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Abstract— In this paper, we propose and analyze the perfor-
mance of an adaptative impairment aware routing algorithm
(IA-RWA) for all-optical networks based on a bio-inspired
optimization technique, called Ant Colony Optimization (ACO).
We propose a novel heuristic to be used by the routing algorithm
combining the physical distance and the wavelengths availability
of the optical links. These two metrics are weighted in a training
stage. The algorithm was trained by another optimization techni-
que based on swarm collective intelligence, called Particle Swarm
Optimization (PSO). We show that our IA-RWA algorithm can
learn during the training stage and adapts itself to the network
conditions, performing equally or even better than the classical
routing algorithms.

Keywords— RWA algorithms, All-Optical Networks, Ant Co-
lony Optimization, Particle Swarm Optimization.

I. I NTRODUCTION

The ever increasing demand on Internet data traffic has been
the driving force for the recent developments in the telecom-
munication industry. The deployment of optical fibers by using
wavelength division multiplexing (WDM) has been considered
as the most suitable and reliable technology for long haul
communication systems. Furthermore, the development of
optical amplifiers and other devices such as optical add/drop
multiplexers (OADMs) and optical cross-connects (OXCs)
have enabled higher capacity optical links and network-level
abilities [1] [2] [3].

Optical networks can be either opaque, translucent or trans-
parent (all-optical). In opaque networks every node regenerates
the signal (i.e. conversion from optical domain to electrical
domain and back to optical domain) to accomplish its func-
tions. These networks have high costs due to the wavelength
transponders and electronic circuitry. In opaque networks, as
the regeneration process occurs at each intermediate node,the
accumulation of optical signal to noise ratio (OSNR) degrada-
tion due to physical impairments is much less important. On
the other hand, in transparent networks there is no regeneration
along the lightpath, i.e., the signal remains in the optical
domain from source to destination nodes. Since the network
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is bit-rate, protocol and format independent, it is easier to
upgrade and it can support different types of traffic, being more
suitable for modern demands. However, control issues must
be included in the optical layer of the network to accomplish
the switching of lightpaths and other functions with the proper
Quality of Service (QoS). Moreover, these automatic switched
optical networks (ASON) suffer fromOSNRdegradation due
to the physical impairments, since the signal remains in the
optical domain, accumulating noise as it propagates through
several devices (fiber segments, EDFAs, OADMs, OXCs,
MUX, DEMUX, etc.) [1][2][3]. In translucent networks, there
are some islands of transparency.

One of the major issues that can affect the transmission
performance in all-optical networks is the routing and wa-
velength assignment (RWA) algorithm. The dynamic RWA
problem involves algorithms for efficient route selection and
wavelength assignment, including signaling mechanisms to
request and establish lightpaths between source and destination
nodes, and upgrade the network status when the connections
are established and terminated, targeting at a minimum call
blocking probability [4][5]. Several papers about opticalrou-
ting algorithms assume that all routes have adequate signal
quality. This is not always the case, especially for large and
heavily loaded networks. Although every point-to-point link
in a network is designed to provide an adequate signal quality
at its output, the dynamics of the network imposes drastic
changes in optical parameters over the time. Classical routing
algorithms based on distance (shortest path), hop count and
least resistance weigth (LRW) do not take into account the
transmission impairments.

Some papers have proposed to use computational intelli-
gence techniques to solve the routing problem in communica-
tions networks using Hopfield Neural Networks [6], Genetic
Algorithms [7], Particle Swarm Optimization [8] and Ant
Colony Optimization [9].

Recently, some papers have proposed to solve the RWA
problem in all-optical networks using Ant Colony Optimiza-
tion [10][11][12][13], which will be commented in Section II.

In this paper, we propose and analyze the performance of
an adaptive impairment aware routing algorithm (IA-RWA) for
transparent optical networks based on Ant Colony Optimiza-
tion (ACO). We propose a novel heuristic to be considered by
the ants for the route calculation. It is based on optical links
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physical distance and the optical link wavelengths availability.
The algorithm weights these physical impairments in a train-
ning stage using another optimization technique called Particle
Swarm Optimization (PSO). We compare the performance of
our proposal to the ACO approach based on distance applied
for routing in communications networks and to other network-
layer routing algorithms. We show that our IA-RWA algorithm
can learn during the training stage and adapts itself to the
network conditions, performing equally or even better thanthe
classical routing algorithms, in terms of blocking probability.

This paper is structured as follows. Section II describes
the routing algorithm based on ACO and its parameters.
Section III presents the PSO algorithm used to obtain the best
set of parameters used by the routing algorithm. Section IV
presents the physical layer model and the experimental setup
used in the simulations. Section V presents the results. In
Section VI we give our conclusions.

II. IA-RWA A LGORITHM BASED ON ANT COLONY

OPTIMIZATION

Although an ant is a simple creature, collectively ants
can present a useful behavior for performing tasks such as
discovering the shortest path between a food source and the
nest [9]. The colony shares information through Stigmergy,
that is a form of indirect communication used by ants in
nature by laying a chemical substance called pheromone. The
pheromone induces changes in the environment, which can be
sensed by other ants.

An artificial ant can be implemented as a simple procedure
that simulates the laying and sensing of pheromone. Each ant
is originated in the source nodes and explores the network
trying to find the destination noded. Basically, the ants
are guided by the pheromone and should have a predefined
lifetime (Tlife) to find their destination.Tlife quantify how
long an ant remains moving along the network. An ant needs
to be able to find the end of the path untilTlife is reached.
This preset lifetime helps to avoid loops. When the ant finds
the destination node, it returns to the source node in the reverse
direction by adding pheromone to the link. In this paper the
pheromone deposited on the routing tables by an ant along
the nodes included in the ligthpath is unitary. Furthermore,
the colony consists of a data structure that generates ants
and records the nodes that they pass. In our approach we
periodically generate a group ofnants ants with a frequencyf
and the simulation has a total duration ofTtotal. After Ttotal,
the pheromone table state indicates the best route.

However, this operation alone can lead to a stagnation
process. One of the approaches used to mitigate stagnation
is to configure ants so that they do not solely rely on sensing
pheromone. For this purpose, one can set a mixed probability
function for an ant to decide between different links. This can
be done using both pheromone concentration and a heuristic
function [14]. For example, an ant selects a link probabilisti-
cally using a composition function of the cost of the link and
the pheromone left by previous ants. One common approach
to this function is presented in equation 1, wherePij is the
weight used by the ant to choose the next node to visit,Phij

is the pheromone quantity in the linkij, dij is the physical
length of the linkij and d

′

ij is the normalized length of the
link ij [9]. In this case, the ants choose the path that presents
the higherPij .

Pij = Rand()
Phα

ij

d
′β
ij

, (1)

whereα andβ are constants that weight the pheromone and
the network parameter used as cost function.Rand() is a
random number generated by a uniform distribution in the
interval [0,1].

We also used a technique called evaporation, where in each
iteration the pheromone values at all the routing tables are
reduced by a predefined factorδ. This parameter describes
the ratio of pheromone that evaporates in a link per iteration.
δ is used to prevent pheromone concentration in optimal
paths from being excessively high. A high concentration of
pheromone in some links can excessively polarize the ants.
This can affect the ability to explore other routes in the case
of network failures. Pavani and Waldman [13] used other
intersting technique to perform this target by reinforcingthe
paths found by the ants.

Some efforts have been made to solve the RWA problem
using Ant Colony Optimization. Ngo et al. [10] adapted
the algorithm to WDM optical networks. Pavani and Wald-
man [11] proposed a heuristic to induce the ants based on
the difference between the maximum allowed power on the
link and the total active power on the link. In other paper,
Pavani and Waldman [12] proposed two different distributed
strategies for provisioning lightpaths in the presence of optical
physical-layer impairments in GMPLS networks. Pavani et
al. [13] also showed that ACO can be used for restoration
in wavelength-routed optical networks. In [13], a heuristic
based on the link wavelength availability of the network links
(∆λij ) is introduced. However, they do not consider this
metric simultaneously with the distance to induce the ants.

The link wavelength availability of the network links (∆λij)
is defined as:

∆λij =
λavailable

ij

λtotal
ij

, (2)

whereλavailable
ij is the number of available wavelengths in the

link ij and λtotal
ij is the total number of wavelengths in the

link ij.
In this paper we propose to combine the heuristics presented

in [9] and [13]. The equation used to guide the ants is given
by 3.

Pij = Rand()
Phα

ij∆λ
γ
ij

d
′β
ij

. (3)

where∆λij is the link wavelength availability of the network
link ij.

III. PSO FOR TRAINING THE RWA ALGORITHM BASED ON

ACO

In order to find the best parametersα, β and γ, we
used another optimization technique called Particle Swarm
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Optimization (PSO). We call this process as the training phase,
since the IA-RWA algorithm runs several times for different
values of the parameters, to find their best values. This process
occurs offline, which means that it occurs before the network
operation. The online routing processes occurs with the use
of ACO and equation 3, with the parameters found by PSO.
Martins-Filho et al [8] have also used PSO to find the best
parameters for a cost function of a IRWA algorithm. However,
their IA-RWA algorithm does not use ACO to find the routes.

Particle Swarm Optimization is a bio-inspired technique
proposed by Kennedy and Eberhart in 1995. We used the PSO
recommended by Bratton and Kennedy [15], following the
pseudo-code proposed therein. The search space dimensions
number was defined according to the used equation. Particles
velocities were updated using the constriction factor appro-
ach [16], to avoid overflight and to improve performance. We
usedk equal to 1, acceleration constants (c1 andc2) equals to
2.05 for both, observing the constriction factor condition of
Φ > 4, for overflight free operation. The values for these
parameters were previously studied in [16] and guarantee
stable operation.

We used theLbest swarm model with ring topology [15]
because this is the recommended model for multimodal
problems. 21 particles were used in all simulations. This
swarm size respects the standard defined by Bratton and
Kennedy [15].

For our simulations we observed that 150 iterations are
sufficient for the algorithm to converge. This can be justified
by the fact that the search space is not too large. Therefore,
this number of iterations was established as the training
phase period. Particles do RWA simulations as described in
section IV. For each scenario, we repeat five times the training
process. The blocking probabilities were calculated as the
average of the simulation results.

Each ant has the lifetime configured toTlife = 2N ,
whereN is the number of network nodes. The influence of
the parameterTlife was widely studied in [17]. The value
Tlife = 2N is the minimal value to guarantee that the colony
has sufficient time to find optimal solutions with low error
rates.

Colonies have 50 ants and new generations occurr in each
iteration (i.e.f = 1) with a maximum of five ants (i.e.nants =
5), until the colony is full-filled. After finding a route, each
ant returns to its origin incrementing pheromone quantity in
one unit. The best value forδ found in preliminar simulations
was0.67, and we used this in all simulations.

The training network load was defined as the one to achieve
a blocking probability equal to 1% when the shortest path
algorithm is adopted.

One should note that tha parameterα, β andγ are internal
parameters obtained during the trainning stage. It means that
they are not defined by a network designer or operator.

IV. PHYSICAL LAYER MODEL AND EXPERIMENTAL SETUP

Our simulation algorithm works as follows: upon a call
request it determines a route using the selected routing al-
gorithm. Then, it selects an available wavelength from a list

using the first fit algorithm. The lightpathOSNRis evaluated.
If it is above the pre-determined level (OSNRTh) the call is
established. Our algorithm blocks a call if there is no available
wavelength or if theOSNRfor the respective wavelength is
below theOSNRTh. The algorithm also evaluates the pulse
broadening and checks if it is above a predefined value.
If this occurs, the call is blocked. The blocked calls are
lost. The blocking probability is obtained from the ratio of
the number of blocked calls and the number of requested
calls. For each network simulation, a set of at least105

calls are generated choosing randomly the source-destination
pairs. We used106 calls when the blocking probability is
around10−5. The call request process is characterized as a
Poisson process and the time duration for each established
call is characterized as an exponential process. We assume
circuit-switched bidirectional connections in two fibers and no
wavelength conversion capabilities.

The links have the following elements: transmitter, opti-
cal switch, multiplexer, booster amplifier, optical fiber, pre-
amplifier, demultiplexer, optical switch and receiver. In this
paper we consider the following effects as physical impair-
ments: amplifier gain saturation, ASE emission, crosstalk in
the switch and polarization mode dispersion. More details
about the physical layer model can be found in [18].

Figure 1 shows the network topologies used in our simu-
lations. The first one is a regular and symmetric topology.
The second one reproduces the Finland topology for long haul
communication. The amplifier gains are set to compensate for
the total link losses and the default parameters used in our
simulations are shown in Table I.

TABLE I

DEFAULT SIMULATION PARAMETERS.

Parameter Value Definition
PLaser −3 dBm Transmitter output power
Psat 19 dBm Amplifier output saturation power.

OSNRin 40 dB Optical Signal to Noise Ratio at the
transmitter.

OSNRQoS 23 dB Minimum Optical Signal to Noise
Ratio at the receiver.

B 40 Gbps Transmission rate.
α 0.2 dB/km Fiber loss coefficient.

LMx 3 dB Multiplexer insertion loss.
LDx 3 dB Demultiplexer insertion loss.
LSw 3 dB Switch Loss.
ǫ −40 dB Isolation between ports at the switch.

DPMD 0.01 ps/
√

km PMD coefficient.
F0 (NF) 3.162 (5 dB) Amplifier noise factor (Noise figure).

We also implemented three other well known routing algo-
rithms to compare to the distance based ACO and the proposed
ACO. These algorithms are shortest path (SP), minimum hops
(Hopcount) and Least Resistance Weight (LRW). Shortest path
algorithm selects the route with minimum distance. Minimum
hops selects the route with the minimum number of hops
in the lightpath. The Least Resistance Weight uses the less
congestioned route.

We performed all the tests in a computer with the following
configuration: Intel Core 2 Quad Q6600 2.4 GHz, L2 Cache
memory of 8 MB, RAM memory of 4 GB, a SATA II Hard
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(a)

(b)

Fig. 1. Network topologies used in our simulations, regular(a) and Finland
(b).

disk with storage capacity of 250 GB and 7.200 RPM. The
time necessary to perform 150 PSO iterations was around three
weeks and each point in the figures of the next section spent
around 16 minutes to be evaluated.

V. SIMULATION RESULTS

This section shows the results achieved for the proposed
ACO RWA algorithm. We also present, for the sake of
comparisson, the results of the distance based ACO, acording
to the equation 1. To obtain the function parameters of both
approaches we performed independent training stages.

A. Training Stage

Considering the Regular topology, the trainning stage for
the distance based ACO algorithm performed for 40 Erlangs
and 16 wavelengths per link resulted in the PSO convergence
around the85th iteration, with blocking probability of ap-
proximately0.013. For the proposed ACO algorithm with 40
Erlangs and 16 wavelengths per link, the PSO converged ear-
lier (around the30th iteration), reaching blocking probability
around0.009. For the distance based ACO with 85 Erlangs and
32 wavelengths per link the PSO convergence occurred in the
second iteration of the simulation and the obtained blocking
blocking probability was about0.0026. In the proposed ACO
scenario with 85 Erlangs and 32 wavelengths per link, the

PSO converged after 15 iterations and the ACO RWA achieved
blocking probabilities as low as 0.001.

Table II shows the values of the cost function parameters ob-
tained from the training phase simulations for the RWA based
on ACO algorithms with the Regular network. In the scenario
with 32 wavelengths, 85 Erlangs and the proposed ACO, three
particles with different configurations had the same blocking
probability values. Through performance test simulationswith
106 calls, it was confirmed that these combinations of weight
values really generate similar results. The values (α = 3.50144,
β = 3.01474,γ = 3.48118) were chosen for the performance
evaluation of the proposed ACO routing algorithm on Regular
network with 32 wavelengths per link, because the particle
with this configuration was the first to reach the lowest call
blocking probability during training phase.

TABLE II

VALUES OF COST FUNCTION PARAMETERS OBTAINED BY THE TRAINING

PROCESS FORRWA BASED ON ACO ALGORITHMS WITH THE REGULAR

NETWORK.

Regular Network Configuration α β γ

16 λ´s, 40 Erl., ACO distance 1.46175 1.92726 −

16 λ´s, 40 Erl., ACO Proposal 2.08252 2.20869 2.96475
32 λ´s, 85 Erl., ACO distance 2.67244 3.39465 −

32 λ´s, 85 Erl., ACO Proposal 3.50144 3.01474 3.48118
32 λ´s, 85 Erl., ACO distance 1.19588 1.56004 3.98344
32 λ´s, 85 Erl., ACO Proposal 0.110748 1.99878 3.99688

Considering the Finland topology, the trainning stage for
the distance based ACO algorithm performed with 40 Erlangs
and 16 wavelengths per link resulted in the PSO convergence
around the75th iteration, with blocking probability of ap-
proximately0.035. For the proposed ACO function with 40
Erlangs and 16 wavelengths per link, the PSO converged ear-
lier (around the60th iteration), reaching blocking probability
around0.028. For the distance based ACO with 90 Erlangs
and 32 wavelengths per link the PSO convergence occured
only in the 80th iteration of this simulation with minimum
blocking probability of around0.036. For the proposed ACO
function with 90 Erlangs and 32 wavelengths per link, the
PSO converged after 75 iterations and the ACO RWA achieved
blocking probabilities of 0.031.

Table III shows the values for the weight function parame-
ters obtained by the training stage for RWA based on ACO
algorithms with the Finland network. In both scenarios, the
most relevant parameter for distance based ACO was phe-
romone accumulation, and for the proposed ACO algorithm
was the wavelength availability for 16 wavelengths and the
pheromone accumulation for 32 wavelengths. Note that the
importance of the coefficients changed according to network
conditions.

B. Performance Analysis

We tested and compared the performance of the RWA
algorithms on four scenarios, changing network topology,
load and wavelength availability per link. Figure 2(a) and
Figure 2(b) present the network blocking probability as a
function of network load, for five different RWA algorithms,
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TABLE III

INDUCTION EQUATION WEIGHT VALUES OBTAINED BY THE TRAINING

PROCESS FORRWA BASED ON ACO ALGORITHMS WITH THE FINLAND

NETWORK.

Regular Network Configuration α β γ

16 λ´s, 40 Erl., ACO distance 0.398342 0.00284 −

16 λ´s, 40 Erl., ACO Proposal 0.729141 1.32989 3.33693
32 λ´s, 90 Erl., ACO distance 3.97025 2.80346 −

32 λ´s, 90 Erl., ACO Proposal 4.46353 0.70601 0.10476

obtained on the Regular topology with 16 wavelengths and 32
wavelengths, respectively. The values shown are the average
values of the total blocking probabilities, obtained from five
simulation runs.
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Fig. 2. Performance comparison of the RWA algorithms. Regular network
links with (a) 16 wavelengths, and (b) 32 wavelengths.

Figure 2(a) shows that the proposed ACO achieved the
best performance for loads of 25 and 30 Erlangs. When
the load was increased to 35 Erlangs and beyond, the RWA
algorithms based on hopcount, and load balancing presented
slightly better performance than the proposed ACO. However,
for any network load our proposed ACO algorithm performed

better than the ACO based on distance or the shortest path
algorithms. These results show that taking into account the
wavelength availability in the weight function leads to an
improved performance for the proposed ACO, compared to
the ACO algorithm based on distance.

Figure 2(b) shows similar results to Figure 2(a), but with
32 wavelengths per link. In this scenario there is no call
blocking due to lack of available wavelength. Instead, the call
blockings are due to the physical impairments. In this scenario
the proposed ACO algorithm outperformed by a large margin
the other algorithms. This result indicates that it is worth
finding the ideal balance between pheromone, link length and
wavelength availability in the ACO cost function, through the
optimization of theα, β andγ parameters.

We analysed the boxplot graphics for the ACO based on
distance and for the proposed ACO IA-RWA in the regular
topology, for 16 and 32 wavelengths. The highest value of the
standard deviation obtained in the simulations was0.00158,
for 60 Erlangs and 16 wavelengths. The largest percentage
change between the lower and upper limits was23.49%, for
25 Erlangs and 16 wavelengths.

Figure 3(a) and Figure 3(b) shows the blocking probability
as a function of network load for different RWA algorithms,
obtained from Finland network with 16 wavelengths and
32 wavelengths, respectively. These figures show that the
proposed ACO, the ACO based on distance and the shortest
path algorithms presented similar performance, which is con-
siderably better than the hopcount and LRW algorithms

We analysed the boxplot graphics for the ACO based on
distance and the proposed ACO IA-RWA in the Finland
topology, for 16 and 32 wavelengths. The standard deviation
obtained in simulations with ACO Proposal was0.00187, for
55 Erlangs and 32 wavelengths. The largest percentage change
between the lower and upper limits was9.54%, for 15 Erlangs
and 16 wavelengths for ACO proposed.

One can note by observing the simulation results that
our approach did not far outperform the other approaches
presented for comparison in all the cases. However, the algo-
rithm features an adaptable behaviour. It means that in some
cases the Least Resistance Weight algorithm outperformed
the Hop Count algorithm, while the Shortest Path algorithm
outperformed the Least Resistance Weight algorithm in other
cases. However, our proposal presented good results in all the
cases.

VI. CONCLUSIONS

In this paper we proposed and analyzed the performance
of an IA-RWA for all-optical networks that includes both the
physical distance and the wavelength availability based on
Ant Colony Optimization technique and trained with Particle
Swarm Optimization to obtain the optimized parameters for
the ACO cost function. We analyzed two approaches for ACO
based RWA algorithm, one that considers pheromone quantity
and link distance on the cost function and another one that
also includes wavelength availability in the cost function. We
compared the performance of both approaches to classical
RWA algorithms in terms of blocking probability.
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Fig. 3. Performance comparison of the RWA algorithms. Finland network
links with (a) 16 wavelengths, and (b) 32 wavelengths.

The results for different network topologies and conditions
shown that our proposed ACO IA-RWA algorithm has the
ability to adapt itself to the different conditions and perform
better or at least equal to the ACO based on distance and the
classical RWA algorithms.

One should note that other approaches such as the one
proposed in [11] can be combined with our approach. Further-
more, the heuristic based on the link wavelength availability of
the network links presented in [13] is similar to our proposal
whenβ = 0 andα = γ = 1.

As we perform a training stage to find the best set of
parameters (α, β and γ), we believe that this novel heuristic
can include other physical layer aspects in the routing process.
As can be seen from equation 3, the percentage of available
wavelengths (∆λij ) multiplies the previous equation and is
weighted byγ. We think that the novel equation presented in
3 with the trainning stage is our major contribution.
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