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Abstract— In this paper we propose a methodology based on an
evolutionary multiobjective optimization algorithm for a ll-optical
network topology design. The aim is to define the topology layout
and the specification of the optical devices that should be deployed
in the network in order to minimize simultaneously the total
installation cost of a communication network (capital cost) and
the total network blocking probability (performance crite ria). To
accomplish that, we propose a capital cost model for the network.
We considered the following physical layer impairments: losses
in optical devices, amplified spontaneous emission in optical
amplifier and homodyne crosstalk in optical cross connect (OXC),
polarization mode dispersion (PMD) and residual dispersion
(RD). The multiobjective optimization evolutionary algorithm
used in the optimization process is the NSGA-II. Our proposed
methodology can solve the network topology design problem
taking into account the physical layer impairments and the
capital costs simultaneously. We also present a case study to
show the effectiveness of our methodology considering uniform
and non-uniform network traffic.

Keywords— Physical network topology design, All-optical net-
works, physical impairments, multiobjective optimization, evolu-
tionary algorithm.

I. I NTRODUCTION

In all-optical networks, the signal remains in the optical do-
main between the edge nodes,i.e., the signal propagates along
the core of the optical network without any optical-electronic-
optical conversion [1]. Therefore, transmission physicalim-
pairments such as: amplified spontaneous emission noise
(ASE), polarization mode dispersion (PMD), chromatic disper-
sion, crosstalk, self phase modulation (SPM) and four wave
mixing (FWM) accumulate along the transmission of signal
over the physical layer [2]. The signal degradation occurs
because of the optical devices characteristics. For example,
amplified spontaneous emission noise is generated as a result
of the amplification process inside optical amplifiers, while
crosstalk can occurs, among other devices, inside the optical
crossconnects (OXC) [1]. The signal degradation that takes
place in a specific optical device is related to its quality, and
therefore, to its cost. Due to differences in the fabrication
processes, the technology adopted or cost concerns, some
devices impair more severely the optical signal than others.
In this scenario, the network designer faces a challenge:
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apply devices that are at the same time cost and performance
efficient.

In addition, others concerns are reserved to the network
designer such as: physical topology design [3], routing and
wavelength assignment (RWA) strategy [4] , network surviv-
ability [1] among others. The problem of physical topology
design is to determine which nodes of the network should be
connected by means of physical optical link (i.e. optical fiber
link). This choice must be made in a cost effective manner:
if in one hand the network with many optical links has a
high deployment cost, on the other hand, this network can
handle a larger traffic demand. Other important topic in the
design process is the choice of the RWA algorithm. In fact,
since the RWA algorithm is responsible for the distributionof
network traffic among the optical links, the selection of this
algorithm can drastically change the optimal physical topology
and vice-versa. Furthermore, the optical networks have been
deployed by the telecommunications carriers as their network
backbones. Consequently, they transport a large amount of
data. Thus, a failure in a link or node of the network causes
a significant loss of data, that must be avoided or mitigated.
The designer must provide a survivable network, capable of
handling these equipment failures by using either a re-routing
strategy (restoration) or by means of backup routes (protection
schemes) [1].

One can note that the design of an optical network is
a multiobjective optimization problem over a multivariable
design space [5]. It is multiobjective because the designer
must satisfy, simultaneously, several performance constraints
such as: maximum delay, capital costs, blocking probability,
profits, traffic capacity, etc. To accomplish the design with
these constraints, the designer must work in a multivariable
design space in order to choose the network devices, routing
algorithms, physical topology, node places, node degrees,etc.
For these reasons the all-optical network topology design
(NTD) considering physical layer aspects is an extremely hard
problem.

Previous works in this field can be classified in two
groups according to the techniques employed to solve the
problem: those using ILP (Integer Linear Programming) or
MILP (Mixed-Integer Linear Programming) formulations [6],
and those using heuristics or metaheuristics [3] [7]. The first
ones offer optimal solutions but they are time consuming for
medium and big size networks, while the others are fast but
only achieve suboptimal solutions. Besides, both groups can
use either single optimization objective [7] (which is clearly a
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poor approach for the NTD problem) or multiple optimization
objectives [8].

In this paper we propose a multiobjective optimization
algorithm for network topology design (MOEA-NTD) to solve
the physical network topology design problem for all-optical
networks. To our knowledge, this is the first paper proposing
to solve the network topology design problem taking into
account the physical layer impairments and capital costs
simultaneously. Section II describes the all-optical network
topology design problem and the description of the network
representation. Section III presents the physical layer model
proposed by Pereiraet al. [9] used in this paper. Section IV
presents our proposal to evaluate the network capital cost.
Section V describes the multiobjective evolutionary algorithm
used to determine the network layout. Section VI presents
the simulation setup and section VII shows the results. In
section VIII we give our conclusions.

II. PROBLEM DESCRIPTION ANDREPRESENTATION

In this section we describe our formulation for the net-
work topology design. We are concerned with the following
problem: given the desired node locations, traffic matrix and
RWA algorithm, the objective is to find the physical topology
layout and the proper specification of the optical devices that
should be deployed in the network in order to simultaneously
minimize total network capital cost and total network blocking
probability. Besides, the optimization process is constrained by
the Quality of Service (QoS), traffic estimation and survivabil-
ity requirements. To evaluate the network blocking probability,
the physical layer model considers a minimum Optical Signal
to Noise Ratio (OSNR) at the receiver in order to achieve a
predetermined QoS for the lightpaths. It was assumed, as de-
sign variables, the following network parameters: topological
layout, amplifier saturation power and noise figure in Erbium
doped fiber amplifier (EDFA) in a per link basis, the isolation
factor of all OXC in the network and the number of wavelength
per link.

As input data, the nodes locations are defined asP =
{(xi, yi)} (i ∈ 1, 2, ..., N ), where xi and yi are x and y

cartesian coordinates of theith node, andN is the total number
of nodes. The traffic matrix and the RWA algorithm are also
input variables as well. The node locations and traffic pattern
are usual demands of telecommunication carriers. Therefore,
we think it is fair to consider them as input variables in the
optimization problem.

The first step in the network design process is to determine
a proper representation for the physical topology. The most
used form is the adjacency matrix. The adjacency matrixA =
{ai,j} is a boolean matrix which represents the connectivity
between the network nodes. Ifai,j = 1, the nodes labeled as
i andj are connected by a physical link, otherwiseai,j = 0.
In this work, we use a similar approach to represent network
topology. It is given by a integer matrixM = {mi,j} (mi,j ∈
0, 1, ...LA). If mi,j = 0, the network nodesi and j are not
connected, otherwise they are connected using one of the pre-
determined available types of optical amplifier in this link. The
integer numbers(1, 2, .., LA) represent a label for a possible

choice for the optical amplifiers and they will be defined in
section IV. We consider that the network has a bidirectional
link between the nodes,i.e. mi,j = mj,i. Since theM matrix
is symmetric (mi,j = mj,i) one can represent this matrix
in a vectorized form by merging side by side the lines in
superior portion (relatively to the main diagonal) of theM

matrix. Therefore, this vector hasK = N2
−N
2 entries. For the

convenience of the optimization algorithm we append other
two entries at the end of this vector. One to represent the
choice of the OXC isolation factor (ǫ) parameter and the other
to represent the number of wavelengths per link. Therefore,
the network representation vector is defined asV = {vk} (k ∈
1, 2, ..., K + 2), where the integervK+1 (vK+1 ∈ 1, ..., LS)
represents a label for a possible choice of the OXC device,
and the integervK+2 (vK+2 ∈ WMIN , ..., WMAX ) represents
the number of wavelengths per link.WMIN andWMAX are
the minimum and maximum allowed number of wavelengths
per link. The k-th element of vectorV can be obtained from
the M matrix by using:

vk = mi,j , (1)

where k = (j − i) + (i − 1)N − i(i−1)
2 , j > i and k 6=

K + 1, K + 2.
The relation between matrixM and vectorV is such as:

Once the vectorV is defined, the goal of our algorithm
is to find a set of optimized vectorsV (i.e. non-dominated
solutions) using a multiobjective approach (explained in sec-
tion V) where the objectives are the network performance in
terms of blocking probabilities (section III) and the network
capital cost (section IV).

III. PHYSICAL LAYER MODEL

The physical layer impairments are evaluated according
the network architecture and model used in [9]. The optical
signal to noise ratio (OSNR) of each lightpath is evaluated
using that physical layer model and it considers the follow-
ing impairments: ASE noise, amplifier gain saturation effect,
saturation of ASE noise in EDFAs and homodyne crosstalk in
optical switches. The four wave mixing (FWM) effect are not
considered in the present work.

In addition to the model described in [9] we consider the
residual chromatic dispersion impairment using the approach
presented by Zulkifliet al. in [10].

The broadening of the optical pulses due to the residual
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dispersion is taken into account using:

∆tRD = ∆λtransmitter
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∆λtransmitter represents the transmitter linewidth,D
λref

TF , STF and
LTFj

are the chromatic dispersion coefficient in the reference
wavelength, the chromatic dispersion slope and the optical
fiber length, respectively.∆λj is the difference between the
transmitter wavelength and the wavelength where the residual
dispersion is zero.

Futhermore, we also consider the pulse broadening effect
caused by PMD in a route using the following expression [2]:

∆tPMD = B

√

√

√

√

i
∑

j=1

D2
PMD (j) d (j), (4)

whereB is the transmission bit rate,DPMD (j) is the PMD
coefficient, andd (j) is the length of the jth link belonging to
the lightpath.

The total pulse broadening∆t is evaluate by:

∆t = ∆tRD + ∆tPMD. (5)

δ% represents the temporal broadening of the optical pulse,
in percentage. It can be expressed by:

δ% = 100B∆t, (6)

whereB represents the transmission bit rate.

IV. CAPITAL COST MODEL

The definition of a consistent WDM cost model comprising
relevant network equipment is crucial for any technoeconomic
study comparing different network alternatives. However,de-
tailed cost values are hard to derive for many reasons such as:
costs are usually commercially confidential, price variations
and vendors discounts dependent on the operator [11]. In the
design algorithm proposed in this paper, the capital costs of the
devices are input parameters. It means that our approach do
not depend on the prices of a specific manufacturer or another
cost model.

In our capital cost model we consider four different sources
of costs: a fixed cost for each wavelength used in the entire
network, fiber deployment cost, optical amplifier cost and
OXC cost. We defined a monetary unity (m.u.) that is used
to evaluate the capital cost of each source of cost.

Each wavelength used in network has an associated capital
cost due to the optical line terminal (OLT),i.e. an Optical-
Electronic converter to interface the clients and the transparent

network. The cost associated to the number of wavelength
(COSTLambda) is given in m.u. and defined as:

COSTLambda = η · W, (7)

whereW (W = vK+2) is the number of wavelengths per link
and η is a constant value that can be inferred from the OLT
equipment price.

The network has a set of links interconnecting the network
nodes. There are two capital costs involved in this process,
the cost of the fiber cable itself and the cable deployment.
We included both costs in a unique function. Eq. 8 is used to
evaluate the costs in m.u. per kilometer.

COSTCable = 2β
∑N

i=1

∑N

j=i+1 di,j , (8)

wheredi,j is the physical distance between thei andj nodes
if they are connected and zero if they are not connected.β

is an input constant inferred from the equipment price. Since
we use one fiber for transmission and other for reception, the
sum evaluates the half of the total length of deployed fibers,
thus we multiply it by2.

We consider the cost of the optical amplifiers according to
two parameters: output saturation power and noise figure. Each
saturation power and noise figure pair is labeled according
Table I. The amplifier costs (COSTAmplifier) is given by:

COSTAmplifier = 2 ·

K
∑

i=1

Camp(vi), (9)

whereK = N2
−N
2 , N is the number of nodes in the network

andvi was defined by Eq. 1.Camp(vi) is depicted in Table I.

TABLE I

LABELS AND CAPITAL COST VALUES ADOPTED FOR DIFFERENT OPTICAL

AMPLIFIER SPECIFICATION.

Label (ℓ) Output Saturation Power Noise Figure Capital Cost
(Camp(ℓ))

1 13 dBm 8 dB 1 m.u.
2 13 dBm 5 dB 2 m.u.
3 16 dBm 8 dB 3 m.u.
4 16 dBm 5 dB 4 m.u.

We used a similar approach to define the OXC capital
cost (COSTOXC ). However, the used OXC architecture [9],
the node degree and the number of wavelengths used in
the network are related to the OXC cost as well. As the
node degree increases, the number of ports in the switches
fabric used inside the OXC also increases. Furthermore, as
the number of wavelengths increases, the number of switches
inside the OXC also increases. Therefore, the total OXC
capital cost is given by:

COSTOXC = γ · Csw(vK+1) · W ·

N
∑

i=1

G(i), (10)

whereγ is related to the OXC equipment price,G(i) is the
node degree of thei node andCsw(ℓ) is related to the isolation
factor and is defined in Table II.
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Now we can define the total network capital cost
(COSTNet) as:

COSTNet = COSTLambda + COSTAmplifier

+COSTCable + COSTOXC .
(11)

TABLE II

LABELS AND CAPITAL COST VALUES ADOPTED FOR DIFFERENTOXC.

Label (ℓ) Isolation Factor (ǫ) Capital Cost (Csw(ℓ))
1 −30 dB 1 m.u.
2 −35 dB 2 m.u.
3 −40 dB 3 m.u.
4 −45 dB 4 m.u.

V. M ULTIOBJECTIVE OPTIMIZATION ALGORITHM FOR

NETWORK PHYSICAL TOPOLOGYDESIGN

In this section we describe the multiobjective optimization
algorithm used to find the physical topology layout and the op-
tical devices specification in order to minimize simultaneously
the network capital cost and the network blocking probability.

It has been shown that evolutionary algorithms can be used
to efficiently solve multiobjective problems. To perform the
multiobjective optimization, we used a multiobjective evolu-
tionary algorithm (MOEA) called NSGA-II. The NSGA-II was
proposed by Debet al. [5] and is based on genetic algorithms
(GA) [12]. The main difference between NSGA-II and an
ordinary GA relies mainly on the selection operator. In the
former, the selection is based on a dominance rule concerning
the objectives involved in the optimization process.

In genetic algorithms, an individual represents a possible
solution for the problem. In the NSGA-II, the vectorV is
used as individuals, since it is able to represent all possible
network configurations. Each entry in the vector that represents
the individual is named gene, thus,vk is a gene.

In a regular GA, the quality of an individual is determined
by its fitness. In MOEA the quality of an individual is related
to the fitness in all objectives and a dominance criteria. Here,
we evaluate the fitness of an individual using the capital cost
model and the network blocking probability using the results
from a simulation program that implements the physical layer
model [9].

During each iteration genetic operators are used by the GA:
crossover, mutation and selection. In this work the selection
operator is performed using the Linear Ranking Selection
(LRS) [13] in conjunction with Stochastic Universal Sampling
(SUS) [12]. The crossover operator used was the uniform
crossover [12]. The mutation is performed in a per gene basis
and when a gene is selected to be mutated it is replaced by a
new integer number raffled at random inside the gene limits.

A peculiar aspect of the NSGA-II relies in how a new
populationQt is generated from the current populationPt [5].
The approach used is based on the Make-New-Population
paradigm. In this algorithmPC andPM are the crossover and
mutation probabilities respectively.

A. Unfeasible individuals and biconnectivity issue

To allow the use of survivability strategies, such as pro-
tection or restoration, it is mandatory that all network nodes
have at least two connections to different nodes (biconnectivity
constraint) [14]. In addition, the graph that represents the
network must be connected (i.e. always exists a possible route
in the network from any source node to any other node of the
network). If it does not occur, it means the network is divided
in two or more pieces. It is desirable that the network satisfies
both properties. Unfortunately the crossover and mutation
operators used in this paper can generate individuals that
violate these rules. To avoid this problem, we repair the
individual before they join the new population. We do that
by trying to add as few and as short links as possible to obey
these constraint rules.

VI. SIMULATION SETUP

Our simulation software for network blocking probability
evaluations uses the following steps. Upon a call request it
selects the route using Shortest Path algorithm (SP) [4] and
the wavelength is defined using the first fit algorithm [4]. The
route and wavelength define a lightpath. If no lightpath is
found,i.e. there is no wavelength available, the call is blocked.
If an available lightpath is found it is verified if this lightpath
meets the QoS requirements. There are two verications to be
performed: total pulse broadening and output OSNR. Firstly,
the δ% of the found lightpath is checked. If it is above the
pre-determined level (δ), then the call request related to the
lightpath is blocked. If the pulse broadening meets the QoS
requirements (i.e. δ% < δ ) the lightpath OSNR is verified. If
the OSNR in the output of the lightpath is above the pre-
determined level (OSNRQoS), then the call related to the
lightpath is established. Otherwise the call is blocked. The
blocked calls are lost. The blocking probability is obtained
from the ratio of the number of blocked calls and the number
of call requests.

Blocking probability of the network is a relative measure
of how many communication requests are denied by the
network due to either lack of physical resources or because
the lightpath does not meet the QoS requirements. Therefore
it is an important performance indicator.

For each network simulation a set of107 calls are generated
by two different forms: an uniform traffic, characterized by
choosing randomly (using an uniform distribution) the
source-destination pair and the non-uniform traffic using the
traffic matrix shown in Table III. This matrix was obtained
from a random uniform generator. In both uniform and a
non-uniform traffic the total network load is200Erlangs
and the calls time follow a Poisson process. We assume
circuit switched bidirectional connections in two different
fibers and no wavelength conversion capabilities. The
position of the nodes utilized in this case study were:
P ={(40.4, 84.6), (39.7, 46.0), (54.1, 101.1), (69.1, 72.7)
,(87.6, 75.5), (115.6, 110.8), (111.8, 72.3), (135.4, 75.0),
(158.6, 73.9), (146.5, 97.5), (148.0, 67.1), (168.4, 66.5),
(173.6, 74.5), (167.4, 79.0)}, where all the numbers are
given in kilometers with the origin of the cartesian system
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arbitrarily placed. These points lead to a NSFNET shape
network. The default simulation parameters are shown in
Table IV.

TABLE III

TRAFFIC MATRIX USED FOR SIMULATENON-UNIFORM TRAFFIC IN

ERLANGS.

nodes 0 1 2 3 4 5 6 7 8 9 10 11 12 13
0 - 1.32 0.70 1.22 0.57 0.61 1.01 0.83 2.08 0.72 0.36 2.11 1.29 0.99
1 1.73 - 0.96 0.32 0.86 2.02 1.18 0.47 1.00 1.61 0.20 0.47 1.45 1.56
2 0.63 0.52 - 1.44 0.30 1.56 1.45 0.97 2.02 1.74 0.44 1.71 0.97 1.95
3 0.67 1.17 0.94 - 2.02 0.13 0.21 0.95 1.99 2.03 1.58 1.28 1.07 1.47
4 0.74 0.84 1.33 1.52 - 0.22 0.20 1.32 1.05 0.70 0.17 1.87 1.20 2.01
5 1.50 1.29 1.40 0.16 1.92 - 0.95 1.11 0.61 2.02 0.27 0.17 1.14 0.92
6 0.27 1.19 1.15 0.08 0.84 0.81 - 0.54 0.93 1.52 0.05 0.16 1.25 1.31
7 1.58 1.96 1.74 1.81 0.17 1.64 1.93 - 1.11 1.74 2.04 1.21 1.21 2.02
8 1.16 1.54 1.32 0.59 0.62 1.93 1.80 1.20 - 1.10 1.52 0.91 0.70 1.92
9 0.82 1.91 0.61 0.34 0.25 0.80 0.02 2.04 1.10 - 0.29 1.71 0.70 1.22
10 0.63 0.20 1.36 0.80 0.44 1.17 0.89 1.32 0.07 2.05 - 1.37 0.40 1.75
11 0.67 1.92 1.47 1.81 0.53 1.97 1.79 1.85 0.10 1.10 0.06 - 1.67 1.27
12 0.04 0.47 0.47 1.75 0.91 0.28 1.70 2.00 1.04 1.29 1.02 1.75 - 1.69
13 0.58 1.35 1.36 1.63 1.30 0.82 0.44 0.07 1.27 0.94 1.34 0.80 1.16 -

TABLE IV

DEFAULT SIMULATION PARAMETERS.

Parameter Value Definition

OSNRin 30 dB Input optical signal-to-noise ratio.
OSNRQoS 23 dB Optical signal-to-noise ratio for QoS cri-

terion.
B 40 Gbps Transmission bit rate.
Bo 100 GHz Optical filter bandwidth.
∆f 100 GHz Channel spacing.
λi 1529.56 nm The lower wavelength of the grid.
λ0 1557 nm Zero dispersion wavelength.
α 0.2 dB/km Fiber loss coefficient.
LMux 3 dB Multiplexer loss.
LDemux 3 dB Demultiplexer loss.
LSwitch 3 dB Optical switch loss.
δ 10% Maximum pulse broadening.
DPMD 0.2 ps/

√

km PMD coefficient.
WMIN 4 Minimum number of wavelengths per

link
WMAX 40 Maximum number of wavelengths per

link
F0 (NF) 3.162 (5 dB) Amplifier noise factor (Noise figure).
STF 0.06 ps/km.nm2 Dispersion slope of the transmission

fiber (@1557 nm).
DDCF −1.87 ps/km.nm Dispersion coefficient of the compensa-

tion fiber (@1541.35 nm).
SDCF −126.18 ps/km.nm2 Dispersion slope of the compensation

fiber (@1541.35 nm).
∆λtransmitter 0.05 nm Transmitter linewidth.
G 1000 Number of generations
PM 0.03 Mutation probability
PC 1.0 Crossover probability
Pop 50 Population size
ηmin 0.75 LRS parameter
p 50 Number of selected individuals
η 5 m.u. Cost constant (wavelength cost)
β 0.4 m.u/km Cost constant (cable deployment cost)
γ 0.2 m.u. Cost constant (OXC cost)

VII. R ESULTS

The presence of multiple conflicting objectives in an op-
timization problem, in principle, implies in a set of optimal
solutions (known as Pareto-optimal solutions), instead ofa sin-
gle optimal solution. In the absence of any further information,
each point in these Pareto-optimal solutions cannot be saidto
be better than the other ones [5].

Using the values and assumptions described in section VI,
we performed some simulations. Fig. 1 shows the simulation
results for the network cost as a function of the obtained
network blocking probability. In this case, we executed the
NSGA-II algorithm for the two different network traffics

scenarios previously defined in section VI: uniform and non-
uniform traffic. Each symbol represents a optimized possible
solution with its cost and blocking probability,i.e. each
point corresponds to an specific network topology and device
characteristics. One can note that the cost increases for lower
blocking probabilities and vice versa. Using this figure, the
network designer can choose the solution that meets his
preferences, according to the project specification.
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Fig. 1. Network cost as a function of the obtained network blocking
probability for the two different traffics scenarios: uniform and non-uniform.
The first Pareto front is shown for the both cases.

One can also note from the Fig. 1 that the best Pareto front
found for non-uniform traffic (squares) and uniform (triangles)
are very close except for very low blocking probability values
(i.e. BP < 8x10−4). It indicates that, for a given desired
blocking probability, our algorithm is was able to design
networks at almost the same cost independently of the traffic
pattern.

Figs. 2 and 3 show examples of the network topologies
and devices parameters found by the multiobjective algo-
rithm respectively for uniform and non-uniform traffics. The
numbers in parenthesis separated by commas represent the
link lengths, output saturation power and noise figure of the
amplifiers used in the link, respectively. The link length can
be obtained from the position of the nodes given by the setP .
As defined by Table I the optimization algorithm uses a label
to represent the output saturation power and the noise figure
of the amplifiers used in a given link. The labels found for
Fig. 2 are shown in Table V and the labels found for Fig. 3
are shown in Table VI. The results shown in Tables V and VI
corresponds toM matrix found by the optimization process.
Fig. 2 shows the network topology marked as1 in Fig 1 and
Fig. 3 shows the network topology marked as2 in Fig 1. The
switch isolation and the number of available wavelength per
fiber found for each topology is given in the figure caption.
Comparing the figures one can note that in both cases the
blocking probability and the network cost are very close.
Despite of this, the network topologies are quite different. The
algorithm changes the network physical topology design and
device characteristics in order to accommodate the different
traffic demands.
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Fig. 2. The Network topology and devices parameters found for a blocking
probability around1% and uniform traffic (BP = 1.09%, COSTNET =
2887.05 m.u.,W = 21, ǫ = −45 dB). Point number 1 in Fig. 1.

Fig. 3. The Network topology and devices parameters found for a
blocking probability around1% and non-uniform traffic (BP = 1.67%,
COSTNET = 2874.17 m.u., W = 20, ǫ = −45 dB). Point number 2
in Fig. 1.

TABLE V

THE M MATRIX FOUND FOR THE TOPOLOGY SHOWN INFIG. 2.

node 0 1 2 3 4 5 6 7 8 9 10 11 12 13
0 0 0 0 3 3 0 3 0 0 0 0 0 0 0
1 0 0 0 2 0 0 2 4 0 0 0 0 0 0
2 0 0 0 3 3 2 0 0 0 0 0 0 0 0
3 3 2 3 0 2 0 1 3 0 4 0 0 0 0
4 3 0 3 2 0 2 0 0 3 0 2 1 2 0
5 0 0 2 0 2 0 2 1 0 3 0 0 0 2
6 3 2 0 1 0 2 0 2 0 0 1 3 0 4
7 0 4 0 3 0 1 2 0 4 3 3 0 4 3
8 0 0 0 0 3 0 0 4 0 0 0 1 0 1
9 0 0 0 4 0 3 0 3 0 0 0 0 0 1
10 0 0 0 0 2 0 1 3 0 0 0 1 1 0
11 0 0 0 0 1 0 3 0 1 0 1 0 0 3
12 0 0 0 0 2 0 0 4 0 0 1 0 0 2
13 0 0 0 0 0 2 4 3 1 1 0 3 2 0

TABLE VI

THE M MATRIX FOUND FOR THE TOPOLOGY SHOWN INFIG. 3.

node 0 1 2 3 4 5 6 7 8 9 10 11 12 13
0 0 2 4 0 0 0 4 0 0 0 0 0 0 0
1 2 0 0 3 0 0 4 4 0 0 0 0 0 0
2 4 0 0 0 0 0 4 4 2 0 0 0 0 4
3 0 3 0 0 1 0 0 2 0 3 2 0 0 0
4 0 0 0 1 0 4 3 0 0 0 2 0 0 0
5 0 0 0 0 4 0 3 0 0 1 0 0 0 0
6 4 4 4 0 3 3 0 0 1 2 0 2 1 0
7 0 4 4 2 0 0 0 0 2 2 3 0 2 4
8 0 0 2 0 0 0 1 2 0 3 3 2 0 0
9 0 0 0 3 0 1 2 2 3 0 1 4 0 0
10 0 0 0 2 2 0 0 3 3 1 0 3 0 1
11 0 0 0 0 0 0 2 0 2 4 3 0 1 1
12 0 0 0 0 0 0 1 2 0 0 0 1 0 3
13 0 0 4 0 0 0 0 4 0 0 1 1 3 0

VIII. C ONCLUSIONS

In this paper we proposed a multiobjective algorithm to
solve the physical network topology design problem for all-

optical networks. We considered capital cost and network per-
formance in terms of blocking probability as the optimization
objectives. The network performance is infered considering
physical layer impairments. A case study was performed and
the simulation results show that the methodology was suc-
cessful in obtaining the network topology and optical devices
parameters for different scenarios. Furthermore, it allows the
network designer to choose, among an optimized set, which
specific network will be implemented. It is a very powerful
tool to analize an important network design trade-off (cost
versus network performance).

It is worth noting that the proposed methodology and
algorithm for multiobjective optimization presented herecan
be used with other capital cost models and other network
performance parameters. It is not limited to the ones presented
here.
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