse basis and the I-1 norm optimization for  tion IV; the results obtained with the proposed compression
signal reconstruction. We evaluate final audio quality withthe are presented in Section V and in Section VI we present

Perceptual Evaluation of Audio Quality (PEAQ) algorithm. T he some conclusions and propose future works.
method we propose has the properties of reverse-complexjty

cryptography, error-resiliency and universality of encoder,

altogether without any additional hardware. . [I. COMPRESSEDSENSING

Keywords— sampling; audio; compressed; quality.

Considering the data of interest a real-valued unknown
. INTRODUCTION vector x € RN, we acquire linear measurements= ®x,

The well know Shannon/Nyquist Sampling Theoremwhere ® is the M x N measurement matrix ang ¢ RM.
states that in order to perfectly reconstruct a periodiadban Since ® maps vectors inRN to vectors in a smaller di-
limited signal, it should be sampled with a rate at leastéwic mensional spac®M, in order to recover signak from
its highest frequency [1], [2]. Consequently, all samplingy, additional information is needed. To understand these
hardware design for any class of signals (audio, videoadditional information we will review some concepts.
speech, MRI, RF, etc) obeys the Shannon/Nyquist Theorem
in order to guarantee lossless reconstruction.

The core tenet of signal processing is that signals oftef\. Sparsity
contain some type of structure that enables efficient repre- I ] . _
sentation (compression) and processing. For examples-tran _ Definition 1: A vector f RN is S-sparse on bash if
forms such as the Discrete Fourier Transform (DFT), the“lpf”O: S )

Discrete Cosine Transform (DCT), the Short Time Fourier Thelo norm of a vector, denoted byx||o is the number
Transform (STFT) and the Discrete Wavelet TransformOf non-zero components in this vector. Thisf|o is the
(DWT), exploit structures of signals of dimensidn for ~ humber of non-zero components in the projectionf afn

sparse representation in K dimension space. Therefore, Pasis¥.

if we have the transform of the signal, we can transmit it Definition 2: The baseW is a sparsity basis dfe RN if

by sending only thé& < N transform coefficients. f is S-sparse an8 < N.

The classical approach for signal processing systems is As signals can be represented on different basis, if we are
to perform sampling, obeying Shannon/Nyquist Theoremable to find sparse basis for a certain class of signals, we can
[2], [1], and compress the samples afterwards. @asd limit their sparsity to a maximum valu€. However, signals
Romberg and Tao [3] and Donoho [4] proposed a novebf practical interest (image, audio, video) are almost spar
approach, Compressed Sensing (CS), by which sampling since their components decay rapidly and we can discard
signal, sparse or compressible in some basis, is a lineamall coefficients with small loss on perceptual qualityc®n
random projection. CS combines steps of sampling an@mall components are forced to be zero, the new signal is
compressing in order to sample below the Nyquist ratestrictly sparse. We call almost sparse signals compressibl
without aliasing or frequency loss. With CS framework signals. Audio signals are compressible signals.
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Percetual Quality x (S/N)*100% for N=256

B. Incoherence

Definition 3: Let W,® € RVN*YN pe orthonormal basis. ¢ / e 1
The coherence between these basis is given by: T / ' ]
p(W, ) = vVNmax{d'w}. 1) £ ]

£oasl / - 1

In other words, the coherence between two basis is the .| / i

highest value of all inner products between element¥of .
and @. If we have small coherence betweénand ¥, a e T e R S S S S
signal that is sparse o#® domain is not sparse o¥ and .

vice-versa. In a non-sparse representation, each elerhant orig. 1. Perceptual Audio Quality versus Sparsity rate S/fhwize of
vector carries information of any other element. Thergforewindow N=512.

a small portion of global signal information lies on every
sample. A good measurement basis must be incoherent with
any sparsity basis, so Bernoulli and Gaussian matrices are
well suited for that task [5].

.

Perteptual Quality x (S/N)*100% for MOCT

——N=128
—=—N=256 .. |
——N=512

C. Reconstruction

CS framework constrains the original signal to be sparse [ ...
in some sparsity basis. Thus, the reconstruction techaique
will use optimization in order to search for a vector that
is the most sparse possible. Two basic reconstruction al- .-—— . . . w w w w
gorithms are used to recover the original signal: Basis o
Pursuit [3] and Orthogonal Matching Pursuit [6]. Basis Fig. 2. Perceptual Audio Quality versus Sparsity rate S/Ndifferent
pursuit tries to find a vector with lowel; norm that window size N of the MDCT.
satisfies the CS measurement. Orthogonal Matching Pursuit
tries to find each component individually, subtracting the
contribution of each component via the greedy method. BesA. Investigation of the best audio sparsity basis
reconstruction results are achieved by Basis Pursuit, but

Orthogonal Matching Pursuit is the fastest between the two We realized a simulation to compare Discrete Fourier
algorithms. Transform, Discrete Cosine Transform and the Discrete

Modified Cosine Transform as audio sparsity basis. For each
I1l. RELATED WORKS audio window, we truncated the signal sparsity and measured
. its Objective Difference Grade by the PEAQ [9] algorithm.
To the best of our knowledge, only two works W'th. We tested 10 seconds long audio samples from the sound

applications of Compressed Sensing (CS) to audio sigdg ity evaluation material of EBUELropean Broadcastin
nals are found in the literature. Griffin and Tsakalides [7] ﬁJL;ioln))/ [1\/5].uTr:e foIIowirllg sampILéE(uweBe tested: n9

have investigated the best sparsity basis and reconstnucti )
algorithms for real audio signals from sensor networks, * POP music: ABBA (Stereo).wav _
concluding that DCT is the best one for most signals (except * classm.al music: Piano (Schubert) (Stereo).wav, Clarinet
impulsive signals), and Multiple Sensor Basis Pursuit & th (arpegio;melodious phrase) (Stereo).wav, Orchestra (R.
best method for reconstruction for audio multiple sensor ~ Strauss) (Stereo).wav _

networks. As an application, they proposed an audio sensor * SPeech: Female Speech (English) (Mono).wav, Male
network as a location detection system. They used the Speech (English) (Mono).wav

Signal-to-Distortion Rate (SDR) as an objective measure- The results can be seen in figure 1. From this figure, we

ment of audio quality, obtaining good SDR values. can conclude that among the tested basis, the MDCT is the
Carmi, Kanevsky, and Ramabhadran [8] presented apest for audio sparsity basis. We also tested the influence

algorithm for lossy speech compression based on CS-basedl the window size on the perceptual quality (figure 2),

Kalman Filtering that exploits sparsity of audio signal be t  observing that for sparsity levels below 20% large window

DFT domain. Results are presented only as spectral plots &fizes improve quality.

original and reconstructed speech signals that do not tell

much about the quality of the technique.

B. Investigation of the reconstruction technique

IV. AUDIO COMPRESSEDSENSING We evaluated the performance oflaminimization al-

In order to adapt the Compressed Sensing frameworgorithm. We fixed the frame size (N =128, 256, 512)
to audio signals, we followed the steps described in thisand varied the sparsity rat&/N). For each sparsity rate
section. (S/N), we generated 100 random signals and tested for how
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o T T T
Reconstruction Capacity for |1 Minimization

- In other words, the decoder finds tikewith lowest |1
B i 1 norm and, when applied CS, gives the sanss from actual

. measurements. This operation can recover the originabaudi
. data x almost exactly (error bounded bg) or partially,

] depending on the sparsity levéd and the number of
measurements.

In our decoder, thé minimization findsX in the sparsity
basis domain, that is the transform domain, so we need to
‘ ‘ apply the inverse transform to obtain the signal on the time
Doy T T T F domain. Since the transform adopted is the MDCT, as it is a
Fig. 3. Reconstruction fronly norm minimization - Compression rate lapped tranSform’,a final step of oyerlap and add is needed.
MIN x Sparsity rate. Several properties come along with the Compressed Sens-
ing framework that is of direct interest to the data compres-
sion community.

many measurementsl/N we had a perfect recoveryof 3) Error Resiliency: Due to noise, errors may happen
the original signal. A perfect recovery guarantees that th@vhen Bob transmits audio messages to Alice, so Alice
algorithm performs a perfect recovery withmeasurements May receive corrupted samples. After decoding, the mes-
for input signal of sparsityS. The results are shown in Sage is surprisingly not lost, but only received with low
figure 3. For example, for a frame silke— 256, to performa  guality. This happens because CS measurements present
perfect reconstruction of a signal with sparsity rate agpro €rror-resiliency, since random measurements spread Igloba
imately S/N = 0.18 = S= 46, we will have to measure information among all samples, so each sample carries the
approximatelyM /N = 0.5 = M = 128 samples. same amount of information, for a certain level of quality.
Therefore we can protect the audio from errors by increasing
C. Description of the Lossy Audio Compression System the number of random measurements. The properties of error
resiliency and error correction are detailed in [12] [13]
4) Universal Encoder:Although Compressed Sensing is
ot adaptive, it is universal in the sense that for any class

ion Rate MIN

Compressi

1) Encoder: For simplicity, our encoder consists of a
sampling matrix. The chosen sampling matrix was the
pseudo-random Bernoulli matrix. Note that CS measuremeng]c audio signals the encoder will be exactly the same. In

needsM measurements to work, and so the analogo_u%s, the sparsity level is the important parameter, and not
operation is equivalent to multiplying the discrete aUOIIpthe band or where and how the frequency components are
S|_gnal sampled above the Nyquist rate by a Bernoulli matrl istributed. As CS acquires signal by random matrices that
with each line corresponding to a sample. The operation o ave low coherence with any other basis, no matter what

multiplying the audio signal by a pseudo-random Sequencgparsity basis is used in the decoder (different sparsiisba

must occur above the Nyquist rate so that the operation '%or different class of audio signals), the measurement and

equivalent to the same operation on the discrete domair_l. O%' arsity basis will be incoherent. The same encoder can
serve that the encoder demands a simple hardware, sinceff . e any audio data (speech, solo instrument, music,

only performs the product of the signal vector by the SenSin%tc)and the design of the decoder will be different for dfe

tmhztg)r(\’c gvdh;t;iggpl'lrehsislqslgvr:/ i%?g:gg&?]t'ong Z(:Tr;ljerxgy ?gmclasses of signals. The property of universality by random
} g property S projections is discussed in [11] [5].

that cannot dispose of complex acquisition hardware, &fpic 5) Reverse ComplexityClassically, the encoder is the

OfTWhléeleer?csogzrsc?;nNaeltng)oLkes E:Iledfs]i. ned for software im Iecomponent with high computational cost, while the decoder
mentation. In that case, the encodgr operation would bep'ur typically low-cost. In our proposed model, the encoder
' ' P U3as very low-complexity and the decoder has a much

the multiplication between the measurement matrix and th?arger complexity. That property is suitable for applicat

discrete above-Nyquist sampled audio data, also blocked i here a low-cost encoder is needed. However, in audio

frl%r)?ites.cI]gIrSa((;)tF(Ja?irzail:]lOnar}g\?v-i(;/rirylelg;,tv Z%ngé?tg)sna:eﬁf MYata applications, sensors need a larger amount of memory
P 5 >[/) der- Th dg d pt ¥b callv two f " resources to be able to store the collected data and it is
) Decoder: The decoder consists of basically two func- highly ineffective to transmit raw data. Thus the proposed

:tll_c;]n?l blqc_ks_: tht§1 rrt1)||n|rr|l|zat|fon anctihth? 'ITverse transf?rm'. technique can reduce the amount of memory needed and the
ely minimization block performs the following operation: _ /.t of data to transmit.

jn [[X[|2 subject tol|®WX —y|[> < € (@) V. EVALUATION OF PERCEPTUAL AUDIO QUALITY OF
THE PROPOSED SYSTEM

The proposed system using as sparsity base the MDCT,
as sampling base the Bernoulli matrix andminimization

1\e assume a perfect recovery the one with maximum relatiee lrss @S reconstruction technique, was tested with the same sam-
than 106 ples from European Broadcasting Union (EBU). We can

WhereW is the sparsity basis for audio signals ahds the
measurement basis used by the encoder.
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Mean Perceptual Quality

"Size Block nfluence

Compression Rate MIN

CODEC, possibly resulting in higher compression rates. For
research on sparsity basis, it can be thought as beyond
transform coding like Atomic Decomposition of signals by
Orthogonal Matching Pursuit [10], achieving higher levels
of sparsity and thus smaller number of measurements.
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see in figure 4 the perceptual quality of the system for
different Compression ratéd/N. The compression rate can (g
be understood as the subsampling factor for an equivalent
analog implementation of the system. We also made a
comparison between our system and common CODECs like®]
MP3, the results can be seen on figure 5. We can observe
that for small compression rates (below 0.13), the system
achieves better perceptual quality. Note that we propose
a sampling/compression as a one step system, and not[ﬁ)]
software CODEC.

VI. CONCLUSION AND FUTURE WORK

In this paper, we evaluated the applicability of the Com-
pressed Sensing framework to sample and compress audirz]
signals in one step. We propose a novel technique for audio
compression that has the interesting properties of error[-13]
resiliency, reverse-complexity and universality and ithis
actual state-of-art of Compressed Sensing applied to audio
signals. [14]

We investigated audio sparsity basis for the intende
application and found the MCDT to be the best one. Also,
we evaluated reconstruction techniques for audio sigmals a
have shown the relation between compression and sparsity
basis. Finally, we evaluated the perceptual audio quafity o
the proposed Audio Compressed Sensing and showed that,
for a given compression rate, the proposed system performs
better than traditional CODECSs.

The proposed technique can be applied just as it is in
this paper. Nevertheless, as a natural development of this
work, it can be extended to be part of a more complex audio

[11]

15]
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