
XXIX SIMPÓSIO BRASILEIRO DE TELECOMUNICAÇÕES - SBrT’11, 02-05 DE OUTUBRO DE 2011, CURITIBA, PR

Enhanced Model Order Estimation

in Colored Noise Scenarios via Noise Prewhitening
João Paulo Carvalho Lustosa da Costa, Florian Roemer and Rafael Timóteo de Sousa Jr.

Resumo—Cenários com ruı́do colorido são freqüentes em
aplicações de processamento de sinais. Na presença do ruı́do
colorido, a maior parte das técnicas de seleção da ordem do
modelo são severamente degradadas, pois elas assumem o ruı́do
como sendo branco.

Neste artigo, nós propomos uma técnica para seleção da ordem
do modelo para cenários com ruı́do colorido. Na técnica proposta,
nós combinamos o Modified Exponential Fitting Test (M-EFT)
com a etapa de prewhitening. A partir da incorporação do
prewhitening, a suposição necessária para o M-EFT que o perfil
dos autovalores de ruı́do podem ser aproximados a uma curva
exponencial torna-se novamente válida. Nós mostramos que o
M-EFT combinado com o prewhitening alcança a mais elevada
probabilidade de correta detecção da ordem do modelo para
cenários com ruı́do colorido em comparação ao estado da arte
das técnicas de seleção da ordem do modelo.

Palavras-Chave—Seleção da ordem do modelo, Prewhitening,
Modified Exponential Fitting Test.

Abstract—Colored noise scenarios are frequent in signal pro-
cessing applications. In the presence of colored noise, most model
order schemes are severely degraded, since they assume white
noise.

In this paper, we propose a model order selection scheme for
colored noise. In our proposed scheme, we combine the Modified
Exponential Fitting Test (M-EFT) with the prewhitening step. By
incorporating the prewhitening step, the assumption necessary
for the M-EFT that the noise eigenvalue profile can be approx-
imated by an exponential curve becomes valid. We show that
the M-EFT combined with the prewhitening step achieves a very
high probability of correct model order detection for colored
noise scenarios in comparison with the state-of-the-art model
order selection schemes.

Keywords—Model Order Selection, Prewhitening, Modified
Exponential Fitting Test.

I. INTRODUCTION

The estimation of the number of main components, also

known as model order selection, is required in several scien-

tific applications, such as psychometrics [2], chemistry [1],

radar [13], sonar [18], communications, medical imaging,

and channel modeling [5], [17]. For most applications the

assumption that the noise is uncorrelated may not be valid. For

instance, the underwater noise components of a sonar system

are in general spatially correlated [18], noise sources in audio

applications are spatially non-uniformly separated [9], mutual

coupling between sensors and oversampling also produce a

spatial and temporal noise correlation, respectively.
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For colored noise scenarios, the parameter estimation [6]

without prewhitening can be severely degraded. Similar degra-

dation happens for model order selection schemes in such

scenarios [13]. Moreover, usually when the model order is

estimated, the statistics of the colored noise are not taken into

account. However, in some applications, an estimate of the

noise covariance matrix Rww can be available by collecting

measurement samples in the absence of signal components.

For instance, in speech processing applications, the noise can

be recorded in speechless frames [9].

As shown in [5], [4], [3], [7], for white noise scenarios,

the modified exponential fitting test (M-EFT) outperforms the

state-of-the-art model order selection techniques independently

of the array size. However, the M-EFT is restricted to white

noise applications. In addition, for multidimensional scenarios,

it is frequent to stack all the dimensions of the tensor into

only one dimension such that we have a highly structured

matrix, where one dimension is much greater than the other

dimension. For such highly structured matrices the M-EFT

provides a huge gain in comparison to the state-of-the-art

model order selection schemes [5], [4], [3]. Therefore, the

multidimensional gain of the R-dimensional exponential fit-

ting test (R-D EFT) is only possible since the R-D EFT

is based on the M-EFT. It is also known in the literature

that for colored noise scenarios with severe correlation, the

RADOI outperforms the state-of-the-art model order selection

techniques [13], [3].

In this paper, we propose to extend the M-EFT for colored

noise scenarios by taking into account noise samples without

signal components. With the statistics of the colored noise,

the data can be prewhitened through stochastic prewhiten-

ing schemes [9], [8], [14]. Applying the M-EFT on the

prewhitened data high probabilities of correct detection of the

model order are achievable.

The remainder of this paper is organized as follows. After

reviewing the notation in Section II, the data model is pre-

sented in Section III. Then the modified Exponential Fitting

Test (M-EFT) in conjunction with the stochastic prewhitening

is proposed in Section IV. The simulation results in Section V

confirm the improved performance of M-EFT in conjunction

with the stochastic prewhitening. Conclusions are drawn in

Section VI.

II. NOTATION

In order to facilitate the distinction between scalars and

matrices, the following notation is used: scalars are denoted as

italic letters (a, b, . . . ,A,B, . . . , α, β, . . .), column vectors as

lower-case bold-face letters (a,b, . . .) and matrices as bold-
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face capitals (A,B, . . .). Lower-order parts are consistently

named: the (i, j)-element of the matrix A, is denoted as ai,j .

We use the superscripts T,H ,−1 ,+ and ∗ for transposition,

Hermitian transposition, matrix inversion, the Moore-Penrose

pseudo inverse of matrices, and complex conjugation, respec-

tively.

III. DATA MODEL

We consider a linear mixture of d time series si(n) where
i = 1, . . . , d and n = 1, . . . ,N with mixing coefficients ai(m)
where m = 1, . . . ,M . Additionally, our measurements are

contaminated by colored noise samples w
(c)
m (n). Therefore,

the measured samples xm(n) are modeled by

xm(n) = d

∑
i=1

ai(m)si(n) +w(c)
m (n). (1)

The scalars si(n), whose variance is σ2
s , and w

(c)
m (n), whose

variance is σ2
w, model the source symbols and the additive cor-

related noise component inherent in the measurement process,

respectively. In the context of array signal processing, each of

scalar ai(m) represents the elements of the mixing matrix A,

and the dimensions M and N can be the number of sensors

and the number of subsequent time instants, respectively.

In matrix form, we can represent (1) in the following way

X = A ⋅ S + W
(c), (2)

where A ∈ C
M×d contains the mixing vectors ai ∈ C

M×1

for each of the d sources, S ∈ C
d×N contains the symbols

si(n), and X is corrupted by some correlated noise matrix

W
(c) ∈ C

M×N . We can model the noise W
(c)

as W
(c) =

L ⋅ W , where L correlates the white noise matrix W . The

noise elements wm(n) of W are modeled as ZMCSCG

(zero-mean circularly-symmetric complex Gaussian) random

variables. Note that the ranks of A and S are equal to the

model order d. Therefore, rank of A ⋅ S is equal to d. The

rank of X is α = min {M,N} ≥ d. Therefore, our goal is

given X to determine d.

The covariance matrix of the data model (2) is given by

Rxx = E{X ⋅ X
H} (3)

= A ⋅ Rss ⋅ A
H

+ σ2

w ⋅ Rww,

where Rss is the signal covariance matrix, Rww is the noise

covariance matrix, such that tr(Rww) = M , and E{⋅} is

the expected value operator. In practice, Rxx in (3) can be

estimated from a finite set of realizations via

R̂xx = 1

N
⋅ X ⋅ X

H. (4)

In the absence of signals, i.e., X = W
(c) ∈ C

M×Nl , the noise

covariance matrix Rww can be estimated by using (4) and

by replacing N by Nl. Note that we assume that Nl samples

without signal components are available in order to estimate

the noise statistics.

IV. MODIFIED EXPONENTIAL FITTING TEST WITH

PREWHITENING (M-EFT PWT)

Some model order selection techniques such as AIC and

MDL assume that all noise eigenvalues are identical. This

assumption is only fulfilled asymptotically for N → ∞ and

therefore implicitly requires N >> M . On the other hand, the

Exponential Fitting Test (EFT) [12] has been proposed for sce-

narios where the number of independent temporal snapshots N

is small. Basically the EFT [12] is based on the observation

that, in a white Gaussian noise-only case, the profile of the

ordered eigenvalues can be well approximated by a decaying

exponential. For N > M , the EFT outperforms the state-of-

the-art model order selection schemes in the literature [7].

For N < M , the EFT is outperformed by several model

order selection techniques in the literature [7]. The Modified

Exponential Fitting Test (M-EFT) [5], [4], [7] has been pro-

posed for any values of M and N . By applying the M-EFT, a

very high probability of correct detection is returned for any

white noise scenario. Due to the impressive results of the M-

EFT for white noise scenarios, an extension of M-EFT for

colored noise scenarios is very appealing.

For severely colored noise scenarios, the assumption that the

noise eigenvalues fit an exponential profile is not valid. Hence,

we propose here the M-EFT in conjunction with a stochastic

noise prewhitening (M-EFT PWT) as an attractive model order

selection scheme, since the prewhitened noise eigenvalues fit

again an exponential curve.

Similarly to the M-EFT, the M-EFT PWT is composed of

two steps: the preprocessing step and the model order esti-

mation step. In the preprocessing step in Subsection IV-A, we

compute the thresholds ηP and also the prewhitening matrix L,

while in the model order estimation step in Subsection IV-B,

the thresholds ηP and the prewhitening matrix L are used to

estimate the model order.

A. M-EFT PWT: Preprocessing Step

This preprocessing step assumes that no signal components

are present in our measurements. Therefore, similarly to (4),

an estimate of the covariance noise matrix R̂ww is given by

R̂ww = 1

Nl

⋅ W
(c)′

⋅ (W (c)′)H

, (5)

where W
(c)′ are the noise samples without signal compo-

nents.

By applying the Cholesky decomposition of R̂ww, we

obtain the prewhitening matrix L as shown

R̂ww = L ⋅ L
H. (6)

Once L is obtained the colored noise samples can be

prewhitened as follows.

W
′ = L

−1
W

(c)′, (7)

where W
′ ∈ C

M×N are the prewhitened noise samples with

the same dimensions of X . Since the noise samples W
′

are not colored, we can use them to compute the threshold

coefficients ηP necessary for the M-EFT. Note that L ∈ C
M×M

is full rank. Therefore, we assume that Nl is greater than M .
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Let λi be the i-th eigenvalue of the sample covariance

matrix given by R̂
′

ww = 1

N
W

′
⋅ (W ′)H.1 By assuming the

exponential model, we can express each eigenvalue in the

following fashion [5]

E{λi} = E{λ1} ⋅ q(α,β)i−1, (8)

where we assume that the eigenvalues are sorted so that λ1 is

the largest. The term q(α,β) is defined as
q(α,β) = (9)

exp

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−

¿ÁÁÀ 30

α2
+ 2

−

√
900

(α2
+ 2)2 −

720α

β(α4
+ α2

− 2)
⎫⎪⎪⎪⎬⎪⎪⎪⎭

,

where α = min(M,N) and β = max(M,N) [5], [4], [7].

The predicted noise eigenvalue can be estimated by taking the

previous eigenvalues into account as follows [5]

λ̂α−P = (P + 1) 1 − q(P + 1, β)
1 − q(P + 1, β)P+1

σ̂2 (10)

σ̂2 = 1

P

P−1

∑
i=0

λα−i, (11)

where σ̂2 is the estimated noise power using the previous

eigenvalues.

To decide whether the (α − P )-th noise eigenvalue λα−P

fits to the exponential profile we measure its relative distance

to the predicted eigenvalue λ̂α−P . By setting a threshold ηP

we can formulate the following hypotheses:

HP+1 ∶ λα−P is a noise EV ,
λα−P − λ̂α−P

λ̂α−P

≤ ηP

H̄P+1 ∶ λα−P is a signal EV ,
λα−P − λ̂α−P

λ̂α−P

> ηP .

(12)

By repeating the hypotheses for several realizations, we obtain

the mapping between a set of ηP and the probability of false

alarm. Some practical values for the probability of false alarm

are between 10−3 and 10−6. Since M and N are usually

constant, the preprocessing step is performed only once.

B. M-EFT PWT: Model Order Estimation

In this step, both signals and noise are present and we desire

to estimate the model order d. Note that once the prewhitening

matrix L and the set of ηP are computed, we can apply

them several times to estimate the model order d. Hence, the

preprocessing step is performed only once.

First we can compute the prewhitened covariance matrix of

X as follows

R̂
′

xx = L
−1

⋅ R̂xx ⋅ L
−H. (13)

Note that Rxx can be replaced by its covariance model given

in (3).

R
′
xx = L

−1
⋅ A ⋅ Rss ⋅ A

H
L
−H

+ R
′
ww. (14)

1For M >> N , the computational complexity of the eigenvalue decom-
position (EVD) of Rxx ∈ C

M×M is much greater than the computatonal
complexity of the the singular value decomposition (SVD) of X ∈ C

M×N .

Note that the model order d, which is given by the rank L
−1

⋅

A ⋅ Rss ⋅ A
H
L
−H

remains equal to d.

By using the eigenvalues of R
′
xx and the threshold coeffi-

cients ηP in the hypotheses in (12), we can estimate the model

order d.

V. SIMULATION RESULTS

In this section we present simulation results demonstrating

the performance of the M-EFT in conjunction with stochastic

prewhitening (M-EFT PWT). Following the CFAR approach,

the probability of false alarm is set to a constant for all signal

to noise ratios. For simplicity, we set Pfa(P ) = 10−6 for all

values of P .

We also assume that the noise samples are zero mean cir-

cularly symmetric complex Gaussian distributed with variance

equal to σ2
n. The noise covariance matrix for M = 3 is given

by

Rww =
⎡⎢⎢⎢⎢⎢⎣

1 ρ∗ (ρ∗)2
ρ 1 ρ∗

ρ2 ρ 1

⎤⎥⎥⎥⎥⎥⎦
, (15)

where ρ is the noise correlation coefficient.

The source symbols as well as the mixing matrix elements

are zero mean i.i.d. circularly symmetric complex Gaussian

distributed. The power of the source symbols is equal to σ2

s

for all the sources. The SNR at the receiver can then be defined

as

SNR = 10 ⋅ log10 (σ2

s

σ2
n

) . (16)

The variance of the mixing matrix elements ai(m) is one and
ai(m) varies for each realization.

In the simulations, we consider the following state-of-

the-art model order selection techniques: Akaike’s informa-

tion theoretic criterion (AIC) [16], the Minimum Description

Length (MDL) criterion [16], Efficient Detection Criterion

(EDC) [19], RADOI [13], KN [10]2, M-EFT [5], [4], [7],

EFT [12], Stein’s Unbiased Risk Estimate (SURE) [15],

and Nadakuditi Edelman Model Order (NEMO) selection

scheme [11].

Figure 1 depicts a scenario where d = 4 sources are

mixed by a matrix A ∈ C
M×d, where M = 70, ρ = 0.9

and we collect N = 10 snapshots. We can clearly see that

the M-EFT PWT outperforms all state-of-the-art model order

selection techniques. Note that since M > N , the gap between

M-EFT and all the other schemes is really significant. In

addition, the M-EFT without prewhitening fails completely,

while the RADOI without prewhitening outperforms RADOI

with prewhitening (RADOI PWT). Such behavior of RADOI

scheme is due to the fact that RADOI expression already takes

into account the colored noise. For all the other model order

schemes, we also incorporate the prewhitening step in order

to have a fair comparison. Otherwise they would also fail.

In Figure 2, we verify the performance of the state-of-the-

art techniques for low correlation levels, where ρ = 0.2. For

2The KN model order selection program can be downloaded at
http://www.wisdom.weizmann.ac.il/∼nadler/.
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Fig. 1

PROBABILITY OF DETECTION VS. SNR FOR M = 70 COMPARING SOME

STATE-OF-THE-ART MODEL ORDER SELECTION TECHNIQUES. THE

NUMBER OF SNAPSHOTSN IS SET TO 8 AND THE NUMBER OF SOURCES

d = 4. THE CORRELATION FACTOR ρ IS SET TO 0.9. THE NUMBER OF

SAMPLES WITHOUT SIGNAL COMPONENTS Nl IS SET TO 1000.

such colored noise scenarios, the M-EFT is the best approach

and no information about the noise is necessary.

In Figure 3, we observe the effect of varying the noise

correlation, while in Figure 4, we observe the effect of varying

the number of snapshots Nl without signal components. The

M-EFT outperforms all the other approaches in both cases.

Note that the error of the estimation of the noise statistics

depends on the size of Nl. Therefore, since in Figure 4,

for Nl = 102 to 105, the M-EFT PWT still outperforms

significantly all the other MOS schemes, it implies that our

scheme is also robust against errors in the estimation of the

noise statistics.

VI. CONCLUSIONS

In this paper, we propose the M-EFT combined with the

stochastic noise prewhitening (M-EFT PWT) for the estima-

tion of the model order in colored noise scenarios. We modify

the preprocessing step and the model order estimation step of

the M-EFT by taking into account the colored noise statistics.

As shown in this paper, for applications where the colored

noise is present and where samples without signal components

are available, our proposed M-EFT PWT outperforms the

state-of-the-art model order selection techniques.
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