XXVII SIMP OSIO BRASILEIRO DE TELECOMUNICA®ES - SBrT 2009, DE 29 DE SETEMBRO A 2 DE OUTUBRO DE 2009, BLUMAN SC

Intelligent Impairment Aware Routing Algorithm
for All-Optical Networks based on Ant Colony
Optimization Trained by Particle Swarm
Optimization
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Abstract—In this paper, we propose and analyze the perfor- is bit-rate, protocol and format independent, it is easeer t
mance of an adaptative impairment aware routing algorithm ypgrade and it can support different types of traffic, beirmgen
(IA-RWA) for all-optical networks based on a bio-inspired g itaple for modern demands. However, control issues must

optimization technique, called Ant Colony Optimization (ACO). . . . .
We propose a novel heduristic to be used by the routing algoritm be included in the optical layer of the network to accomplish

combining the physical distance and the wavelengths avatdity —the switching of lightpaths and other functions with thegeo
of the optical links. These two metrics are weighted in a traiing  Quality of Service (Qo0S). Moreover, these automatic sveitch
StagE- Thg algorithm Wal? tr?ineq tb)lll_amther opl)ltirgi;atitqr?stehni- optical networks (ASON) suffer frorf®SNRdegradation due
ue based on swarm collective intelligence, called PartielSwarm ol ; ; ; e
g)ptimization (PSO). We show that gur IA-RWA algorithm can o t_he phySIC.al Impalrment.s, Sm(.:e the _8|gnal remains in the
learn during the training stage and adapts itself to the netverk optical domgm, acgumulatlng noise as it propagates throug
conditions, performing equally or even better than the clasical Several devices (fiber segments, EDFAs, OADMs, OXCs,
routing algorithms. MUX, DEMUX, etc.) [1][2][3]. In translucent networks, ther
Keywords— RWA algorithms, All-Optical Networks, Ant Co- are some islands _Of tl_’ansparency. L
lony Optimization, Particle Swarm Optimization. One of the major issues that can affect the transmission
performance in all-optical networks is the routing and wa-
velength assignment (RWA) algorithm. The dynamic RWA
|. INTRODUCTION problem involves algorithms for efficient route selectiomda

The ever increasing demand on Internet data traffic has b&égvelength assignment, including signaling mechanisms to
the driving force for the recent developments in the telecorffauest and establish lightpaths between source and afistin
munication industry. The deployment of optical fibers byigsi "°des, and upgrade the network status when the connections
wavelength division multiplexing (WDM) has been considere?"® e.stabllshed .a_md terminated, targeting at a minimum call
as the most suitable and reliable technology for long haocking probability [4][5]. Several papers about optical-
communication systems. Furthermore, the development 19 @lgorithms assume that all routes have adequate signal
optical amplifiers and other devices such as optical adg/drguality. This is not always the case, especially for largé an
multiplexers (OADMs) and optical cross-connects (Oxcdjeavily loaded networks. Although every point-to-poimtkli
have enabled higher capacity optical links and networkdleyn & nétwork is designed to provide an adequate signal gualit
abilities [1] [2] [3]. at its output, the dynamics of the network imposes drastic

Optical networks can be either opaque, translucent or4ra/f52nges in optical parameters over the time. Classicaingut
parent (all-optical). In opaque networks every node regees algorlthm_s based on distance (shortest path), hop count and
the signal i.e. conversion from optical domain to electrical€@st resistance W_e'gth (LRW) do not take into account the
domain and back to optical domain) to accomplish its fund@nsmission impairments. . . .
tions. These networks have high costs due to the Wavelengtl"ﬁome papers have proposed t‘? use compqtatlonal 'm,e""
transponders and electronic circuitry. In opaque netwoaks jence technlques_to solve .the routing problem in communica-
the regeneration process occurs at each intermediate thede 1ONS Networks using Hopfield Neural Networks [6], Genetic
accumulation of optical signal to noise rati@$NR degrada- ~lgorithms [7], Particle Swarm Optimization [8] and Ant
tion due to physical impairments is much less important. drelony Optimization [9].
the other hand, in transparent networks there is no regemera Recent_ly, SOME papers have proposed to solve the_ RWA
along the lightpath, i.e., the signal remains in the opticQIrObIem in all-optical networks using Ant Colony Optimiza-

domain from source to destination nodes. Since the netwd{®" [101[11][12][13], which will be commented in Section |
In this paper, we propose and analyze the performance of
Carmelo J. A. Bastos-Filho, Renato M. Fernandes, DaniloafFvalho and an adaptive impairment aware routing algorithm (IA-RWA)) fo
George M. Cavalcanti Junior are with University of PernaothuRecife, transparent optical networks based on Ant Colony Optimiza-
Brazil, e-mail: cjabf@dsc.upe.br. Daniel A. R. Chaves amdhgdim F. . ACO). Wi Ih . b id db
Martins-Filho are with Federal University of Pernambucecke, Brazil, e- tion ( ) € propose a novg quSt'C to be ConS|_ ere_ Yy
mail: jfmf@ufpe.br. This work is supported by FACEPE and @N\P the ants for the route calculation. It is based on opticdddin
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physical distance and the optical link wavelengths avditgb is the pheromone quantity in the linki, d;; is the physical

The algorithm weights these physical impairments in a traitength of the linkij and d;j is the normalized length of the

ning stage using another optimization technique calledd®ar link 5 [9]. In this case, the ants choose the path that presents

Swarm Optimization (PSO). We compare the performance tfe higherp;;.

our proposal to the ACO approach based on distance applied o

for routing in communications networks and to other network P;; = Rand() P}/Lij , (1)

layer routing algorithms. We show that our IA-RWA algorithm dl-f-

can learn during the training stage and adapts itself to thgereq and § are constants that weight the pheromone and

network conditions, performing equally or even better the 1o network parameter used as cost functiand() is a

classical routing algorithms, in terms of blocking prol@i andom number generated by a uniform distribution in the
This paper is structured as follows. Section Il describgsieryal [0,1].

the routing algorithm based on ACO and its parameters.\e also used a technique called evaporation, where in each

Section Il presents the PSO algorithm used to obtain the bgration the pheromone values at all the routing tables are

set of parameters used by the routing algorithm. Section Pdguced by a predefined factér This parameter describes

presents the physical layer model and the experimentap sefe ratio of pheromone that evaporates in a link per itenatio

used in the simulations. Section V presents the results. ynjs ysed to prevent pheromone concentration in optimal

Section VI we give our conclusions. paths from being excessively high. A high concentration of
pheromone in some links can excessively polarize the ants.

I1. IA-RWA A LGORITHM BASED ONANT COLONY This can affect the ability to explore other routes in theecas
OPTIMIZATION of network failures. Pavani and Waldman [13] used other

. ) ) intersting technique to perform this target by reinforcthg
Although an ant is a simple creature, collectively amﬁaths found by the ants.

can present a useful behavior for performing tasks such asgyme efforts have been made to solve the RWA problem
discovering the shortest path between a food source and H%‘fhg Ant Colony Optimization. Ngo et al. [10] adapted
nest [9]. The colony shares information through Stigmergie aigorithm to WDM optical networks. Pavani and Wald-
that is a forr_n of |nd|re_ct communication used by ants ifg,4, [11] proposed a heuristic to induce the ants based on
nature by laying a chemical substance called pheromone. The jifference between the maximum allowed power on the
pheromone induces changes in the environment, which canBg and the total active power on the link. In other paper,
sensed by other ants. _ Pavani and Waldman [12] proposed two different distributed
An artificial ant can be implemented as a simple proceduggategies for provisioning lightpaths in the presenceptical

that simulates the laying and sensing of pheromone. Each BAYsical-layer impairments in GMPLS networks. Pavani et
is originated in the source nodeand explores the network 5 [13] also showed that ACO can be used for restoration
trying to find the destination nodd. Basically, the ants i wavelength-routed optical networks. In [13], a heucisti
are guided by the pheromone and should have a predefifgdeq on the link wavelength availability of the networkdin
lifetime (Zjisc) to find their destinationZi;z. quantify NOW (A .y is introduced. However, they do not consider this
long an ant remains moving along the network. An ant neefigic simultaneously with the distance to induce the ants.

to be able to find the end of the path urifil;. is reached.  The link wavelength availability of the network link&g,)
This preset lifetime helps to avoid loops. When the ant fings yefined as:

the destination node, it returns to the source node in thersev
direction by adding pheromone to the link. In this paper the
pheromone deposited on the routing tables by an ant along
the nodes included in the ligthpath is unitary. Furthermore _ ) ] )
the colony consists of a data structure that generates affiereAs;"'*"' is the number of available wavelengths in the
and records the nodes that they pass. In our approach i ij and A[7**" is the total number of wavelengths in the
periodically generate a group of,,,;s ants with a frequency link ij-_ ) o

and the simulation has a total duration®f,.;. After Thorar, In this paper we propose to combine thg heuristics p_resgnted
the pheromone table state indicates the best route. in [9] and [13]. The equation used to guide the ants is given

However, this operation alone can lead to a stagnati@bf 3.

available
A

total
A2

ANy = (2)

process. One of the approaches used to mitigate stagnation Phe AN
is to configure ants so that they do not solely rely on sensing P = Rand()%. 3)
pheromone. For this purpose, one can set a mixed probability ij

function for an ant to decide between different links. Thasic whereA);; is the link wavelength availability of the network
be done using both pheromone concentration and a heurisitik 7.

function [14]. For example, an ant selects a link probatbilis

cally using a composition function of the cost of the link anéll- PSOFORTRAINING THE RWA ALGORITHM BASED ON

the pheromone left by previous ants. One common approach ACO

to this function is presented in equation 1, whé?g is the In order to find the best parameters 3 and v, we
weight used by the ant to choose the next node to Wi%it;; used another optimization technique called Particle Swarm
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Optimization (PSO). We call this process as the trainingsphausing the first fit algorithm. The lightpat@SNRis evaluated.
since the IA-RWA algorithm runs several times for differenif it is above the pre-determined leveaD§ N Rr},) the call is
values of the parameters, to find their best values. Thisggcestablished. Our algorithm blocks a call if there is no akdé
occurs offline, which means that it occurs before the netwowavelength or if theOSNRfor the respective wavelength is
operation. The online routing processes occurs with the uselow theOSN Rry. The algorithm also evaluates the pulse
of ACO and equation 3, with the parameters found by PS®roadening and checks if it is above a predefined value.
Martins-Filho et al [8] have also used PSO to find the beHt this occurs, the call is blocked. The blocked calls are
parameters for a cost function of a IRWA algorithm. Howevelgst. The blocking probability is obtained from the ratio of
their IA-RWA algorithm does not use ACO to find the routegshe number of blocked calls and the number of requested
Particle Swarm Optimization is a bio-inspired techniquealls. For each network simulation, a set of at least
proposed by Kennedy and Eberhart in 1995. We used the P&filis are generated choosing randomly the source-déstinat
recommended by Bratton and Kennedy [15], following thpairs. We usedl0° calls when the blocking probability is
pseudo-code proposed therein. The search space dimensansnd10~°. The call request process is characterized as a
number was defined according to the used equation. PartidRegsson process and the time duration for each established
velocities were updated using the constriction factor apprcall is characterized as an exponential process. We assume
ach [16], to avoid overflight and to improve performance. Weircuit-switched bidirectional connections in two fibergano
usedk equal to 1, acceleration constants &ndcs) equals to wavelength conversion capabilities.
2.05 for both, observing the constriction factor condition of The links have the following elements: transmitter, opti-
® > 4, for overflight free operation. The values for theseal switch, multiplexer, booster amplifier, optical fiberep
parameters were previously studied in [16] and guarantamplifier, demultiplexer, optical switch and receiver. hist
stable operation. paper we consider the following effects as physical impair-
We used theL,.,; swarm model with ring topology [15] ments: amplifier gain saturation, ASE emission, crosstalk i
because this is the recommended model for multimoddle switch and polarization mode dispersion. More details
problems. 21 particles were used in all simulations. Th&bout the physical layer model can be found in [18].
swarm size respects the standard defined by Bratton andrigure 1 shows the network topologies used in our simu-
Kennedy [15]. lations. The first one is a regular and symmetric topology.
For our simulations we observed that 150 iterations afdie second one reproduces the Finland topology for long haul
sufficient for the algorithm to converge. This can be jugfifieccommunication. The amplifier gains are set to compensate for
by the fact that the search space is not too large. Therefdieg total link losses and the default parameters used in our
this number of iterations was established as the trainisgnulations are shown in Table I.
phase period. Particles do RWA simulations as described in
section IV. For each scenario, we repeat five times the trgini
process. The blocking probabilities were calculated as the

TABLE |
DEFAULT SIMULATION PARAMETERS.

average of the simulation results. [ Parameter | Value [ Definition |

Each ant has the lifetime configured @;;. = 2N, Plaser —3dBm Transmitter output power
where N is the number of network nodes. The influence ofl___fsa 19dBm Amplifier output saturation power.
h . . . OSNR, 40dB Optical Signal to Noise Ratio at th¢
the parametefl;s. was widely studied in [17]. The value transmitter.
Tiife = 2N is the minimal value to guarantee that the colony| OSNRys 23dB Minimum Optical Signal to Noise
has sufficient time to find optimal solutions with low error Ratio at the receiver.
rates B 40 Gbps Transmission rate.

o . . ] a 0.2dB/km Fiber loss coefficient.

Colonies have 50 ants and new generations occurr in ea¢h 7y, 3dB Multiplexer insertion loss.

iteration .e. f = 1) with a maximum of five ants.€. nqnts = Lox 3dB Demultiplexer insertion loss.
: : i TR Lsw 3dB Switch Loss.

5), until the co_Iony !s_fu_ll filled. Af_ter f|r;]d|ng a route, ea_lch_ S —Tod5 Tsolation betwesn ports af the Switch.
ant retL_Jrns to its origin mcrement_lng pheromone quantlty Do | 0.01ps/Vem | PMD coeflicient.
one unit. The best value farfound in preliminar simulations T, (NP 3.162 (5dB) | Amplifier noise factor (Noise figure)

was0.67, and we used this in all simulations.
The training network load was defined as the one to achieve
a blocking probability equal to 1% when the shortest path We also implemented three other well known routing algo-
algorithm is adopted. rithms to compare to the distance based ACO and the proposed
One should note that tha parameter3 and~ are internal ACO. These algorithms are shortest path (SP), minimum hops
parameters obtained during the trainning stage. It meaats ttHopcount) and Least Resistance Weight (LRW). Shortest pat

they are not defined by a network designer or operator_ algorithm selects the route with minimum distance. Minimum
hops selects the route with the minimum number of hops

in the lightpath. The Least Resistance Weight uses the less
congestioned route.

Our simulation algorithm works as follows: upon a call We performed all the tests in a computer with the following
request it determines a route using the selected routing ebnfiguration: Intel Core 2 Quad Q6600 2.4 GHz, L2 Cache
gorithm. Then, it selects an available wavelength from & limemory of 8 MB, RAM memory of 4 GB, a SATA |l Hard

IV. PHYSICAL LAYER MODEL AND EXPERIMENTAL SETUP
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PSO converged after 15 iterations and the ACO RWA achieved
blocking probabilities as low as 0.001.

Table Il shows the values of the cost function parameters ob-

tained from the training phase simulations for the RWA based
on ACO algorithms with the Regular network. In the scenario
with 32 wavelengths, 85 Erlangs and the proposed ACO, three
particles with different configurations had the same blogki
probability values. Through performance test simulatiaith
108 calls, it was confirmed that these combinations of weight
values really generate similar results. The values 3.50144,
[ = 3.01474 = 3.48118) were chosen for the performance
evaluation of the proposed ACO routing algorithm on Regular
network with 32 wavelengths per link, because the particle
with this configuration was the first to reach the lowest call
blocking probability during training phase.

TABLE I
VALUES OF COST FUNCTION PARAMETERS OBTAINED BY THE TRAINING
PROCESS FORRWA BASED ONACO ALGORITHMS WITH THE REGULAR
NETWORK.

[ Regular Network Configuration | a | B8 1 ~ |

16 \'s, 40 Erl., ACO distance | 1.46175 1.92726 | —
16 \’s, 40 Erl., ACO Proposal | 2.08252 2.20869 | 2.96475
32 X\’s, 85 Erl, ACO distance | 2.67244 3.39465 | —
32 \’s, 85 Erl., ACO Proposal | 3.50144 | 3.01474 | 3.48118
32 \'s, 85 Erl., ACO distance | 1.19588 | 1.56004 | 3.98344
32 \’s, 85 Erl., ACO Proposal | 0.110748 | 1.99878 | 3.99688

(b)

Considering the Finland topology, the trainning stage for
Fig. 1. Network topologies used in our simulations, reg@grand Finland the distance based ACO algorithm performed with 40 Erlangs
(0). and 16 wavelengths per link resulted in the PSO convergence
around the75!" iteration, with blocking probability of ap-
disk with storage capacity of 250 GB and 7.200 RPM. T roximately 0.035. For the proposgd ACO function with 40
. . : rlangs and 16 wavelengths per link, the PSO converged ear-
time necessary to perform 150 PSO iterations was around thr.e h ' : ) ”
S , . ier (around thes0'" iteration), reaching blocking probability
weeks and each point in the figures of the next section spen . .
) around0.028. For the distance based ACO with 90 Erlangs
around 16 minutes to be evaluated. ;
and 32 wavelengths per link the PSO convergence occured
only in the 80" iteration of this simulation with minimum
V. SIMULATION RESULTS blocking probability of around.036. For the proposed ACO
This section shows the results achieved for the proposgghction with 90 Erlangs and 32 wavelengths per link, the
ACO RWA algorithm. We also present, for the sake oPSO converged after 75 iterations and the ACO RWA achieved
comparisson, the results of the distance based ACO, agprdiflocking probabilities of 0.031.
to the equation 1. To obtain the function parameters of bothTable Il shows the values for the weight function parame-
approaches we performed independent training stages.  ters obtained by the training stage for RWA based on ACO
algorithms with the Finland network. In both scenarios, the
A. Training Stage most relevant parameter for distance based ACO was phe-
. oo mone accumulation, and for the proposed ACO algorithm
Considering the Regular topology, the trainning stage fé\? s the wavelength availability for 16 wavelengths and the

the distance based ACO algorithm performed for 40 Erlanrﬁ romon mulation for 32 wavelenaths. Note that th
and 16 wavelengths per link resulted in the PSO converge (& romone accumutation 1o ave'engtns. INote that the

around thes5t" iteration, with blocking probability of ap- importance of the coefficients changed according to network
proximately0.013. For the proposed ACO algorithm with 4Ocond|t|ons.

Erlangs and 16 wavelengths per link, the PSO converged ear- .

lier (around the30t” iteration), reaching blocking probability B- Performance Analysis

around).009. For the distance based ACO with 85 Erlangs and We tested and compared the performance of the RWA
32 wavelengths per link the PSO convergence occurred in tilgorithms on four scenarios, changing network topology,
second iteration of the simulation and the obtained blagkifoad and wavelength availability per link. Figure 2(a) and

blocking probability was aboud.0026. In the proposed ACO Figure 2(b) present the network blocking probability as a
scenario with 85 Erlangs and 32 wavelengths per link, tlienction of network load, for five different RWA algorithms,
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TABLE Il
INDUCTION EQUATION WEIGHT VALUES OBTAINED BY THE TRAINING
PROCESS FORRWA BASED ONACO ALGORITHMS WITH THE FINLAND
NETWORK.

better than the ACO based on distance or the shortest path
algorithms. These results show that taking into account the
wavelength availability in the weight function leads to an
improved performance for the proposed ACO, compared to
[Regular Network Configuration | o | B [~ | the ACO algorithm based on distance.

16 \’s, 40 Erl., ACO distance | 0.398342 | 0.00284 | — Figure 2(b) shows similar results to Figure 2(a), but with
16 \'s, 40 Erl., ACO Proposal | 0.729141 | 1.32989 | 3.33693 | 32 wavelengths per link. In this scenario there is no call
325, 90 Erl, ACO distance | 3.97025 | 2.80346 | — blocking due to lack of available wavelength. Instead, thk ¢

32 \’s, 90 Erl., ACO Proposal | 4.46353 | 0.70601 | 0.10476 ! Die v ! W, e
blockings are due to the physical impairments. In this sdena
the proposed ACO algorithm outperformed by a large margin
the other algorithms. This result indicates that it is worth
obtained on the Regular topology with 16 wavelengths and 8Rding the ideal balance between pheromone, link length and
wavelengths, respectively. The values shown are the a@eragivelength availability in the ACO cost function, throudiet
values of the total blocking probabilities, obtained frowefi optimization of thea, 5 and~ parameters.

simulation runs. We analysed the boxplot graphics for the ACO based on
distance and for the proposed ACO IA-RWA in the regular
Regular Network, 16 wavelengths topology, for 16 and 32 wavelengths. The highest value of the
0,14 standard deviation obtained in the simulations Wa¥)158,
for 60 Erlangs and 16 wavelengths. The largest percentage
- change between the lower and upper limits \28st9%, for
% 0,014 25 Erlangs and 16 wavelengths.
S Figure 3(a) and Figure 3(b) shows the blocking probability
09_ as a function of network load for different RWA algorithms,
o obtained from Finland network with 16 wavelengths and
% 1E-34 & ACO Proposal 32 wavelengths, respectively. These figures show that the
2 o oo proposed ACO, the ACO based on distance and the shortest
—¥— Hopcount path algorithms presented similar performance, which is co
1E-4 =& Least Resistance Weigh siderably better than the hopcount and LRW algorithms
20 25 30 35 40 45 50 55 60 65 70 We analysed the boxplot graphics for the ACO based on

distance and the proposed ACO IA-RWA in the Finland
topology, for 16 and 32 wavelengths. The standard deviation
@ obtained in simulations with ACO Proposal wa$0187, for

55 Erlangs and 32 wavelengths. The largest percentage ehang

Load (Erlangs)

Regular Network, 32 wavelengths

0.1 between the lower and upper limits wa$4%, for 15 Erlangs
' W and 16 wavelengths for ACO proposed.
One can note by observing the simulation results that
g our approach did not far outperform the other approaches
S 0014 presented for comparison in all the cases. However, the algo
'§ rithm features an adaptable behaviour. It means that in some
067 cases the Least Resistance Weight algorithm outperformed
£ 1E-34 2 ACO Proposa the Hop Count algorithm, W_hile the Shprtest Pth algorithm
8 —®@— ACO Distance outperformed the Least Resistance Weight algorithm inrothe
o O Shortest Path cases. However, our proposal presented good results ineall t
prop p g
—W%¥— Hopcount
1E-4 —/\— Least Resistance Weight| cases.

55 60 65 70 75 80 85 90 95 100 105
Load (Erlangs) VI. CONCLUSIONS
®) In this paper we proposed and analyzed the performance

of an IA-RWA for all-optical networks that includes both the

Fig. 2. Performance comparison of the RWA algorithms. Ragoktwork physical distance and the wavelength availability based on

links with (a) 16 wavelengths, and (b) 32 wavelengths. Ant Colony Optimization technique and trained with Pasticl
Swarm Optimization to obtain the optimized parameters for

Figure 2(a) shows that the proposed ACO achieved tkiee ACO cost function. We analyzed two approaches for ACO

best performance for loads of 25 and 30 Erlangs. Whéased RWA algorithm, one that considers pheromone quantity

the load was increased to 35 Erlangs and beyond, the RWAd link distance on the cost function and another one that

algorithms based on hopcount, and load balancing presenédsb includes wavelength availability in the cost functitye

slightly better performance than the proposed ACO. Howeveompared the performance of both approaches to classical

for any network load our proposed ACO algorithm performeBWA algorithms in terms of blocking probability.
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Finland Network, 16 wavelengths

o
-
1

—— ACO Proposal
—&— ACO Distance
—— Shortest Path
—W%¥— Hopcount

—/\— Least Resistance Weight|

10 15 20 25 30 35 40 45 50

Blocking Probability

0,01

0 5
Load (Erlangs)
(@)

Finland Network, 32 wavelengths

PEPFRIPEES S

M

—&— ACO Proposal

—®— ACO Distance

—O— Shortest Path

—W¥— Hopcount

—/\— Least Resistance Weight|

45 50 55 60 65 70 75 80 85 90 95

o
-
1

Blocking Probability

0,01

Load (Erlangs)
(b)

Fig. 3. Performance comparison of the RWA algorithms. Fidlaetwork
links with (a) 16 wavelengths, and (b) 32 wavelengths.
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The results for different network topologies and cond'ﬂ;iorhg]
shown that our proposed ACO IA-RWA algorithm has the

ability to adapt itself to the different conditions and merh

better or at least equal to the ACO based on distance and the

classical RWA algorithms.

One should note that other approaches such as the one

proposed in [11] can be combined with our approach. Further-

more, the heuristic based on the link wavelength availkgtli

the network links presented in [13] is similar to our progosa

wheng =0anda =~ =1.

As we perform a training stage to find the best set of

parametersd, 5 and~y), we believe that this novel heuristic
can include other physical layer aspects in the routinggsec

As can be seen from equation 3, the percentage of available
wavelengths £\;;) multiplies the previous equation and is
weighted byy. We think that the novel equation presented in

3 with the trainning stage is our major contribution.
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