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Abstract—This paper investigates the inclusion of dynamic 

features in the input vectors used by the multiple classification 
scheme which employ the null space to combine the likelihoods. 
Speaker identification experiments were performed considering 
four ambient noise and also different mismatched conditions. 
The results show that this strategy can contribute to increase the 
recognition accuracy.      
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I. INTRODUCTION 

 
 

  The speaker recognition systems are widely employed in 
many situations nowadays. They can be used in criminal 
investigations, security systems and other applications. 
However, in most cases, the performance of the recognition is 
severely affected by environmental noises that can often be 
present in the speech signals. It has been shown [1]-[4] that 
strategies employing the sub-band processing of the signal 
contributes to overcome the effect of the noise. In these 
techniques, the main goal is to better use those bandpass 
signals which are more important for the recognition. The 
multiple sub-band classifier systems explore this advantage 
that the sub-band decomposition can provide.   

   Interesting improvements in the recognition accuracy 
have been achieved by using combination strategies of 
classifiers outputs [3], [4]; and, in some situations, by using 
multicondition training in the sub-band domain [5]. The 
combination technique is used to favor those sub-band 
outputs which are more related to the speaker recognition. 
This is because the noise contribution, and the identity 
information [6] are nonlinear distributed [7] among the 
bandpass signals provided by the decomposition. Fig. 1 
shows a speaker recognition system using multiple sub-band 
classifiers. As can be seen, the speech signal is decomposed 
into n sub-bands. The feature extraction is performed in each 
bandpass signal and used as input for a classifier in that band. 
Each classifier, in the training phase, generates a probabilistic 
sub-band model of a speaker. During the testing phase (Fig. 1 
(b)), the sub-band features are compared with the sub-band 
speaker model. The likelihood resulted of this comparison is 
joined to the other ones in a combination scheme, which 
produces the joint response for a modeled speaker.  

  The literature presents some classifiers’ outputs 
combination strategies. In a first approach [1], the classifiers’ 
output were combined by the sum of these outputs. In another 

approach [3], the outputs were combined with non-uniform 
weights calculated by the total energy of each bandpass 
training signal. The same weights are used for every 
recognition test. The employment of non-uniform weights 
can better represent the nonlinear distribution of the identity 
information. This combination rule provides low 
computational cost and spend small memory space. However 
the improvements in performance are small for tests with 
white noise. Better results were obtained for the case of 
colored noise (i.e. non-white). Another strategy [4] consisted 
in obtain a collection of weights provided by the null space 
calculated from the total energy of each bandpass training 
signal. The main advantage is that the weights can be 
changed during the tests. Improvements were obtained for 
colored and white noises. According to the proposal 
presented in [5], the use of the null space [8] combination 
rule together with multicondition training with white noise 
compensates the effect of the noises. The improvements were 
obtained only when the test signals were corrupted by car and 
white noises. It is necessary to better choose the type of noise 
used to train the recognition system in order to improve the 
performance of the method for other types of noises. 
However, this is very difficult since there are many types of 
noises with a large variety of behavior in frequency.  

  This work examines the inclusion of dynamic features in 
the input MFCC (Mel Frequency Cepstral Coefficients) [9] 
feature vectors of the sub-band GMM (Gaussian Mixture 
Model) [10] classifiers, in order to observe how the 
performance of the recognition system using the null space 
can be improved. Several experimental results of text-
independent speaker identification [11] using a large speech 
material and different types of environmental noises are 
shown in order to demonstrate the performance of the 
recognition techniques.  

  The rest of the paper is organized as follows. Section II 
describes the MFCC features used in this paper. Section III 
describes the dynamic features (delta and delta-delta).  
Section  IV  presents  the  GMM  classifier. Section V 
describes the combination scheme that employs the null 
space. The experiments, results and discussions are presented 
in Section VI. Section VII concludes the paper. 
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II.  MEL FREQUENCY CEPSTRAL COEFFICIENTS 

   
    The MFCC are static features extracted by a filter bank 
which models human perception of the frequency content of 
sounds [9]. This perception follows a subjectively defined 
nonlinear scale called the “mel” scale, defined as,  
 
 

fmel=2595log10(1+f / 700)                     (1) 
 
 

where f is the actual frequency in Hz. The features can be 
calculated as follows: first the DFT (Discrete Fourier 
Transform) is applied to a frame of speech. Next, triangular 
filter banks, that are linearly spaced in the mel scale, are 

imposed on the spectrum. Finally, DCT (Discrete Cosine 
Transform) is taken on the log filter bank energies.   
 

III.  DYNAMIC FEATURES 

 
 The delta and delta-delta features, also known as dynamic 

features [10], complement the instantaneous or static 
information obtained by the MFCC. The delta-MFCC feature 
vector represents the time derivative of the MFCC features. 
The dynamic features represent spectral changes over time. In 
addition, these features can remove time-invariant spectral 
information. It can be expressed by 

 
∆fk[i]=f k+M[i]-f k-M[i],                           (2) 

 
were fk[i] denotes the ith feature in the kth time frame, M is 
typically 2-3 frames, and ∆fk[i] is the delta parameter of the 
ith feature. The delta-delta feature can be obtained by the 
delta feature using the same principle. In the experiments 
presented in this paper, the dynamic features employed are 
the delta and the delta-delta obtained from the MFCC 
features, with the purpose of removing the local time-
invariant information of noise signals.  
 

IV.  GAUSSIAN MIXTURE MODEL 

 
    The GMM algorithm [10] models a distribution by a 
mixture (weighted sum) of M Gaussian probability densities. 
This mixture can be expressed as, 
 

p(x
r

|λ)= 

M
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∑ pibi( x

r
)                       (3) 

where pi are the weights, λ represents the mixture model, x
r

is 

a random vector of dimension D, and  the bi( x
r

) are the 
density components of the form 
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where Σi is the covariance matrix, µ
r

i is the mean vector, and 

( x
r

- µ
r

i)’ is the transpose of (x
r

- µ
r

i). The parameters of the 

mixture of densities (mean vectors, covariance matrices, and 
weights), that represent the model, are estimated iteratively 
by the expectation-maximization (EM) algorithm [12]. In the 
test phase of the model, a likelihood is obtained by 
introducing the testing input feature vector into the mixture 
density function (3) using the set of model parameters. The 
resulting log-likelihood for an utterance can be obtained by 
the sum of the logarithm of the likelihoods calculated using 
each testing feature vector. In the decision of the 
identification scheme, this can be applied as 

                                                (b) 
 
Figure 1. Speaker recognition system using multiple 
classifiers in the sub-band domain: (a) Training to obtain the 
n sub-band Models of a speaker; (b) testing the n sub-band 
Models of a speaker to obtain the combined response. 

                                                (a)  
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Ŝ=arg 
max

1 k S≤ ≤

T

t=1
∑ log p(x

r

t|λk)              (5) 

where S is the number of speakers and T is the number of 
feature vectors. 
 

V. RECOGNITION USING THE NULL SPACE  

 
    The linear algebra states that the null space of an m by n 
matrix A is a vector space formed by all the solutions of the 
homogeneous system, Ax=0, where x represents the n 
dimensional solution vector [8]. The computation of a basis 
for the null space is an operation which provides a set of 
linearly independent solutions that is closed under addition 
and scalar multiplication. This means that the summation of 
these vectors or any multiple of them is also a solution for 
Ax=0. The main idea of this scheme is to use the total energy 
of each bandpass training signal, as the column elements of 
A. Hence, A is defined from important speaker information in 
different sub-bands. Note that, in this case, A is a 1 by n 
matrix, where n is the number of sub-bands. Therefore, every 
column of A represents a speaker sub-band energy. The 
computation of a basis for the null space of A provides a set 
of n-1 solution vectors {×1, …, ×n-1} which retain the speaker 
dependent information. These vectors provide n-1 ways to 
represent the speaker dependent information without 
redundancies, since these solutions are linearly independent. 
The elements of the solution vectors are used as weights to be 
applied to the sub-band classifiers outputs, associated to the 
modeled speaker. During the test of a speaker, all the 
reference vectors related to that speaker are tested in order to 
find which of them better contributes for the recognition task. 
The one which provides the highest likelihood is chosen. 

VI.  EXPERIMENTAL RESULTS 

 
 This section presents experimental results of text-

independent speaker identification obtained in order to show 
the behavior of the scheme using the dynamic features, when 
compared to the other methods. In this experiment, the speech 
signals were corrupted by colored noises (Factory1, Babble 
and Volvo) from the NOISEX-92 database [13] and by White 
Gaussian noise generated by a Matlab tool. It was used 49 
speakers (male) and their corresponding clean speech signals 
(sampled at 8 kHz) obtained from sessions 1 to 5 of the 
KING database [14]. The experiments of this article were 
conducted using a subset of this speech database, which is a 
collection of conversational speech from male speakers. For 
each speaker there are 10 conversations recorded during 10 
separate sessions. The speech from a session was locally 
recorded from a high-quality microphone and was transmitted 
over a long distance telephone link, providing a high-quality 
(clean) version and a telephone quality version of the speech. 
The experiments presented in this paper, use only the clean 
version of this database. The sub-band classifier chosen to 
perform the experiments is the GMM since it is a powerful 
statistical tool extensively used for many speaker recognition 

applications. The clean signals from sessions 1, 2 and 3, 
without silence, were used [15] to train the GMM classifiers 
with 90 seconds of speech. The signals from the remaining 
two sessions, composed by four segments of 15 seconds (for 
every speaker and without silence), were corrupted by noises 
at 10 dB and 15 dB of SNR and used for test. In addition, 
recognition with four segments of 5 seconds was performed 
in order to show the behavior of the schemes. It was used 20 
MFCC parameters (with their 20 delta and/or delta-delta 
features appended, when dynamic features are included), 
extracted in frames of 20 ms of speech signals (Hamming 
windowed and overlapping by 50%). The techniques 
presented in [1],[4] and the scheme with dynamic features 
used four sub-bands (Sbs) produced by mel-spaced 6th order 
Butterworth filters. The GMM classifiers used 32 gaussians 
(M=32 probability densities) to obtain the speaker model.  

  The experimental results expressed in terms of recognition 
rate are presented in Tables I to IV. This measure is given by 
RR (%) = (number of correct identification / number of tests) 
× 100 %. The identification performance obtained by using 
only one GMM (without sub-band decomposition) is 96.43% 
for test in 15s of speech without noises. This performance 
severely drops in speech corrupted by environmental noises. 
In the Tables I to IV, the multiple sub-band classifier 
approach which the combination technique consists in 
summing the outputs is represented as Sum [1], the one that 
employs the null space is represented as Null space [4], and 
the proposed, which uses the null space and the dynamic 
features, is represented as N. space and Delta,  N. space and 
Delta-delta (when delta or delta-delta are appended in the  
MFCC feature vector) and N. s. and Delta, Delta-delta (when 
both delta and delta-delta are appended in the same MFCC 
feature vector). Table I presents the recognition rate for tests 
using utterances of 15 seconds in 15 dB of SNR. 

   The best result of 78.06% is obtained for the null space 
scheme with dynamic features, when the test speech is 
corrupted by Factory noise. When the test speech is corrupted 
by Babble noise, the highest performance of 83.16% is also 
obtained for the null space scheme with dynamic features. 
For the Volvo noise, the best result of 79.08% is obtained for 
the proposed scheme with delta-delta features. Finally, for the 
case of white noise, the highest result of 40.82% is obtained 
for the null space techniques with and without dynamic 
features. 

TABLE I. RR(%) IN 15S AND WITH NOISES IN 15 DB OF SNR 
 

   Factory1 Babble Volvo White 

Sum (4Sbs) [1] 66.33 72.45 67.86 30.10 
Null space (4Sbs) 

[4] 
75.51 81.12 76.53 40.82 

N. space and 
Delta (4Sbs) 

75.00 80.61 78.06 39.29 

N. space and 
Delta-delta(4Sbs) 

74.49 80.57 79.08 37.76 

N. s. and Delta, 
Delta-delta (4Sbs) 

78.06 83.16 78.06 40.82 

1GMM 70.41 76.35 73.47 27.51 
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   Table II presents the recognition rate for tests using 5 
seconds of speech in 15 dB of SNR. 
 

    From this Table, It can be seen that the highest result of 
65.31% is obtained for the proposed schemes using dynamic 
features, when the test speech is corrupted by Factory noise. 
When the test speech is corrupted by Babble noise, the 
highest performance of 69.90% is also obtained for the null 
space scheme with dynamic features. For the Volvo noise, the 
best result of 66.33% is again obtained for the null space 
scheme with dynamic features. Finally, for the case of white 
noise, the highest result of 36.73% is obtained for the 
proposed technique using the delta features. 

   Table III presents the recognition rate for tests using 15 
seconds of speech in 10 dB of SNR. 

    In this Table the highest recognition rate of 57.14% is 
obtained for the proposed scheme using delta-delta features, 
when the test speech is corrupted by Factory noise. When the 
test speech is corrupted by Babble noise, the highest 
performance of 80.14% is obtained for the proposed scheme 
using delta features. For the Volvo noise, the best result of 
68.88% is obtained for the proposed scheme with delta and 
delta-delta features. Finally, for the case of white noise, the 
highest result of 26.50% is obtained for the proposed 
technique using the delta features.   

   Table IV presents the recognition rate for tests using 5 
seconds of speech in 10 dB of SNR. 

 
 

   Table IV shows that the highest result of 53.06% is 
obtained for the proposed scheme using dynamic features, 
when the test speech is corrupted by Factory noise. When the 
test speech is corrupted by Babble noise, the highest 
performance of 59.69% is obtained for the proposed scheme 
using delta-delta features. For the Volvo noise, the best result 
of 58.16% is also obtained for the null space scheme with 
dynamic features. Finally, for the case of white noise, the 
highest result of 22.96% is obtained for the proposed 
technique using the delta features. 

   Tables I to IV showed that for all cases the proposed 
technique which uses the dynamic features achieves the 
highest performance. Particularly for 15dB, the best 
performance in most cases is obtained when both delta and 
delta-delta are presented in the same feature vector. However, 
it’s not true for 10dB.    

   Note that in some evaluations the dynamic features do not 
improve the recognition, as for example in [16], [17].  
However, when the test speech signal is less affected by 
noise, the inclusion of several dynamic features can 
contribute to increase the performance of the system due to 
the additional dynamic information. In clean environment the 
delta and delta-delta features are usually more adequate for 
text-dependent speaker identification and for applications that 
require the reduction of channel mismatch [10]. Moreover it 
can be seen that when the test speech is very affected by 
noise (SNR=10dB), the contribution due to the MFCC 
becomes very small. However, the contribution due to the 
inclusion of dynamic features tends to increase the 
performance of the recognition. The noise penalizes more the 
contribution of the MFCC feature (which is not robust) rather 
than that of the dynamic features.    

   The results provided by the recognition system without 
sub-bands are expressed in the row of the 1 GMM and are 
used only for a reference.       

VII.   CONCLUSIONS 

 
  This paper proposed the inclusion of dynamic features 

(delta and delta-delta) in the input vectors of the sub-band 
classifiers, in order to observe how the performance of the 
recognition techniques using the null space can be improved 
in text-independent speaker recognition in noisy 
environments. We have performed experiments with the 

TABLE III.  RR(%) IN 15S AND WITH NOISES IN 10 DB OF SNR 
 

  Factory1 Babble Volvo White 

Sum (4Sbs) [1] 34.69 69.39 43.88 17.35 
Null space (4Sbs) 

[4] 
48.98 80.10 58.16 25.51 

N. space and 
Delta (4Sbs) 

51.53 80.14 59.18 26.50 

N. space and 
Delta-delta(4Sbs) 

57.14 80.10 66.33 24.49 

N. s. and Delta, 
Delta-delta (4Sbs) 

55.61 80.10 68.88 25.00 

1GMM 34.18 63.27 33.67 10.20 

 

TABLE II.  RR(%) IN 5S AND WITH NOISES IN 15 DB OF SNR 
 

   Factory1 Babble Volvo White 

Sum (4Sbs) [1] 52.55 59.69 57.65 26.02 
Null space (4Sbs) 

[4] 
60.71 68.37 65.31 35.71 

N. space and 
Delta (4Sbs) 

64.80 68.35 64.29 36.73 

N. space and 
Delta-delta(4Sbs) 

65.31 66.84 62.76 32.65 

N. s. and Delta, 
Delta-delta 

(4Sbs) 

65.31 69.90 66.33 33.67 

1GMM 63.78 65.19 62.22 26.53 

 

TABLE IV.  RR(%) IN 5S AND WITH NOISES IN 10 DB OF SNR 
 

  Factory1 Babble Volvo White 

Sum (4Sbs) [1] 33.80 47.45 41.02 17.23 
Null space (4Sbs) 

[4] 
40.51 57.14 58.03 22.45 

N. space and Delta 
(4Sbs) 

42.06 57.16 57.14 22.96 

N. space and Delta-
delta(4Sbs) 

52.04 59.69 57.10 21.94 

N. s. and Delta, 
Delta-delta (4Sbs) 

53.06 59.18 58.16 22.45 

1GMM 33.76 55.24 33.06 9.69 
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dynamic features extracted in sub-bands of frequency applied 
to the multiple sub-band classifier system which uses the null 
space. The results obtained show that the inclusion of 
dynamic features is capable to increase the performance of 
the recognition.  

  Several experimental results of text-independent speaker 
identification using a large speech material and different 
types of environmental noises have been presented in order to 
demonstrate the performance of the recognition systems.  
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