Codificadores convolucionais generalizados com pacotes de informação de comprimento primo

Jorge Pedraza Arpasi

Resumo—Códigos convolucionais generalizados sobre grupos arbitrários são necessários a partir do trabalho de Ungerboeck, o mesmo que trata sobre casamento entre bits codificados e constelações de sinais. O conjunto das palavras de um código convolucional formam um sistema dinâmico que precisa ser bem comportado, isto é, ser controlável e observável. Um código que não seja controlável não pode ser um bom código. Neste trabalho mostramos que códigos convolucionais gerados pela extensão nãoabeliana $\mathbb{Z}_p\boxtimes S$, onde \mathbb{Z}_p é o grupo cíclico $\{0,1,2,\ldots,p-1\}$, p primo, não são controláveis ou tem distancia livre limitada por transições paralelas.

Palavras-Chave.- Códigos convolucionais generalizados, códigos de treliça, controle, *p*-grupos

I. INTRODUÇÃO

Forney e Trott, em [1], perceberam que o codificador convolucional com taxa de transmissão $\frac{1}{3}$ e memória 2 da Figura 1 pode ser descrito como uma máquina de estados $M=(\mathbb{Z}_2,\mathbb{Z}_2^2,\mathbb{Z}_2^3,\nu,\omega).$ Este codificador, que em [2] é denotado por (3,1,2), tem como alfabeto de entradas o conjunto $\mathbb{Z}_2=\{0,1\}$, como saídas $\mathbb{Z}_2^3=\{000,100,\dots,111\}$, e como o conjunto dos estados $\mathbb{Z}_2^2=\{00,10,01,11\}.$ Cada um dos con-

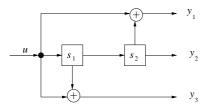


Fig. 1. O codificador de um código binário (3, 1, 2)

juntos $\mathbb{Z}_2, \mathbb{Z}_2^2, \mathbb{Z}_2^3$, com a operação soma módulo 2, executada componente a componente, é um grupo. Por exemplo, para o caso \mathbb{Z}_2^3 temos $100+111=011,\ 000+101=101,\ 101+101=000,$ etc. Isto mostra informalmente que \mathbb{Z}_2^3 com a soma módulo 2 possui as propriedades de clausura, associatividade, elemento neutro, e elemento inverso necessárias para ter estrutura de grupo. Mais ainda, estes grupos binários são grupos abelianos, pois a operação soma módulo 2 é comutativa. O conjuntos $\mathbb{Z}_2^2 = \mathbb{Z}_2 \times \mathbb{Z}_2$, e $\mathbb{Z}_2^3 = \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2 = \mathbb{Z}_2 \times \mathbb{Z}_2^2$ são produtos cartesianos chamados de grupos **produto direto**. A dinâmica do codificador da Figura 1 pode ser descrita pelo mapeamento do próximo estado $\nu: \mathbb{Z}_2 \times \mathbb{Z}_2^2 \to \mathbb{Z}_2^2$ e pelo mapeamento codificador $\omega: \mathbb{Z}_2 \times \mathbb{Z}_2^2 \to \mathbb{Z}_2^3$ sendo que ambos são

Departamento de Ciências Exatas e Engenharias, Universidade Regional Integrada - URI, Frederico Westphalen, RS. Email: arpasi@fw.uri.br

homomorfismos de grupos definidos por $\nu(u,s_1s_2)=(u,s_1)$ e $\omega(u,s_1s_2)=(u+s_2,s_2,u+s_1).$ Em geral, para qualquer taxa de transmissão $\frac{k}{n}$ e qualquer memória m, um codificador convolucional binário pode ser definido como a máquina de estados $M=(\mathbb{Z}_2^k,\mathbb{Z}_2^m,\mathbb{Z}_2^n,\nu,\omega)$ onde $\nu:\mathbb{Z}_2^k\times\mathbb{Z}_2^m\to\mathbb{Z}_2^m$ é o homomorfismo do próximo estado e $\omega:\mathbb{Z}_2^k\times\mathbb{Z}_2^m\to\mathbb{Z}_2^n$ é o homomorfismo codificador. Como $k+m\geq m$, temos que ν é homomorfismo sobrejetor, enquanto que, para evitar códigos catastróficos o homomorfismo codificador ω deve ser injetor, isto é, $n\geq k+m$ necessariamente.

Desde o trabalho de Ungerboeck [3], onde o problema central era o casamento entre os pacotes de bits codificados que formam o grupo binário \mathbb{Z}_2^n , e uma constelação de sinais S, houve a necessidade de ampliar o conceito de códigos convolucionais. Então foram introduzidos conceitos de **códigos convolucionais generalizados** sobre grupos (group codes) [1], e **casamento** entre grupos e pontos discretos de um espaço Euclidiano, [4]. Os grupos referidos nesta generalização podem ser até grupos **não-abelianos**. Em [4], Loeliger mostra teoricamente que para um canal AWGN dado, usando códigos convolucionais abelianos sua capacidade de transmissão é limitada superiormente pela capacidade de um canal AWGN com modulação PSK (Phase Shift Keying). Assim, canais usando códigos convolucionais sobre grupos não-abelianos poderiam superar esta limitação.

Um conceito fundamental da álgebra que é necessário para definir codificadores convolucionais generalizados, e portanto códigos convolucionais generalizados, é a definição de extensão de grupos que introduziremos na Seção II, onde será mostrado que produto direto de grupos é um caso particular de extensão de grupos. Na seção III definiremos codificadores convolucionais generalizados e a abordagem dos códigos convolucionais como sequências bi-infinitas que para serem bons códigos precisam ser bem comportados quando identificados como sistemas dinâmicos [5], [4], [1], [6] Um sistema dinâmico bem comportado precisa ser observável e controlável [7]. Na Seção IV enfocaremos os codificadores convolucionais sobre a extensão não-abeliana $\mathbb{Z}_p \boxtimes S$, onde p é primo e \mathbb{Z}_p é o grupo cíclico $\mathbb{Z}_p = \{0, 1, 2, \dots, p-1\}$ e mostraremos que um código convolucional, definido sobre esta extensão, não é controlável ou tem distância livre limitada por transições paralelas.

II. EXTENSÃO DE GRUPOS

Definições padrão de extensão de grupos são dados em [8], [9], entre outros. Para a definição que daremos a seguir, ao elemento neutral(identidade) de um grupo genérico G

denotaremos por e, a notação $N \triangleleft G$ significa N é um subgrupo normal de G, enquanto que $H \cong K$ será a notação para um isomorfismo entre H e K.

 $Definição~1\colon$ Uma **extensão** de um grupo U por outro S é um grupo G que possui um subgrupo normal $N \triangleleft G,$ tal que $N \cong U$ e $\frac{G}{N} \cong S.$ \circ

Dado que cada grupo G, pelo menos, possui seus subgrupos normais triviais, então cada grupo G sempre é a extensão de algum grupo U por grupo S, à qual denotaremos por $U \boxtimes S$. Isto significa que cada elemento $g \in G$ pode ser "factorado"ou decomposto como um único par ordenado $(u,s),\ u \in U$ e $s \in S$. A construção desta fatoração é baseada na escolha dos isomorfismos $\psi: S \to \frac{G}{N}$ e $v: N \to U$ referidos na Definição 1, e de um levantamento $l: \frac{G}{N} \to G$, chamado também escolha de representante de classe, tal que l(N) = e. Com estas escolhas são definidos os mapeamentos $\varsigma: S \times S \to U$ e $\phi: S \to Aut(U)$,

$$\varsigma(s,t) = \upsilon[l(\psi(s)).l(\psi(t)).(l(\psi(st)))^{-1}],$$
(1)

e

$$\phi(s)(u) = v[l(\psi(s)).v^{-1}(u).(l(\psi(s)))^{-1}]. \tag{2}$$

Então $U \boxtimes S$ com a operação

$$(u_1, s_1) * (u_2, s_2) = (u_1.\phi(s_1)(u_2).\varsigma(s_1, s_2), s_1s_2)$$
 (3)

é um grupo isomorfo com G.

O produto semidireto $U \rtimes S$ é um caso particular de extensão, onde $\varsigma(s,t)=e\in U$ para quaisquer $s,t\in S$. Por outro lado, o produto direto é um caso particular de extensão, onde $\varsigma(s,t)=e\in U$ para quaisquer $s,t\in S$, e $\phi(s)$ é o automorfismo identidade para qualquer $s\in S$. Portanto a extensão $U\boxtimes S$ é uma generalização do produto direto $U\times S$, conforme dizeramos linhas acima.

Exemplo 1: Considere o grupo $\mathbb{Z}_2^3 = \{(x_1, x_2, x_3) ; x_i \in \mathbb{Z}_2\}$. Este grupo abeliano pode ser decomposto como o produto direto $\mathbb{Z}_2 \times \mathbb{Z}_2^2$ e portanto uma extensão de \mathbb{Z}_2 por \mathbb{Z}_2^2 . \circ

Exemplo 2: Considere o grupo das simetrias do quadrado, $D_8 = \{R_0, R_{\frac{\pi}{2}}, R_{\pi}, R_{\frac{3\pi}{2}}, d_1, d_2, H, V\}$, onde $R_{i\frac{\pi}{2}}$ é uma rotação do quadrado, no sentido anti-horário, de $i\frac{\pi}{2}$ radianos, d_1 , e d_2 são reflexões referidas às diagonais, e H, V são as reflexões horizontal e vertical respectivamente.

Um subgrupo normal é $N=\{R_0,R_\pi\}\cong \mathbb{Z}_2$, e para o grupo dos cosets $\frac{D_8}{N}$ temos $\mathbb{Z}_2^2\cong \frac{D_8}{N}$. Na Tabela I temos as escolhas de ψ , v, e l. Por exemplo, $\psi(10)=\{R_{\pi/2},R_{3\pi/2}\}$, $v(R_0)=0$, e $l(\{R_{\pi/2},R_{3\pi/2}\})=R_{\pi/2}$. Com isto, a operação de grupo para $D_8=\mathbb{Z}_2\boxtimes\mathbb{Z}_2^2$ é dada por $(i_1,i_2i_3)(j_1,j_2j_3)=(i_1+j_1+\varsigma(i_2i_3,j_2j_3),i_2i_3+j_2j_3)$. Por exemplo; $(0,10)(1,10)=(0+1+\varsigma(10,10),10+10)=(1+v(l(\psi(10))l(\psi(10))(l(\psi(00)))^{-1}),00)=(1+v(R_{\frac{\pi}{2}}R_{\frac{\pi}{2}}),00)=(R_0,00)$. \circ

Notemos que o resultado de $(u_1,s_1).(u_2,s_2)$, da operação acima (3), é (u',s_1s_2) para algum u' e onde s_1s_2 é a operação do grupo S. Esta propriedade nos deixa livres da preocupação do cálculo exato do produto de múltiplos pares. Por exemplo na prova de alguns Lemas será suficiente saber que $(u',s_1s_2\ldots s_n)$, é o par resultante do produto múltiplo $(u_1,s_1)\cdot (u_2,s_2)\cdot (u_3,s_3)\ldots (u_n,s_n)$, onde u' é algum elemento de U. Analogamente, $(u,s)^n=(u',s^n)$ para algum $u'\in U$.

772	0/2	D_8	1	D_8
$\frac{Z_2}{00}$	Ψ	\overline{N}	·	- 0
	\mapsto	$\{R_0,R_\pi\}$	\mapsto	R_0
10	\mapsto	$ \{R_{\pi/2}, R_{3\pi/2}\} \{d_1, d_2\} $	\mapsto	$R_{\pi/2}$
01	\mapsto	$\{d_1, d_2\}$	\mapsto	$d_1^{'}$
11	\mapsto	$\{H,V\}$	\mapsto	Н
		$\downarrow v$		
		$\{0, 1\}$		
		\mathbb{Z}_2		

TABELA I

Escolhas dos isomorfismos ψ e υ , e o levantamento l para o Exemplo 2

III. CODIFICADORES E CÓDIGOS CONVOLUCIONAIS GENERALIZADOS

Definição 2: Um codificador homomorfo generalizado é uma máquina $M=(U,Y,S,\omega,\nu)$, onde o alfabeto de entrada U, o alfabeto de saída Y, e o conjunto dos estados da máquina S são grupos tais que o mapeamento do próximo estado ν é um homomorfismo sobrejetor e o mapeamento codificador ω é um homomorfismos injetor, ambos definidos assim;

$$\left\{ \begin{array}{l} \nu:U\boxtimes S\to S\\ \omega:U\boxtimes S\to G \end{array} \right.$$

Exemplo 3: Considere o grupo produto direto $\mathbb{Z}_2^3=\{(x_1,x_2,x_3):x_i\in\mathbb{Z}_2\}$ (Exemplo 1). Definindo $\nu:\mathbb{Z}_2\times\mathbb{Z}_2^2\to\mathbb{Z}_2^2$ como sendo $\nu(u,s_1,s_2)=(u,s_1)$ e $\omega:\mathbb{Z}_2\times\mathbb{Z}_2^2\to\mathbb{Z}_2^3$ por $\omega(u,s_1,s_2)=(u+s_2,s_2,u+s_1)$; temos um codificador $M=(\mathbb{Z}_2,\mathbb{Z}_2^2,\mathbb{Z}_2^3,\nu,\omega)$ que gera o codificador binário da Figura 1.

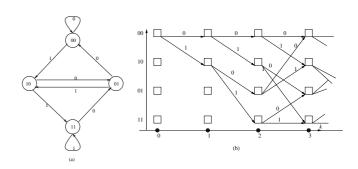


Fig. 2. Representação gráfica do código convolucional (3,1,2): (a) Diagrama de estados estático conforme Teoria dos grafos, (b) Dinâmica da Treliça conforme Teoria de códigos corretores de erros.

Supondo que o estado inicial do codificador M seja 00, temos que a sequência de bits de entrada $1,1,0,1,0,0,1,1,1,0,\ldots$ gera de maneira única a sequência de estados $10,11,01,10,01,00,10,11,11,01,\ldots$ e a sequência de bits codificados $101,100,111,011,011,011,110,1101,1100,010,111,\ldots$ da

seguinte forma;

$$\begin{array}{lllll} \nu(0,00) &= 10 & \omega(0,00) = 101 \\ \nu(1,10) &= 11 & \omega(1,10) = 100 \\ \nu(0,11) &= 01 & \omega(0,11) = 111 \\ \nu(1,01) &= 10 & \omega(1,01) = 011 \\ \nu(0,10) &= 01 & \omega(0,10) = 001 \\ \nu(0,01) &= 00 & \omega(0,01) = 110 \\ \nu(1,00) &= 10 & \omega(1,00) = 101 \\ \nu(1,10) &= 11 & \omega(1,10) = 100 \\ \nu(1,11) &= 11 & \omega(1,11) = 010 \\ \nu(0,11) &= 01 & \omega(0,11) = 111 \\ &\vdots &\vdots &\vdots &\vdots \end{array}$$

Exemplo 4: Considere o grupo das simetrias do quadrado, D_8 (Exemplo 2). Considere o codificador dado por $\omega(a,bc)=(a,bc)$ e $\nu(a,bc)=bc$ temos um codificador $M=(\mathbb{Z}_2,\mathbb{Z}_2^2,D_8,\nu,\omega)$.

O codificador para esta extensão não-abeliana, não é implementável como um circuito registrador de deslocamentos. No entanto ele possui um diagrama de estados e um diagrama de treliça mostrados na Figura 3. \circ

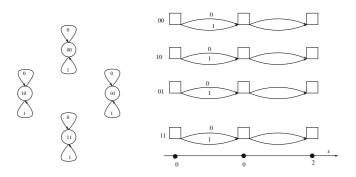


Fig. 3. (a) Grafo disconexo do codificador 4 (b)Treliça

Seja $\mathcal C$ o código binário produzido pelo codificador da Figura 1 e Exemplo 1, temos que $\mathcal C$ é um conjunto de sequências de pacotes de três bits, por exemplo $\{101,100,111,011,001,110,101,100,010,111,\ldots\} \in \mathcal C$. Então, considerando o produto direto infinito $(\mathbb Z_2^3)^\mathbb N = \mathbb Z_2^3 \times \mathbb Z_2^3 \times \ldots$ temos $\mathcal C$ é um subgrupo de $(\mathbb Z_2^3)^\mathbb N$. Sob o ponto de vista dos sistemas dinâmicos, $\mathcal C$ pode ser descrito como um sistema invariante no tempo, pois para cada índice em $\mathbb N$, o grupo $\mathbb Z_2^3$ é repetido. Por isso, também, estes códigos são chamados códigos convolucionais invariantes no tempo.

Um código convolucional generalizado é indexado sobre os inteiros $\ensuremath{\mathbb{Z}}$.

 $\begin{array}{lll} \textit{Definição 3:} & \text{Considere uma família de grupos } \{G_k\}_{k\in\mathbb{Z}} \\ \text{e o produto direto, indexado em } \mathbb{Z}, \ \mathcal{G} = \cdots \times G_{k-1} \times G_k \times G_{k+1} \times \ldots. \end{array}$ Temos que cada elemento deste produto é um sequência $\{g_k\}_{k\in\mathbb{Z}}, \ g_k \in G_k, \ \text{e com as operações de grupo induzidas componente a componente sobre cada } G_k, \ \mathcal{G} \\ \text{também é grupo. Então, um código convolucional generalizado } \mathcal{C}, \ \text{é um subgrupo de } \mathcal{G}. \ \circ \end{array}$

Se para cada G_k temos que $G_k = G$, então temos $\mathcal{G} = G^{\mathbb{Z}} = \cdots \times G \times G \times G \times \cdots$. E neste caso temos que um subgrupo

 \mathcal{C} de \mathcal{G} chamado de *código convolucional invariante no tempo* [5], [4], [1], [6].

Uma sequência $\{\mathbf{c}_k\}_{k\in\mathbb{Z}}\in\mathcal{C}$ é chamada de palavra-c'odigo. Dados dois inteiros i,j, com $i\leq j$, usaremos as notações [i,j],[i,j),(i,j], e (i,j) para intervalos inteiros. Por exemplo, $[i,j]=\{i,i+1,\ldots,j-1,j\},\ [i,j)=\{i,i+1,\ldots,j-1\},$ e assim por diante. Esta notação também funciona em em conjuntos discretos infinitos tal como $\{k\in\mathbb{Z}\ ;\ k\leq j\}=(-\infty,j]$. Com isto a projeção de uma palavra-código $\{\mathbf{c}_k\}_{k\in\mathbb{Z}}$ sobre o conjunto de índices [i,j] é denotado por $\{\mathbf{c}\}_{[i,j]}=\{\mathbf{c}_i,\mathbf{c}_{i+1},\ldots,\mathbf{c}_j\}$.

Dadas duas palavras-código $\{\mathbf{c_{1}}_k\}_{k\in\mathbb{Z}}, \{\mathbf{c_{2}}_k\}_{k\in\mathbb{Z}} \in \mathcal{C}$, uma concatenação de $\{\mathbf{c_{1}}_k\}_{k\in\mathbb{Z}}$ e $\{\mathbf{c_{2}}_k\}_{k\in\mathbb{Z}}$ no instante j é uma palavra código $\{(\mathbf{c_1} \wedge_j \mathbf{c_2})_k\}_{k\in\mathbb{Z}}$ definida como $(\mathbf{c_1} \wedge_j \mathbf{c_2})_k = \begin{cases} \mathbf{c_{1k}}|_{(-\infty,j)}; \ k < j \\ \mathbf{c_{2k}}|_{[j,+\infty)}; \ k \geq j. \end{cases}$

Se L é um inteiro maior do que um, então o código de grupo $\mathcal C$ é dito L-controlável quando para dadas duas palavras $\mathbf c_1$ e $\mathbf c_2$, existir uma terceira palavra $\mathbf c_3$ e um inteiro k tal que a concatenação $\mathbf c_1 \wedge_k \mathbf c_3 \wedge_{k+L} \mathbf c_2$ é uma palavra do código de grupo $\mathcal C$. [6], [5]. É dito que um número natural l>1 é o índice de controlabilidade do código $\mathcal C$ quando $l=min\{L\;;\; \mathcal C$ é L-controlável $\}$. Qualquer código de grupo que tenha uma aplicação prática em transmissão o armazenamento de dados precisa ter um índice de controlabilidade.

Definição 4: Um código de grupo $\mathcal C$ é dito controlável quando existir um inteiro l>1 tal que l é o índice de controle de $\mathcal C$. \circ

Em [1] tem sido provado que códigos invariantes no tempo podem ser gerados por um codificador convolucional generalizado. Conforme foi notado em [5], [10], considerando códigos convolucionais generalizados como sistemas dinâmicos os codificadores convolucionais generalizados são a **realização** destes códigos.

A seção de treliça é o conjunto de arestas $(s,\omega(u,s),\nu(u,s))\in S\times Y\times S$, e se pode provar que o conjunto de todas as arestas $B=\{(s,\omega(u,s),\nu(u,s))\ ;\ (u,s)\in U\boxtimes S\}$ é um grupo que é isomorfo a $U\boxtimes S$

O código de grupo $\mathcal C$ gerado pelo codificador da Definição 2 **não será controlável** se existirem dois estados s e s' tais que $s \neq \nu(u_n, \nu(u_{n-1}, \nu(u_{n-2}, \dots, \nu(u_2, \nu(u_1, s')) \dots)))$, para quaisquer sequência de $\{u_i\}_{i=1}^n$ entradas.

Exemplo 5: Para o caso do codificador binário do Exemplo 3, Figura 1, temos que o código resultante é controlável conforme pode ser visualizado na Figura 2. Para o caso do codificador do Exemplo 4. Por uma simples inspeção visual da Figura 3, podemos concluir que o código não é controlável. Mais ainda, podemos mostrar que para todas as outras extensões dos subgrupos normais $\{R_0, R_{\pi/2}, R_\pi, R_{3\pi/2}\}$, $\{R_0, R_\pi, H, V\}$, e $\{R_0, R_\pi, d_1, d_2\}$ não é possível construir grafos conexos, o que significa que não existe homomorfismos sobrejetores $\nu: D_8 = U \boxtimes S \to S$ tais que produzam codificadores controláveis. \circ

Dado um codificador da Definição 2, considere a família de subconjuntos $\{S_i\}$, do grupo dos estados S definidos recursivamente por;

$$S_{0} = \{e\}$$

$$S_{1} = \{\nu(u,s) ; u \in U, s \in S_{0}\}$$

$$S_{2} = \{\nu(u,s) ; u \in U, s \in S_{1}\}$$

$$\vdots \quad \vdots \quad \vdots$$

$$S_{i} = \{\nu(u,s) ; u \in U, s \in S_{i-1}\}, i \geq 0$$

$$\vdots = \vdots$$

$$(4)$$

Teorema 1: Algumas propriedades de $\{S_i\}$;

- 1) Cada S_i é um subgrupo de S
- 2) S_{i-1} é normal em S_i , para cada $i=1,2,\ldots$
- 3) Se $S_{i-1} = S_i$ então $S_i = S_{i+1}$.
- 4) Se o código é controlável então $S=S_k$ para algum $k\in\mathbb{N}.$

Prova.-

- 1) Considere $r,s \in S_i$, como ν é sobrejetor, existem (u_1,s_1) e (u_2,s_2) com $s_1,s_2 \in S_{i-1}$ e $u_1,u_2 \in U$ tal que $r=\nu(u_1,s_1)$ e $s=\nu(u_2,s_2)$. Daí, $sr=\nu(u_3,s_1s_2),\ u_3 \in U$ e assim $sr \in S_i$.
- 2) Claramente $S_0 \triangleleft S_1$. Para i > 1, suponha $S_{j-1} \triangleleft S_j$, para cada $j \le i$. Dados $s \in S_{i+1}$ e $r \in S_i$, considere $s.r.s^{-1} = \nu(u,s_1).\nu(v,r_1).\nu(u,s_1)^{-1}$, onde $s_1 \in S_i, r_1 \in S_{i-1}$, $u,v \in U$. Daí, $s.r.s^{-1} = \nu(u_1,r_1.s_1.r_1^{-1}) \in S_i$, pois $r_1.s_1.r_1^{-1} \in S_{i-1}$.
- 3) Dado $s \in S_{i+1}$ existem $r \in S_i$ e $u \in U$ tais que $\nu(u,r)=s$. Como $S_i=S_{i-1},\ r \in S_{i-1}$. Portanto $\nu(u,r)=s \in S_i$.
- 4) Em caso contrário, existem $s \in S_k$ e $s' \in S$ tais que $s' \neq \nu(u_n, \nu(u_{n-1}, \nu(u_{n-2}, \dots, \nu(u_2, \nu(u_1, s)) \dots)))$, para qualquer sequência $\{u_i\}_{i=1}^n$ de entradas.

O conjunto de transições $(s,\omega(u,s),\nu(u,s)) \in (S \times Y \times S)$ de um código de grupo invariante no tempo é um grafo orientado cujos conjunto de **vértices** é o grupo de estados S e as **arestas** é o conjunto das triplas $(s,\omega(u,s),\nu(u,s))$. Em cada tripla, o estado s é o ponto de partida da aresta, enquanto que $\nu(u,s)$ é o ponto final da aresta. Com a operação componente a componente $(s_1,\omega(u_1,s_1),\nu(u_1,s_1))*(s_2,\omega(u_2,s_2),\nu(u_2,s_2))=(s_1s_2,\omega((u_1,s_1)(u_2,s_2)),\nu((u_1,s_1)(u_2,s_2)))$ este conjunto de arestas orientadas, será denotada por E. Dentro da área da Teoria dos Códigos Corretores de Erros, as arestas são melhor conhecidas como transições e um exemplo de estas duas representações gráficas é mostrada nas Figuras 2 e 3 Desde que ω é injetora, o mapeamento $\Psi:U\boxtimes S\to E$ definido por,

$$\Psi(u,s) = (s, \omega(u,s), \nu(u,s)) \tag{5}$$

é um isomorfismo de grupos.

Lema 1: Considere o codificador ω , ν , e $U \boxtimes S$ da Definição 2. Suponha $U \boxtimes S$ não-abeliano. Sejam E^+ e E^- subconjuntos do grupo seção de treliça E tal que $E^+=\{(e,\omega(u,e),\nu(u,e)\;;\;u\in U\},\;$ as arestas saindo do estado neutro $\{e\}$, e $E^-=\{(s,\omega(u,s),\nu(u,s)\;;\;\nu(u,s)=e\},\;$ as arestas chegando no estado neutro $\{e\}$ então;

- 1) Ambos E^+ e E^- são subgrupos normais de E, com $|U|=|E^+|=|E^-|$
- 2) Os grupos quocientes $\frac{E}{E^+}$ e $\frac{E}{E^-}$ são isomorfos e $\frac{E}{E^+}\cong E$.
- 3) O número de arestas saindo/chegando de/em qualquer estado s é $|U|=|E^+|=|E^-|$

Prova.-

- 1) Imediato
- 2) O mapeamento de S a $\frac{E}{E^+}$ dado por $s\mapsto (s,\omega(u,s),\nu(u,s))E^+$, é um homomorfismo bijetor, daí $\frac{E}{E^+}\cong S$. Por outro lado, a projeção $(s,\omega(u,s),\nu(u,s))\mapsto \nu(u,s)$, de E a S, é um homomorfismo sobrejetor com kernel E^- , pelo Teorema fundamental dos homomorfismos, $\frac{E}{E^-}\cong S$
- 3) Considere a transição $t_0=(s,\omega(e,s),\nu(e,s))$ saindo de um estado qualquer s, e o coset $t_0E^+=t_0\{\Psi(u,e);u\in U\}=\{\Psi(u,s);u\in U\}$ que é o conjunto das transições saindo de s e que possui $|E^+|$ arestas. Analogamente considerando sE^- podemos mostrar que as transições chegando no estado s tem cardinalidade $|E^-|$.

Definição 5: Dado um grupo G, o subgrupo dos comutadores de G é definido por $G' = \{aba^{-1}b^{-1} : a, b \in G\}$

 $\begin{array}{llll} \textit{Definição 6:} & \text{Duas} & \text{arestas} & \text{diferentes} \\ (s_1, \omega(u_1, s_1), \nu(u_1, s_1)) & \text{e} & (s_2, \omega(u_2, s_2), \nu(u_2, s_2)) & \text{são} \\ \text{ditas paralelas se } s_1 &= s_2 & \text{e} & \nu(u_1, s_1) &= & \nu(u_2, s_2) & \text{e} \\ \omega(u_1, s_1) \neq \omega(u_2, s_2) & & & \end{array}$

Quando o grupo seção de treliça E não possui transições paralelas, qualquer arco pode ser representado, de maneira unívoca, por um par $(s,\nu(u,s))$, onde o estado s é o vértice de saída, e $\nu(u,s)$ é o vértice de chegada. O seguinte Lema é uma versão para codificadores homomorfos do Teorema 4 de [11]

Lema 2: Considere o codificador ω , ν , e $U \boxtimes S$ da Definição 2. Sejam H^+ e H^- subconjuntos de $U \boxtimes S$ tais que $H^+ = U \boxtimes \{e\} = \{(u,e) \; ; \; u \in U\}$ e $H^- = Ker(\nu) = \{(u,s) \; ; \; \nu(u,s) = e\}$, então;

- 1) $H^{+} \cong E^{+} \text{ e } H^{-} \cong E^{-},$
- 2) Ambos H^+ e H^- são subgrupos normais de $U \boxtimes S$,
- 3) Se $H^+ \cap H^- \neq \{(e,e)\}$ então a seção de treliça E possui transições paralelas,
- 4) Se $U\boxtimes S$ é não-abeliano e o grupo de estados S é abeliano então E possui transições paralelas

Prova.-

- 1) Temos $E^+=\Psi(H^+)$ e $E^+=\Psi(H^+)$, com Ψ definido pela equação (5).
- 2) Imediato.
- 3) Existe $(u,e) \in H^+ \cap H^-$, com $u \neq e$ tal que $\nu(u,e) = e$, pois Ψ de (5) é bijetor, $\omega(u,e) \neq e$. Portanto, as transições $(e,\omega(e,e),\nu(e,e))$ e $(e,\omega(u,e),\nu(u,e))$ são paralelas.
- 4) O fato do grupo dos estados S ser abeliano implica que ^G/_{H⁺} ≅ ^G/_{H⁻} são grupos quocientes abelianos. Então o subgrupo dos comutadores (U ⋈ S)' é um subgrupo de H⁺ ∩ H⁻ [8]. Mas U ⋈ S é não abeliano, então (U ⋈ S)' ≠ {(e, e)}. Portanto do anterior item 2, B tem transições paralelas.

IV. Codificador homomorfo definido em $\mathbb{Z}_p \boxtimes S$ com p primo

A pesar da sua aparente simplicidade, ainda não existe uma classificação geral para p-grupos. Somente os p-grupos com ordem menor ou igual a p^6 tem sido completamente classificados, quando $p \geq 3$, [12]. E para o caso p=2, uma classificação completa tem sido feita para grupos com ordem $\leq 2^8$, [13], [14]. Esta classificação dos 2-grupos tem sido implementado em alguns softwares como o GAP, [14], que inclui em sua biblioteca todos os grupos de ordem 256. Os grupos cíclicos $\mathbb{Z}_p = \{0,1,2,\ldots,p-1\}$, onde a operação de grupo é dada por i+j modulo p, são os exemplos mais simples de p-grupos. Os resultados acerca de codificadores homomorfos generalizados, envolvendo \mathbb{Z}_p como grupo de informação, são válidos para qualquer p-grupo independentemente da existência de sua classificação.

 $\begin{array}{c} \textit{Lema 3:} \; \text{Seja} \; \mathbb{Z}_p \boxtimes S \; \text{uma extensão que \'e um p-grupo. Se} \\ \mathbb{Z}_p \boxtimes S_0 \subset (\mathbb{Z}_p \boxtimes S)', \; \text{então} \; \mathbb{Z}_p \boxtimes S_i \subset (\mathbb{Z}_p \boxtimes S)', \; \text{e} \; S_i \subset S', \\ \text{para cada} \; i \geq 1. \end{array}$

Prova.- Desde que ν é um homomorfismo de grupos, a imagem $\nu(\mathbb{Z}_p\boxtimes S_0)=S_1$ esta contida no subgrupo de comutadores S' de S. Se $S_1=S_0$ o Lema se cumpre trivialmente, (Figura 4 (a)).Se $S_1\neq S_0$, pelo teorema longo dos comutadores de [15], existem $s\in (S_1-S_0)$ e $a_1,a_2,\ldots,a_t\in S$ tais que $s=a_1a_2\ldots a_ta_1^{-1}a_2^{-1}\ldots a_t^{-1}$. Agora considere $u\in \mathbb{Z}_p$ e $\{u_1,u_2,\ldots,u_t\}\subset \mathbb{Z}_p$ tal que $(u,s)=(u_1,a_1)(u_2,a_2)\ldots (u_t,a_t)(u_1,a_1)^{-1}(u_2,a_2)^{-1}\ldots (u_t,a_t)^{-1}$. temos $(u,s)\in (\mathbb{Z}_p\boxtimes S)'$ e $(u,s)\notin \mathbb{Z}_p\boxtimes S_0$. Portanto $\mathbb{Z}_p\boxtimes S_1\subset (\mathbb{Z}_p\boxtimes S)'$ (Figura 4 (b)).

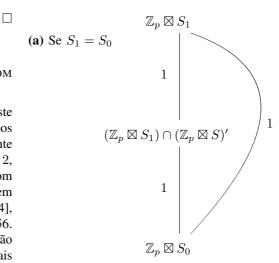
De novo, e desde que ν é um homomorfismo de grupos, $\nu(\mathbb{Z}_p\boxtimes S_1)=S_2$ esta contido no subgrupo dos comutadores S' de S. Então com argumentos muito semelhantes, podemos provar que se $S_2\neq S_1$, então $(\mathbb{Z}_p\boxtimes S_2)\subset (\mathbb{Z}_p\boxtimes S)'$ e $\nu(\mathbb{Z}_p\boxtimes S_2)=S_3\subset S'$. Continuando da mesma maneira teremos $(\mathbb{Z}_p\boxtimes S)'$ e $S_i\subset S'$, para qualquer $i\geq 1$.

Lema 4: Seja $\mathbb{Z}_p \boxtimes S$ uma extensão que é um p-grupo. Considere os subgrupos $\{S_i\}$ definidos na equação (4). Então, S_i é abeliano ou $S_i \subset S'$, para cada i.

Prova.- Desde que S_1 é cíclico e S_2 tem ordem menor ou igual a p^2 , temos que ambos S_1 e S_2 são abelianos. Então, seja $i \geq 2$ tal que S_1, S_2, \ldots, S_i são todos abelianos com S_{i+1} não abeliano. Então, existem $s_1, s_2 \in S_{i+1}$ tais que $s_1s_2 \neq s_2s_1$. Também deve existir $u_1, u_2 \in \mathbb{Z}_p$ e $r_1, r_2 \in S_i$, com $r_1r_2 = r_2r_1$, tal que $s_1 = \nu(u_1, r_1)$ e $s_2 = \nu(u_2, r_2)$. Então;

$$\begin{array}{l} s_1s_2\neq s_2s_1,\\ \nu(u_1,r_1).\nu(u_2,r_2)\neq \nu(u_2,r_2).\nu(u_1,r_1),\\ \nu((u_1,r_1).(u_2,r_2).(u_1,r_1)^{-1}.(u_2,r_2)^{-1})\neq e\\ \nu(u',r_1r_2r_1^{-1}r_2^{-1})\neq e, \text{ para algum } u'\in\mathbb{Z}_p\\ \nu(u',e)\neq e \end{array}$$

Daí, $u' \neq e$ e $(u',e) \in (\mathbb{Z}_p \boxtimes S)' \cap (\mathbb{Z}_p \boxtimes S_0)$. Desde que a ordem de $\mathbb{Z}_p \boxtimes S_0$ é p, temos que $\mathbb{Z}_p \boxtimes S_0 \subset (\mathbb{Z}_p \boxtimes S)'$.



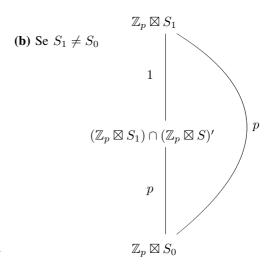


Fig. 4. A interseção $(\mathbb{Z}_p \boxtimes S_1) \cap (\mathbb{Z}_p \boxtimes S)'$ quando $\mathbb{Z}_p \boxtimes S_0 \subset (\mathbb{Z}_p \boxtimes S)'$

Pelo lema 3, $(\mathbb{Z}_p \boxtimes S_i) \subset (\mathbb{Z}_p \boxtimes S)'$ e $S_i \subset S'$, para cada i. Portanto S_i é um grupo abeliano ou $S_i \subset S'$.

Suponha agora que não temos informação acerca da ordem de $\mathbb{Z}_p \boxtimes S$, isto é, não possamos usar a hipótese de $\mathbb{Z}_p \boxtimes S$ ser um p-grupo. Neste caso temos que S deve ser um grupo finito e genérico. Trabalhando, outra vez, com a família $\{S_i\}$ definida na equação (4) mostraremos que quando $U = \mathbb{Z}_p$, cada S_i deve ser um p-grupo. Em esta direção começamos mostrando um resultado sobre um importante subgrupo normal do grupos dos estados S. Este subgrupo é o conjunto dos estados de partida das transições que chegam no estado neutro e. Ou de uma maneira mais formal é o conjunto de estados resultantes da segunda projeção sobre o kernel de ν ;

$$S_d = \{ s \in S ; \ \nu(u, s) = e \text{ for some } u \in \mathbb{Z}_p \}$$
 (6)

Notemos que este subgrupo normal também é isomorfo com \mathbb{Z}_p e;

Lema 5: Considere o codificador ν , ω , e $\mathbb{Z}_p \boxtimes S$ da Definição 2. Além disso considere o subgrupo S_d definido na equação (6), então;

- 1) Se existir $s \neq e$ e $s \in S_d \cap S_i$ então $S_d \subset S_i$, para $i \geq 0$
- 2) Se $S_d \subset S_i$ então $\nu(\mathbb{Z}_p, S_d) \subset S_i$, para $i \geq 0$.

Prova.

- 1) Desde que $p \in S_d \cap S_i$, então $\{s, s^2, \dots, s^{p-1}, s^p = e\} \subset S_d \cap S_i$.
- 2) Dado $r \neq e$ tal que $r \in S_i \cap S_d$ suponha que existe algum $u \in \mathbb{Z}_p$ tal que $\nu(u,r) = s \notin S_i$. Para o subgrupo $S_1 = \{s_0, s_1 = \nu(u_1, e), s_2 = \nu(u_2, e), \ldots, s_{p-1} = \nu(u_{p-1}, e)\}$, temos que sS_1 é um coset onde cada elemento é $\nu(u, r)\nu(u_i, e) = \nu(u', r)$, para algum $u' \in \mathbb{Z}_p$. Daí $sS_1 = \{\nu(\mathbb{Z}_p, r)\}$ com $sS_1 \cap S_i = \emptyset$. Mas, desde que $r \in S_d$, existe pelo menos $u_0 \in \mathbb{Z}_p$ tal que $\nu(u_0, r) = e$ em contradição com $sS_1 \cap S_i = \emptyset$. \square

Teorema 2: Considere o codificador ν , ω , e $\mathbb{Z}_p \boxtimes S$ da Definição 2, onde p é primo. Então cada S_i de (4) deve ser um p-grupo

Por indução sobre i. Para i=1 temos $[S_1:S_0]=p$ ou $[S_1:S_0]=1$. Agora suponha que existe um número natural k>1 tal que $[S_i:S_{i-1}]=p$, para cada $i\leq k$. Temos que o subgrupo S_k tem p^k elementos e cada um dos seus elementos possui ordem $p^i,\ i\leq k$. Se $p>[S_{k+1}:S_k]>1$ então $[S_{k+1}:S_k]=m=q_1^{r_1}q_2^{r_2}\dots q_t^{r_t}$, onde cada q_i é um primo com $q_i< p$. Deve existir um elemento $s\in (S_{k+1}-S_k)$ tal que $s^{q_1}=e$.

Sejam $u\in\mathbb{Z}_p$ e $r\in S_k$ tais que $\nu(u,r)=s$, então $\nu(u_1,r^{q_1})=e$. Daí $r^{q_1}\in S_d\cap S_k$.

Se $r \neq e$ então $r^{q_1} \neq e$, pois $q_1 < p$. Pelo Lema 5, $S_d \subset S_k$ e $\nu(u,r) = s \in S_k$, uma contradição.

Se r=e então $\nu(u,r)=s\in S_1\subset S_k$, também uma contradição.

Teorema 3: Considere o codificador ν , ω , e $\mathbb{Z}_p \boxtimes S$ da Definição 2, onde $\mathbb{Z}_p \boxtimes S$ é não abeliano e p é um primo positivo, então

- 1) Se S é abeliano então o código tem transições paralelas.
- 2) Se S é não abeliano então o código é não controlável

Prova.

- 1) Pelo Lema 2
- 2) Se S não é um p-grupo então pelo Teorema 2 o código resultante é não-controlável. Se S é um p-grupo, então $\mathbb{Z}_p \boxtimes S$ é também um p-grupo, então pelo Lema 4 S é abeliano, uma contradição.

V. Conclusões

Mostramos que codificadores convolucionais generalizados definidos sobre extensões não-abelianas $Z_p\boxtimes S$, p primo não produzem bons códigos. Fica pendente obter resultados sobre extensões não abelianas $\mathbb{Z}_{p^n}\boxtimes S$ ou $(\mathbb{Z}_p)^n\boxtimes S$.

REFERÊNCIAS

- [1] G.D. Forney and M.D. Trott. The dynamics of group codes; state spaces, trellis diagrams and canonical encoders. IT 39(5):1491–1513, 1993.
- [2] Shu Lin and Daniel J. Costello. Error Control Coding: Fundamentals and Applications. Prentice-Hall, New Jersey, 1983.
- [3] Gottfried Ungerboeck. Channel coding with multilevel-phase signals. IEEE Transactions on Information Theory, 28:55–67, 1982.
- [4] H.A. Loeliger. Signal sets matched to groups. IEEE Trans. Inform. Theory, 37:1675–1682, November 1991.

- [5] H. A. Loeliger and T. Mittelholzer. Convolutional codes over groups. IEEE Transactions on Information Theory, 42:1659–1687, 1996.
- [6] Douglas Lind and Brian Marcus. An Introduction to Symbolic Dynamics and Coding. Cambridge University Press, New York, 1995.
- [7] Jan C. Willems. Models for dynamics. In H. O. Walther U. Kirchgraber, editor, *Dynamics Reported*, volume 2, pages 171–269. Wiley and Teubner. 1989.
- [8] Joseph J. Rotman. An Introduction to the Theory of the Groups. Springer Verlag, New York, fourth edition, 1995.
- [9] Marshall Hall. The Theory of Groups. Mac Millan, New York, 1959.
- [10] Fagnani F. and Zampieri S. Minimal syndrome formers for group codes. *IEEE Transactions on Information Theory*, 45(01):3–31, 1999.
- [11] David G. Forney. On the hamming distance properties of group codes. *IEEE Transactions on Information Theory*, 38:1797–1801, 1992.
- [12] R James. The groups of order p^6 (p an odd order prime). *Math. Comput.*, 34:613–637, 1980.
- [13] E. A. O'Brien. The groups of order 256. *Journal of Algebra*, 143:219–235, 1991.
 [14] The CAR Group. CAR. Groups Algorithms and Programming Various.
- [14] The GAP Group. GAP Groups, Algorithms, and Programming, Version 4.4, 2005. (http://www.gap-system.org).
- [15] Yff P. On k-conjugacy in a group. Proc. Edimburg Math. Soc., 2:14:1–4, 1064/65