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Dynamic Bayesian Approach Applied to Link
Adaptation for 5G Wireless Systems
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Abstract— With technological development, wireless communi-
cation has been one of the fastest growing fields of Computing
and Engineering in recent years. This fact requires that new
approaches be developed to ensure better performance and reli-
ability in wireless communication. In this paper a new approach
has been proposed as a solution to the problem of adaptive
modulation and coding (AMC), through the development of
an extension of the method naive Bayesian classifier, known as
dynamic naive Bayesian classifier, to maximize spectral efficiency.
The proposed approach exhibits a better performance than
k-nearest neighbours algorithm and the traditional Look-Up
table solution, with average classification error 2.85%, which
represents approximately 10% with respect to the most similar
method.

Keywords— Adaptive modulation and coding, Link adap-
tation, Bayesian network.

I. INTRODUCTION

With the rapid development of technology, wireless com-
munication has been one of the fastest growing fields of
Computing and Engineering in recent years, and this is mo-
tivated mainly by the great demand for services based on
multimedia contents. In the past decade, adaptive modulation
and coding (AMC), based on machine learning has attracted
much attention of researchers, and reason for this is that
traditional solutions to the AMC problem such as Look-Up
table (LUT) are not obtained in real time, they may require
a great amount of memory in order to be stored, and they do
not reflect the unique radio-frequency characteristics of each
device [1], [2], [3]. In this sense, it is necessary to develop
other tools or techniques in order to ensure wireless system
to choose the highest order modulation schemes depending on
the channel conditions to achieve higher system throughput’s
of the particular user based on the received signal quality by
minimizing the BLER, noise and interference. A survey of
the main implementation techniques shows that more common
machine learning applied in AMC problem are: k nearest
neighbours (k-NN), neural networks (NN), support vector
machine (SVM) and random forest (RF). In this context, k-
NN algorithm are discussed in [1] and [4], whereas in [2],
a comparison between NN and k-NN to the problem was
proposed. In [5], three supervised learning techniques, k-NN,
SVM and RF, are applied. In [6], is proposed a mapping
between the channel state information (CSI) and parameters
such as rank indicator (RI) and channel quality indicator (CQI)
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feedback. The authors first propose an unsupervised artificial
neural network called autoencoder and multi-class SVM to
select MCS through SNRs (Signal-to-noise ratio) for MIMO-
OFDM systems. A scheme based on matrix channel is also
proposed to select spatial mode and MCS for MIMO systems,
where autoencoder is used to extract features from CSI. [7]
proposes a framework using k-NN based on the singular value
decomposition (SVD). The experiments reported show that the
proposed framework can successfully classify each MCS and
perform perfect selection of MCS for frequency flat fading
channels. In [8], was proposed an approach for link adaptation
using fuzzy rule-based system for packet-based wideband
networking waveform of software defined radio. According
to the authors, this system selects an optimum pair of modu-
lation and multicode indices to provide possible maximum or
desired throughput, depending upon the throughput required
by the user or application. The reported result shown that
the proposed scheme reaches better throughput, reducing the
packet retransmissions overhead. [9] propose the application of
machine learning technique for channel-type identification in
IEEE 802.11ac systems. According to the authors, the benefit
of channel-type identification for the link adaption in 802.11ac
systems is demonstrated, with up to 1.6 dB gain achieved
at high SNR and classification accuracy of more than 94%.
In [10], is proposed an AMC method based on a new on
a simplified distributed space-time block coding scheme for
a cooperative network with single antenna source and relay
nodes. The results reported revealed that, relative to k-NN,
the proposed solution enjoys better precision and robustness,
and allows achieving higher objective performance.

In this paper a new approach known as dynamic naive
Bayesian classifier (DNBC) has been proposed as a solution
to the problem of modulation and adaptive coding scheme,
in order to optimize the precision of the system, ensuring
spectral efficiency. In this sense, our research contributions
can be summarized as follows:

• We propose a design and implementation of an approach
with high precision, that ensures a given BLER while
maximizing the throughput. The experimental results
show that the proposed solution has an average classi-
fication error 2.85%;

• We investigate if the SNR observations in each state are
normally distributed through of the Kolmogorov Smirnov
test, this is because many of the statistical procedures,
including correlation, regression, t tests, and analysis
of variance, are based on the assumption that the data
follows a normal distribution [11];

• In addition to the comparison between the proposed
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method and k-NN, one of the most popular machine
learning algorithms, we also provide a comparison with
the baseline solution LUT.

The rest of the paper is organized as follows: In section 2,
we present the problem statement. The proposed solution is
described in section 3. Experimental results are described in
section 4 and conclusion are presented in section 5.

II. PROBLEM STATEMENT

The objective of link adaptation based on AMC, is to select
the optimal AMC parameters, such as the modulation order M
and convolutional coding rate C, to maximize the throughput
R under block error rate (BLER) constraint as given by [12]:

MCS(γ) = argmax
i∈S

{Ri | BLERi(γ) 6 BLERTar} (1)

where γ represents SNR feedback from the receiver, i
denotes the ith modulation and coding scheme (MCS), S =⋃N
i=1MCSi is a set of MCSs, Ri is the instantaneous data

rate ofMCSi, BLERi(γ) is BLER of MCS i at SNR (γ) and
BLERTar represents the target of BLER, i.e. the maximum
allowable BLER. Consider a MIMO-OFDM system with Nr
and Nt representing, the number of receive and transmit
antennas respectively. The received symbol of the m-th symbol
m ∈ {1, 2, · · · , No} and the n-th subcarrier ∈ {1, 2, · · · , N},
after discrete Fourier transform (DFT) is given by:

Y [m,n] =
√
EsH [n]X [m,n] +V [m,n] (2)

where X [m,n] is the transmitted symbols, Es designates the
expected total transmit energy, Hn ∈ C represents the chan-
nel matrix, V[m,n] is the complex additive white Gaussian
noise (AWGN), where the real and imaginary components are
independent and identically distributed (iid) normal random
variables with zero mean and variance N0 [13].

III. PROPOSED SYSTEM

We proposed solution is based on Bayesian network (BN),
which is denoted by B = 〈G, θ〉, is a directed acyclic
graph. With G = (V,E) defined by a pair composed of
vertices (V ) that represent a set of random variables, x =
{X1,X2, · · · ,XN}, and edges (E) represent the dependence
between the random variables. θ represents the set of condi-
tional probabilities that are related to each random variable.
AMC from this concept is defined in the following form: let
snr = {snr1, snr2, · · · , snrN} be the SNR vector observed
and MCSi, for i = 1, 2, · · · , N , MCSs. Select MCSi if
P (MCSi|snr) > P (MCSj |snr), for i, j = 1, 2, · · · , N and
i 6= j. This classification is formally obtained by applying the
well-known the Bayes theorem given by

P (MCSi|snr) =
P (snr|MCSi)P (MCSi)

P (snr)

=
P (snr1, snr2, · · · , snrN |MCSi)P (MCSi)

P (snr)

(3)

Using the general multiplication rule [14],
the term P (snr1, snr2, · · · , snrN |MCSi), can be
decomposed as P (snr1, snr2, · · · , snrN |MCSi) =
P (snr1|snr2, · · · , snrN ,MCSi)×
P (snrN−1|snrN ,MCSi)P (snrN |MCSi).

If snri ⊥⊥ snrj |MCSi,∀i, j, 1 6 i, j 6
N , then P (snr1, snr2, · · · , snrN |MCSi) is given by∏N
i=1 P (snr|MCSi). Thus, P (MCSi|snr)

∝ P (MCSi, snr1, · · · , snrN )
∝MCSi× P (snr1, · · · , snrN |MCSi)
∝ P (MCSi) × P (snr1|MCSi) × · · · × P (snrN |MCSi),
which results in

P (MCSi)
N∏
i=1

P (snr|MCSi) (4)

Equation 4 is a special case of BN, known as a naive
Bayes (NB). More details on this classifier can be obtained
in [15] and [16]. In order to consider the temporal infor-
mation inherent to the problem, we propose a variation of
this algorithm, called the dynamic naive Bayes classifier,
which is best suited to real time system modeling. This
model is an extension of Hidden Markov model (HMM)
and when applied to our research theme, is composed by
the set snrtM =

{
snr1M , snr

2
M , · · · , snrTM

}
, where snrtM ,

for each t = 1, 2, · · · , T is a set of M snr
′
s values

generated by the process at state S = {S1,S2, · · · ,ST },
in our case, corresponds to set of class MCSs St, at
each time t. From this concept, we define the joint prob-
ability distribution of (snrt,S ) through following equation
P (snr,S ) =

∏T−1
t=1 P (St+1|St)

∏T
t=1

∏M
j=1 P

(
snrtj |St

)
.

The term P (St+1|St) represents the transition probability
distribution that describes the effects of previous chose MCSs
on the recognition of the current MCS. Thus, DNBC is defined
by equation 5.

λ =
{
P (MCS1) , P (MCSt+1) , snr

t
M

}
(5)

The classification process is given of a sequence of snr
′
s

and L DNBC {λi | i = 1, · · · ,L}, each of them trained
with samples of a particular MCS class, where the ideal
model is obtained as λi = argmax

λi

P (snr | λi). There is

no known way to analytically solve the model in question.
We can however apply the Baum-Welch algorithm [17], to
iteratively improve P (snr) until no significant difference are
found in the consecutive likelihoods in the model. Figure 1
and Algorithm 1 summarizes the proposed solution.

Fig. 1: Graphical representation of a DNBC unrolled 2 times
with N attributes.
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Algorithm 1 link adaptation based on DNBC.

1: Read snrtM =
{
snr1M , snr

2
M , · · · , snrTM

}
.

2: repeat

3: Apply the algorithm defined in [17], in order to obtain

λi = argmax
λi

P (snr | λi).

4: until no relevant difference in two consecutive likelihoods

of the model is found or the maximum number of itera-

tions is reached.

5: Calculate the mean and standard deviation of the predic-

tion variables in each class.

6: repeat

7: Calculate P (snr|MCSi) = 1
σi
√
2π
e−(snr−µmcsi)

2
/2σ2

i

8: until all the conditionals probabilities has been calculated.

9: Obtain the likelihood of each MCS and select the most

likely MCS i.e. argmaxP (MCSi | snr).

IV. RESULTS AND DISCUSSION

In our experiment we considered an omnidirectional an-
tenna model for Base Stations (BS) and User Equipment
(UE), with transmit power of 43 dBm and heights given
by 15m and 1.5m, for BS and UE, respectively, according
[18]. In addition, a bandwidth with a frequency of 28 GHZ
has been defined. We also consider an urban macro sce-
nario, with a geometric channel model [19] and [20] given
by H =

√
NtNr

∑L
l=1 αlar (θl) a

H
t (φl), where L is the

number of paths, αl represents the complex path gain of
the l-th propagation path, θl ∈ {0, 2π} and φl ∈ {0, π}
are angles of departure (AoD) and angles of arrival (AoA)
of the L-th path at transmitter and receiver, respectively.
at (θl) and ar (φl), denote the array response vectors for
transmitting and receiving antennas arrays. The array re-
sponse of vectors at (·) and ar (·), are given respectively

by ar [θl] =
1√
Nr

[
1, ej

2π
λ d cos θl , · · · , ej(Nr−1) 2π

λ cos θl
]T

and

at [φl] =
1√
Nr

[
1, ej

2π
λ d cosφl , · · · , ej(Nr−1) 2π

λ cosφl
]T

, where
λ is the transmission wave length and d is the antenna
spacing. This channel model was developed based non-line-
of-sight, in which shadowing was modeled by to a log-normal
distribution with standard deviation of 6 dB, according [20].
The simulation starts with the UE moving away from the BS
at a speed of 5km/h, with start and end points equal to 20m
and 100m from the BS, respectively. After this procedure, the
EU returns to its original position through the same path in
the reverse direction.

A physical layer model (PHY) in the 5G NR standard was
adopted according to [20] and [21]. This standard supports
quadrature phase shift keying (QPSK), and three types of
modulation of quadrature amplitude modulation (16QAM,

64QAM and 256QAM) for Physical downlink shared channel
(PDSCH).

We have implemented a DNBC with five states ergodic
probability transition model distribution and trained with ex-
pectation–maximization (EM) algorithm, where the stopping
criterion is achieved if the absolute difference of log likelihood
of two consecutive models in an EM iteration is less than
0.01, according to [22], [23] and [24]. In order to verify that
observations in each state are normally distributed, we applied
the Kolmogorov Smirnov test. In this test, snrt is considered
a random sample from an unknown continuous population
having the cumulative distribution function F (x). To develop
this test, the following hypotheses were considered, with a
significance level of α = 0.05:{

H0 : The data ∼ N(µ;σ2);

H1 : The data don’t ∼ N(µ;σ2).
(6)

The statistic used for the test is D = max
x
|F (x)− Fn(x)|,

can be interpreted as maximum vertical displacement between
F (x) and Fn(x), about the amplitude of the possible values
of x. To take a decision about H0, the test criteria are, reject
H0, if Dn ≤ Dn,α (tabulated value) [25], otherwise accept
H0. The source code in R [26] in Appendix A, shows the
result for the test in question. Since P -value is greater than
0.05, statistically we have enough evidence to conclude with
a significance level of 0.05 that the samples obtained in each
state are from a normal distribution, in addition, the boxplots
in Figure 2, indicates that there is no significant difference
between the observations.

Fig. 2: Boxplots snrt samples.
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The proposed DNBC method was compared with traditional
solutions to the AMC, LUT and the classical supervised
algorithm kNN in order to verify the efficiency of the proposed
solution. The kNN is a non-parametric algorithm that classifies
a new object based on similarity to classes. The classification
procedure consists of calculating the distance between the
observed object and the nearest k classes. Once the k closest
classes are identified, the observation will be classified to the
most common class among its neighbours. In the simplest case
of this algorithm, when k = 1, called 1 nearest neighbor (1NN),
the query point is simply classified into the closest class. This
procedure is illustrated in Figure 3. Note that when a new
observation is obtained (query point), a circle is implemented
around that observation that captures the 6 closest neighbors.
Based on this rule, k-NN would then classify the observation
as belonging to MCS 1. To implement this algorithm, we
use the Euclidean distance. This together with other measures
of similarity, including Mahalanobis, Minkowski, and cosine
distances, are discussed in [16].

Fig. 3: 6-NN AMC.

Based on the analysis of the results, the proposed solution
has average classification error (εm) = 2.85%. This result
represents a difference 42% with respect LUT and almost
almost 10% with respect to kNN. With respect to the k value
of the k-NN algorithm, there is no optimal value for in the
literature. [27] suggests that k must be small compared to
the total number of observations, whereas [28] recommend
k ≈

√
N . In this sense, different values of k were tested

through Pearson correlation coefficient between the correct
classification and the estimated classification. This experiment
suggests that the k-NN method with k = 3 is more suitable
for classification problem in question. The traditional LUT
method, showed worse results compared to other algorithms.
Despite its easy implementation and speed, this method is
inefficient for modern systems in real time. A comparison
of all algorithms, including the (εm), coefficient of variation
(Cv), the first quartile (Q1), and the modal MCS are displayed
in Table I, whereas the Figure 4, shows the cumulative
distribution function (CDF) of classification algorithms as a

function of the spectral efficiency, respectively.

Fig. 4: CDF of the solutions as a function of the spectral
efficiency.

TABLE I: Statistics of AMC estimates.

ALGORITHM εm Cv Q1 Mo

Target - 3.2% 27 25
DNBC 2.85% 3.3% 27 25
KNN 9.9% 3.5% 20 21
LUT 45.1% 57% 7 13

V. CONCLUSIONS

In this paper a new approach has been proposed as a
solution to the problem of adaptive modulation and coding
(AMC), through the development of an extension of the
method naive Bayesian classifier, known as a dynamic naive
Bayesian classifier. The proposed algorithm presented better
performance than other methods with an average classification
error 2.85%. This result represents a difference of almost 10%
with respect to the most similar method. The future research
includes:

• Application of the proposed solution to multi-layer multi-
user MIMO transmission;

• Development of a hybrid system composed of a Bayesian
network and a deep neural network to maximize system
performance.
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APPENDIX

Result of the Kolmogorov-Smirnov test, implement in the
R language.

1

2 # Kolmogorov−Smirnov t e s t i n R .
3

4 # Outpu t :
5

6 One−sample Kolmogorov−Smirnov t e s t s t u d e n t−t
7 wi th d f = 7 4 . 7 , l o c a t i o n = 3 4 . 0 9 , s c a l e =4 .52
8

9 d a t a : s n r _ d i s t [ , 12]
10

11 D = 0 .0099792 , p−v a l u e = 0 .9431
12

13 a l t e r n a t i v e h y p o t h e s i s : two−s i d e d

Listing 1: Result Kolmogorov-Smirnov test in R


