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Abstract—In this paper we propose an inverse QR decompo-
sition based recursive least squares algorithm (IQRD-RLS) for
the linearly constrained minimum variance (LCMV) receiver for
CDMA transmission systems. The proposed algorithm is numer-
ically stable in finite precision environments and it is suitable for
implementation in systolic arrays or DSP vector architectures.
It is shown through computer simulations that the proposed
algorithm outperforms, in terms of bit error rate, previously
proposed IQRD-RLS based blind detection algorithms.

Index Terms—CDMA, blind receiver estimation, linearly con-
strained minimum variance, IQRD-RLS filtering, constrained
RLS.

I. I NTRODUCTION

Code division multiple access (CDMA) is a spread spectrum
technique that allows multiple users to simultaneously share
the same bandwidth. The most common CDMA system is
the so-called direct sequence code division multiple access
(DS-CDMA), which spreads the information bearing symbols
over a wide frequency band, which is much greater than
the coherence bandwidth. In recent years, block transmission
systems have been widely studied in CDMA schemes and
several CDMA based systems have appeared, such as single
carrier and multicarrier CDMA systems.

Single carrier CDMA (SC-CDMA) is basically a DS-
CDMA system with a guard interval between each symbol
[1]. As in DS-CDMA, the chips are transmitted sequentially
over the whole bandwidth allocated for that user. On the
other hand, multicarrier CDMA (MC-CDMA) is based on
the concatenation of DS-CDMA and OFDM technique [2].
The data symbols are spread and the chips are simultaneously
transmitted, each one over a narrowband subchannel by the
multicarrier modulation (frequency domain spreading). These
two block transmission system can be used with cyclic prefix
(CP) or zero padding (ZP) techniques as guard interval.

However, as mentioned before, the frequency band occupied
by such CDMA based systems is much greater than the
coherence bandwidth, and then suffers from multiple access
interference (MAI), that arises even with the use of orthogonal
codes. To deal with MAI, the use of multiuser detection
is a well known approach. Blind adaptive linear receivers
are interesting techniques for multiple access interference
suppression, as they can be used in situations where a receiver
loses track of the desired signal and a training sequence is not
available.

A linearly constrained minimum variance (LCMV) receiver
for blind user detection was proposed in [3]. This receiver
presents, under ideal conditions, a performance close to the
exact minimum mean square error (MMSE) solution, however,
it was found that its performance degrades considerably due
to channel estimation errors and other possible types of signal
mismatch. Stochastic gradient algorithms and recursive least
squares (RLS) adaptive algorithms were proposed for the
LCMV receiver in [4].

It is well known that among the members of the RLS family,
QR decomposition based RLS (QRD-RLS) algorithms have
better numerically stability in limited precision environment
[5] and they can be efficiently implemented in systolic arrays
[6] or DSP vector architectures [7]. Constrained QR decom-
position based RLS algorithms have been proposed in [8]
and [9], nevertheless, they are only solutions to the minimum
variance distortionless response (MVDR) receiver, as wellas
the algorithm proposed in [10] which is an implementation of
the inverse QRD-RLS (IQRD-RLS) algorithm for the MVDR
receiver. In [11], Chern et al. present an inverse QRD-RLS
solution to the LCMV receiver.

In this paper we propose a linearly constrained minimum
variance IQRD-RLS algorithm suitable for blind multiuser
detection in CDMA transmission systems. The proposed al-
gorithm can be viewed as an extension of the discussed in
[11], the difference is that the adaptation of the Kalmanloss
[7] is performed by orthogonal hyperbolic plane rotations,and
results in better numerical accuracy and enhanced performance
in terms of bit error rate (BER) and signal-to-interferenceplus
noise ratio (SINR).

This paper is structured as follows. Section II describes
the CDMA based system model. In Section III the linearly
constrained minimum variance receiver is introduced and its
RLS solution is derived in Section IV. In Section V the
proposed algorithm is derived. Some simulation experiments
are presented in Section VI, while Section VII gives the
conclusions.

II. SYSTEM MODEL

Let us consider the downlink of a synchronous multicarrier
code division multiple access (MC-CDMA) system withK
users, as depicted in Fig. 1. For userk, the transmitted
symbols, bk(i), drawn from a complex signal constellation



with zero mean and unitary average symbol energy, are first
spreaded by a codeck of M chips per symbol. The chips are
grouped in blocks of lengthM (i.e., one symbol per block)
and transmitted in multicarrier fashion by aM × M matrix
FH , where F implements the normalized discrete Fourier
transform, such thatFFH = FHF = IM , andIM represents
theM ×M identity matrix.

In order to allow interblock interference (IBI) suppression
at the receiver, a lengthG cyclic prefix insertion is performed
before transmission by aP × M matrix T , detailed below,
where0m×n represents anm×n null matrix andP = M+G;
G must be at least the channel order to avoid IBI:

T =

[
0G×(M−G) | IG

IM

]
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Figure 1. MC-CDMA downlink transmission system.

Each block of chips is then serially transmitted through
a multipath channel, modeled here as a FIR filter with
L taps whose gains are samples of the channel impulse
response complex envelope. Assuming that during thei-th
block duration the multipath channel impulse response remains
constant, that is,h(i) = [h0(i) . . . hL−1(i)]

T , the transmission
through the multipath channel can be represented by aP ×P
lower triangular Toeplitz convolution matrixH(i), whose first
column is[h0(i) . . . hL−1(i) 0 . . . 0]T .

The transmitted signal is corrupted by a complex white
Gaussian noise vectorn(i) = [n0(i) . . . nP−1(i)]

T whose
covariance matrixE

[
n(i)nH(i)

]
= σ2IP , where (·)T and

(·)H denote transpose and Hermitian transpose, respectively.
The operatorE [·] stands for ensemble average.

Finally, through the use of a matrixR = [0M×G| IM ], the
receiver removes the cyclic prefix from the received signal to
eliminate IBI. We can, therefore, represent the input to the
detection filter by theM dimensional vector

r(i) = RH(i)TFH
K∑

k=1

√
ρkckbk(i) + n′(i) (1)

whereρk is the average power of the transmitted symbol for
userk andn′(i) = Rn(i).

Note that the discrete Fourier transform usually present
at the receiver was not applied. Actually, this operation is
embedded in the receiver filter that will be derived in the next
section. The observation vectorr(i) in (1) for a synchronous
K-user system can be rewritten as

r(i) =
K∑

k=1

√
ρkCkh(i)bk(i) + n′(i) (2)

whereCk is anM ×L code related circulant matrix for user
k, containing circularly-shifted versions of thek-th user trans-
formed spreading sequence,FHck [12]. Note that although a
MC-CDMA system was modeled, a similar signal model in
(2) applies for other CDMA based systems [12].

III. L INEARLY CONSTRAINED M INIMUM VARIANCE

RECEIVERS

Considering an observation vectorr(i) in the form of (2),
the design of a receiver filterwk(i) based on the minimum
variance (MV) criterion uses the output energy as a cost
function to be minimized [3]:

JMV (wk) = E
[
|wH

k r(i)|2
]
= wH

k Rrrwk (3)

whereRrr = E
[
r(i)rH(i)

]
is the autocorrelation matrix of

the observed vector. In order to avoid the trivial solution,
wk = 0, and anchor the desired user signal, the minimization
problem in (3) is subject to the linear set of constraints
CH

k wk = gk, wheregk is a parameter vector, that can be
appropriately chosen or can be the result of some optimization
problem [3]. In this paper we assume thatgk is a given vector.
For the case of unknown vectorgk, a numerically stable and
robust algorithm is proposed in [13].

Using the method of Lagrange multipliers, the optimum
receiver filter is obtained as [4]:

wk,MV = R−1
rr

Ck(C
H
k R−1

rr
Ck)

−1gk. (4)

In practical situations the matrixRrr is unknown at the
receiver, and must be estimated. A commonly used approach
is the use of the weighted least-squares as objective function,
which renders the so-called RLS algorithm, as shown in the
next section.

IV. L INEARLY CONSTRAINED M INIMUM VARIANCE

WEIGHTED LEAST-SQUARESRECEIVER

The least-squares solution to the minimum variance receiver
is the vectorwk(i) that minimizes the output error in the
weighted least-squares sense, subject to a set of linearly
constraints, i.e.,

wk(i) = argmin
w

i∑

j=1

λi−j
∣∣wHr(j)

∣∣2 (5)

subject to

CH
k wk(i) = gk (6)



where0 ≪ λ < 1 is the forgetting factor. Using the method of
Lagrange multipliers, the optimum receiver filter in the least-
squares sense is obtained as [14]:

wk(i) = R−1
rr

(i)Ck(C
H
k R−1

rr
(i)Ck)

−1gk (7)

where

Rrr(i) =

i∑

j=1

λi−jr(j)rH(j)

= λRrr(i− 1) + r(i)rH(i). (8)

The direct implementation of (7) is computationally inten-
sive because involves, among other matrix operations, two
matrix inversions. In [14] is proposed an implementation that
uses Kalman recursions to compute recursivelyR−1

rr
(i) and

the associated matrices needed in the receiver filter estimation.
Nevertheless, Kalman recursions are based on the matrix
inversion lemma which is known to be numerically instable
in finite precision environments. To overcome this problem,a
numerical stable linearly constrained IQRD-RLS algorithmis
proposed in the next section.

V. A L INEARLY CONSTRAINED M INIMUM VARIANCE

IQRD-RLS ALGORITHM

In this section propose a linearly constrained IQRD-RLS
algorithm. The proposed algorithm is better explained as a
two stages algorithm, where the first stage performs the rank-
one update ofR−1

rr
(i) in similar way as in the IQRD-RLS

algorithm [15] while the second stage performs a rank-one
matrix downdate in order to compute the desired matrices.

Let Rrr(i) be updated as in (8) andU(i) be its the
Cholesky factor, such thatRrr(i) = UH(i)U(i). ThenU(i)
can be updated fromU(i−1) by an orthogonal matrix,Qθ(i),
as [

0
T

U(i)

]
= Qθ(i)

[
rH(i)

λ1/2U(i− 1)

]
(9)

whereQθ(i) is constructed by planar rotations that annihilates
rH(i) over λ1/2U(i− 1) [16].

However, in (7) the inverse of the autocorrelation ma-
trix is desired. It is worth emphasizing thatR−1

rr
(i) =

U−1(i)U−H(i), and thus, it is desired to update matrix
U−H(i) instead of matrixU(i), as in the unconstrained
IQRD-RLS algorithm [15].

In [7], Pan and Plemmons prove that the same matrixQθ(i)
used to updateU(i) can be used to updateU−H(i) by the
following expression:

[
zH(i)
U−H(i)

]
= Qθ(i)

[
0
T
M×1

λ−1/2U−H(i− 1)

]
(10)

wherez(i) = −δ(i)R−1
rr

(i)r(i) and Qθ(i) is a matrix that
implements successive Givens rotations that annihilates vector
a(i) = λ−1/2U−H(i− 1)r(i) such that

[
δ(i)
0M×1

]
= Qθ(i)

[
1

−a(i)

]
, (11)

with δ2(i) = 1 + a2(i).

The Kalman gain can be computed as [15]:

κ(i) = R−1
rr

(i)r(i)

= −z(i)/δ(i). (12)

Note thatz(i) is not computed directly, but it is a consequence
of (10).

From (10), as Qθ(i) is orthogonal andR−1
rr

(i) =
U−1(i)U−H(i), we have:

R−1
rr

(i) = λ−1R−1
rr

(i− 1)− z(i)zH(i) (13)

now, pre-multiplying (13) byCH
k and pos-multiplying by

Ck we get thatΩk(i) = CH
k R−1

rr
(i)Ck can be recursively

computed as

Ωk(i) = λ−1
Ωk(i− 1)−αk(i)α

H
k (i). (14)

where αk(i) = CH
k z(i). Observe that (14) is a rank-one

downdate process and the QR decomposition method based in
(9) does not apply due the negative sign ofαk(i)α

H
k (i) [7].

Downdating algorithms by orthogonal plane rotations are well
studied in [16], [17], [18], however, a more computationally
efficient scheme is the use of hyperbolic rotations [19], [7], as
shown next.

A. DowndatingΩ−1
k (i)

For this purpose, we say that a matrixPk(i) is pseudo-
orthogonal if

Pk(i)ΦPk(i) = Φ (15)

for some signature matrixΦ = diag(±1). Now, let us define
Dk(i) as the Cholesky factor ofΩk(i) such thatΩk(i) =
DH

k (i)Dk(i).
The key observation is that a sequence of hyperbolic or-

thogonal plane rotations can be found, resulting in a pseudo-
orthogonal matrixPk(i) with respect toΦ = diag(−1, IL) so
that [7]

Pk(i)

[
αH

k (i)
λ−1/2Dk(i− 1)

]
=

[
0
T
L×1(i)
Dk(i)

]
(16)

wherePk(i)ΦPk(i) = Φ, and the downdated Cholesky factor
Dk(i) satisfies

DH
k (i)Dk(i) = λ−1DH

k (i−1)Dk(i−1)−αk(i)α
H
k (i) (17)

Pan and Plemmons in [7] proved that the same matrixPk(i)
used to downdateDk(i) can be used to downdateD−H

k (i),
as [

vH
k (i)

D−H
k (i)

]
= Pk(i)

[
0
T
L×1

λ1/2D−H
k (i− 1)

]
(18)

wherePk(i) is constructed from hyperbolic plane rotations
matrices such that

[
qk(i)
0L×1

]
= Pk(i)

[
1

bk(i)

]
, (19)

bk(i) = λ1/2D−H
k (i− 1)αk(i) (20)



and qk(i) =
√
1− ‖bk(i)‖2. In similar way that in the

updating process, the Kalmanlosscan be computed as [7]:

ηk(i) = Ω
−1
k (i)αk(i)

= −vk(i)/qk(i). (21)

Tab. I shows an algorithm to construct a matrixPk(i)
that implements an hyperbolic Householder transform. More
robust algorithms for hyperbolic Householder transforms can
be found in the literature [20], [21], [22], as well systolic
implementations of the algorithms [23].

Table I
HYPERBOLIC HOUSEHOLDER TRANSFORM[5]

1) DefineΦ = diag(1,−IL)
2) Defineβ1(i) the first element ofβk(i) = [1 bTk (i)]T

2) Let e1 the first column of the identity
matrix, then set

xk(i) = Φβk(i) +
(

sign(β1(i))
√

βH
k (i)Φβk(i)

)

e1

3) Setβk(i) = 2/
(

xH
k (i)Φxk(i)

)

4) ComputePk(i) as
Pk(i) = Φ− βk(i)xk(i)x

H
k (i)

Finally, the receiver filter can be computed as

wk(i) = R−1
rr

(i)CkΩ
−1
k (i)gk. (22)

In blind user detection the receiver filter estimation is not
always of interest as it is the receiver filter output, in thatcase
some computational cost can be saved, as the output signal
can be computed as

y(i) = wH
k (i)r(i)

=
1

δ(i)qk(i)
gH
k (i)vk(i). (23)

In Tab. II is summarized the proposed constrained IQRD-
RLS algorithm for blind multiuser detection.

VI. SIMULATION RESULTS

In this section we assess the performance of the proposed
constrained IQRD-RLS blind detection algorithm in terms of
the signal-to-interference plus noise ratio (SINR) and biterror
rate (BER). The simulation results are for downlink BPSK
synchronous MC-CDMA systems withK = 10 active users
that employ Gold sequences of lengthM = 31. The guard
interval length is the same that the channel order, i.e.,L −
1 = G = 3. Regarding power distribution, we simulate near-
far scenario where the interferes have a power20 dB above
desired user. The forgetting factor was set toλ = 0.997. The
results are an average of100 experiments.

We compare the proposed algorithm with the linearly con-
strained minimum variance fast recursive least squares (LCMV
FRLS) algorithm in [14], the linearly constrained minimum
variance IQRD-RLS (LCMV IQRD-RLS) algorithm in [11]
and the linearly constrained constant modulus IQRD-RLS
receiver (LCCM IQRD-RLS) in [24].

In Fig. 2 we plot the SINR for all the algorithms.
We use a fixed channel modeled as an FIR filter,h =

Table II
PROPOSEDCIQRD-RLS ALGORITHM

1) Form the matrix-vector product:
a(i) = λ−1/2U−H(i− 1)r(i)

2) ComputeQθ(i) such that
[

δ(i)
0M×1

]

= Qθ(i)

[

1
−a(i)

]

3) Apply Qθ(i) to [0M×1 λ−1/2U−1(i− 1)]H forming
[

zH(i)
U−H(i)

]

= Qθ(i)

[

0T
M×1

λ−1/2U−H(i− 1)

]

5) Form the matrix-vector product:
αk(i) = CH

k z(i)

bk(i) = λ1/2D−H
k (i− 1)αk(i)

6) ComputePk(i) such that (see Tab. I)
[

qk(i)
0L×1

]

= Pk(i)

[

1
bk(i)

]

7) Apply Pk(i) to [0L×1 λ−1/2D−1
k (i− 1)] forming

[

vH
k (i)

D−H
k (i)

]

= Pk(i)

[

0T
L×1

λ1/2D−H
k (i− 1)

]

6) Compute the receiver filter output and detect
the transmit symbol

y(i) = 1
δ(i)qk(i)

gH
k (i)vk(i)

b̂k(i) = disc {y(i)},
wherez = disc {x} is the symbol of the signal
constellation closer tox.

7) Alternatively compute
wk(i) = R−1

rr (i)CkΩ
−1
k (i)gk

[0.7297 0.5166 0.3657 0.2589]T , and a signal to noise ratio
of 30 dB with respect to the desired user power level. The
results reveal that the LCMV FRLS and the LCMV IQRD-
RLS algorithms exhibits numerical instability as they diverge
after a number of transmitted symbols, while the LCCM
IQRD-RLS and the proposed algorithm are stable, although
the proposed algorithm outperforms the LCCM IQRD-RLS.
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Figure 2. SINR vs. number of symbols for a fixed channel.

In the second experiment we simulate the receiver in a time-
variant scenario. For the time-variant channel, the sequence of
channel coefficients,hl(i) = plαl(i) (l = 0, 1, 2, . . . , L − 1)
is obtained with Clarke’s model. This procedure corresponds
to the generation of independent sequences of correlated unit



power complex Gaussian random variables (E
[
|α2

l (i)|
]
= 1)

with the path weightspl normalized so that
∑Lp

l=1 |pl|2 = 1.
In this work p0 = 0.7297, p1 = 0.5166, p2 = 0.3657 and
p3 = 0.2589. The results are shown in terms of the normalized
Doppler frequency(fdT ), wherefd is the Doppler frequency
and T is the symbol duration. In the simulations afdT =
0.0001 was assumed.

Fig. 3 shows the resulting BER of the LCCM IQRD-RLS
and the proposed algorithm. It can be seen that for small
values ofEb/N0 the two algorithms have almost the same
performance. As theEb/N0 increase the proposed algorithm
presents lower BER. This results from the fact that at higher
signal to noise ratio, matrices of LCCM IQRD-RLS tend to be
more ill-conditioned and then, numerical instabilities appears.
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VII. C ONCLUSIONS

In this paper we proposed an IQRD-RLS algorithm for
blind multiuser detection in CDMA systems. The proposed
algorithm is suitable for implementations on systolic arrays
or DSP vector architectures and, as shown through com-
puter simulations, the proposed algorithm has better numerical
behavior in finite precision environments if compared with
other constrained IQRD-RLS blind detection algorithms. This
numerical robustness results in better performance in terms of
BER and SINR.
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