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Abstract—In the last decade, texture analysis has been widely
applied to image classification. This method has great relevance
on recognition of patterns in medical images surfaces. Alterna-
tively, many studies have investigated the usage of Convolutional
Neural Networks (CNNs) as a technique for classifying texture
images. In this study, a low-complexity CNN was applied to
recurrence plots of voice signals to distinguish the presence
of laryngeal pathology. A data augmentation technique was
employed to increase the number of samples. A study using the
same dataset and another classification approach was considered
for results comparison. The CNN proposed was proven to be
more robust with a 12% increase on accuracy compared to the
previous work.

Keywords—Convolutional neural networks, texture, recurrence
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I. Introduction
Recurrence plots, developed by Eckmann et al. [1], are

based on the idea of recurrence proposed by the French
physicist and philosopher J. H. Poincaré, and constitute a
method that allows visualizing the dynamics of recurring
systems [2]. Such plots consist of two-dimensional matrices
that correspond to digital images with two levels of gray (black
and white), in which pixels can form typical structures such as
isolated points, diagonal, vertical and horizontal lines. These
structures characterize the systems and allow the recurrence
plots to be treated from a small scale point of view as textures
images [3].

In this context, texture analysis is an important tool for
statistical and mathematical characterization of a surface ap-
pearance. In image processing, a texture represents a set of
variations in pixels intensity repeating on a regular or random
basis over an area, thus creating a pattern. Because of the
effectiveness of this attribute in image features analysis, texture
has been used in most studies focused on identifying the
composition of an area. Research such as those by Scalco
and Rizzo [4] and by Sghaier et al. [5] employ this type of
technique.

Several methods have been proposed on the pursuit of an
efficient texture description. Three commonly used approaches
are statistical, structural and spectral. In the statistical ap-
proach, texture analysis is performed using statistical measures
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based on the distribution of gray levels. The structural ap-
proach is based on the idea that textures are composed of
primitive structures, i.e., basic geometric structures forming
the texture. In this case, regularly spaced parallel lines are an
example. The spectral approach, in turn, represents the image
in a space of coordinates whose interpretation is related to
the characteristics of the texture (frequency or size) obtained
through transforms such as Fourier, Gabor or Wavelet [6, 7].
Another relevant aspect for texture analysis is the scale.

According to Parker [8], texture is the property inherent of
a region large enough to demonstrate its recurring nature.
Therefore, if an image represents a smaller area than the
equivalent of a texton (smallest segment of the image in which
it is possible to perceive the orientations of the pattern), it can
not represent a texture.
In the last decade, the usage of texture analysis gained

notoriety in the health field, mainly focused on identifying the
composition of surfaces in biomedical images. The research
by Beckers et al. [9], for instance, proposes the analysis of
texture in CT (computed tomography) of the entire liver to
predict the development of colorectal liver metastases. Another
application presented by Souza et al. [10] analyzes recurrence
plots of voice signals as texture images in order to identify the
presence of pathology in vocal folds. The feature extraction
was based on the wavelet transform of the original images.
Data obtained were later classified by a Multilayer Perceptron
(MLP) neural network.
Despite the advantages promoted by texture analysis, ac-

cording to Andrearczyk [11] classic methods of data pro-
cessing do not generalize satisfactorily to textures that are
complex, numerous or with high intra-class variation, as seen
in several problems. In his study, the author also suggests
that classical analysis approaches do not keep up with the
variation of problems imposed by numerous applications. As
a consequence, complex data classification using classical
image processing algorithms becomes a costly activity, re-
quiring manual work to implement an unique solution for
each problem. The limitations imposed by the aforementioned
approaches can be transcended through the usage of artificial
intelligence algorithms such as Convolutional Neural Networks
(CNNs), commonly applied to classify data in multidimen-
sional matrices format.
CNNs can be highlighted among the algorithms based on

Artificial Neural Networks (ANNs). These algorithms have a
structure similar to biological systems and were developed for
data applications such as images and videos. CNNs eliminate
the need for the feature extraction process, hence images can



XXXVIII SIMPÓSIO BRASILEIRO DE TELECOMUNICAÇÕES E PROCESSAMENTO DE SINAIS - SBrT 2020, 22–25 DE NOVEMBRO DE 2020, FLORIANÓPOLIS, SC

be used directly as inputs of the network.
In this scenario, this study proposes the use of a CNN

to classify recurrence plots of healthy voices and voices
affected by pathology. A CNN of low computational cost
was developed to achieve this goal. A technique to artificially
increase the number of samples in the database was also
developed. The results were also compared with Souza et al.
[10] which uses the same recurrence plots and a classification
method based on feature extraction.

II. Related Works

Andrearczyk [11] proposes the use of CNNs for dynamic
texture (DT) classification. The use of CNNs, explored as
trainable deep filters, are conducted as an alternative for
classical filters (implemented manually for feature extraction).
One of the experiments shows a low complexity CNN for
classification of biomedical images of liver tissues. As the
images present repeated patterns all over the surface, each
image was split into sub-images and then used as independent
inputs to feed the CNN. Splitting the images from the original
database increased the number of samples available for train-
ing. The classification of a full-size image was given by the
most assigned class among the sub-images. Results showed
that this approach had a better accuracy than other studies
using the same database.

Texture analysis has also aided in classifying data with
different image structures. Recurrence plots can provide a way
to visualize the periodicity of a trajectory through the phase
of a time series, making possible to analyze the signal in a
two-dimensional representation. Due to the periodic nature of
recurrence plots, they can be analyzed as texture images. A
study by Hatami et al. [12] investigates the performance of
the recurrence plots applied to a CNN with two convolutional
layers as a solution for time series classification. To validate
this approach an experiment was conducted using the UCR
time series classification file. According to the authors, other
approaches have shown inferior results when compared to the
use of the CNN in the classification of time series.

In regard of the benefit promoted by CNNs in texture
classification, another research can be highlighted. Raw data
from an accelerometer was modeled as recurrence plots by
Garcia-Ceja et al. [13]. Then, a CNN with two convolutional
layers was used to perform physical activity recognition. For
comparison purposes, a Deep Belief Network (DBN) was also
trained with the raw data from the three axis accelerometer and
its magnitudes. An average accuracy of 83% was obtained in
the classification performed with DBN, while the proposed
approach using the CNN had 94.2% accuracy.

A texture analysis was performed by Souza et al. [10] on the
wavelet transforms of recurrence plots of voice signals. Har-
alick descriptors were used for feature extraction. A particle
swarm optimization (PSO) algorithm was applied to select the
best subset of features. Then, a MLP was used to classify the
data. This approach achieved an average accuracy of 86.32%
in the distinction between healthy and pathological voices. The
same database is used in the current study to validate the
efficiency of CNNs in the detection of laryngeal pathology.

III. Database
The voice signals used in this research are part of the

database recorded by the Massachusetts Eye and Ear In-
firmary (MEEI) Voice and Speech Lab [14]. The samples
correspond to the sustained vowel /a/, recorded in a controlled
environment, and sampled at the rate of 25,000 samples per
second, with a resolution of 16 bits per sample. The database
consists of 53 healthy voice files and 112 voice signals affected
by pathology in the larynx, of which 51 have paralysis,
43 Reinke’s edema and 18 nodules in the vocal folds. The
recurrence plots used in this research were generated in the
Visual Recurrence Analysis (VRA) [15] software, obtained
from Souza et al. [10].

IV. Approach
This paper aims to improve the accuracy achieved in earlier

works in distinguish the presence of laryngeal pathology. The
major innovation of this approach is the use of a Convolutional
Neural Network for classifying recurrence plots of voice sig-
nals from the MEEI Voice and Speech Lab [14]. Another point
of enhancement is a data augmentation technique developed
specifically for recurrence plots, considering the nature of the
image and the structures forming the textures. An overview of
the steps adopted in this approach are shown in Figure 1.
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Fig. 1. Block diagram of signals classification.

First, recurrence plots were generated from the voice signals.
Then, a data augmentation technique was applied to increase
the number of samples. The sub-images were then used as
independent inputs to the CNN. The network output were two
classes: healthy and pathological. The classification of a full-
size recurrence plot from the test data-set was given by the
most assigned class among the sub-images.

A. Recurrence Plots
Recurrence plots are two-dimensional matrices of order

# that allow the visualization of the recurring behavior of
dynamic systems, regardless of their dimensionality. In this
matrices, black or white points are marked. A black point
indicates the recurrence of a specific state at time 8 at another
time 9 [1].
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According to Marwan [3], a recurrence plot can be defined
mathematically by Equation 1:

'
<,n
8, 9

= \ (n − || ®b8 − ®b 9 | |), ®G8 ∈ R<, 8, 9 = 1 ...# (1)

In which # is the number of states ®b8 formed by the
system, obtained through the method of time delays [16]. This
method immerses the time series in a <-dimensional space
with time lag g. The neighborhood radius n is a fundamental
parameter in the construction of the recurrence plot. When
calculating the distance between the states of the system, the
neighborhood radius defines which points are inside or outside
that neighborhood (i.e. recurring or non-recurring points).

The step function \ (G) is responsible for placing the re-
curring points within the recurrence plot. If the operation
contained by the step function obtains a value less than or
equal to 0, '<,n

8, 9
assumes a value of 0 indicating that there is

no recurrence between the states. If the operation results in a
value greater than 0, '<,n

8, 9
assumes a value of 1, indicating

that there is a recurrence between states [17].
The recurrence plots used in this research were the same

from Souza et al. [10] in order to guarantee that the same
values of n and g, for comparison purposes. These values were
obtained using the VRA software [15].

B. Data augmentation
Biomedical signal databases generally have a limited

amount of material available due to privacy policies to which
the data is submitted. It is known that CNN algorithms require
a large volume of images in order to reach a generalization
that understands the possible variations in the dataset. In
this context, the recurrence plots obtained from the voice
signals [14] count a total of 165 samples. Despite the small
number, due to the recurring nature of the graphs, they can be
treated as texture images, allowing the number of samples to
be increased by subdividing the original image.

In this study, a data augmentation technique was developed
for recurrence plots based on splitting the images of the
original dataset. The orientation of the pattern structures along
the main diagonal and a minimum scale was considered to
preserve the concept of texton [8]. Originally, recurrence plots
have a size of 384×384 pixels. A mask of size 128×128 pixels
was used to obtain the sub-images. Figure 2 illustrates how the
original images were split. Three sub-images were generated
without superposition and used as independents inputs to the
CNN training.

One great advantage of the data augmentation technique
developed in this work is the fact that the original features of
the image are not modified. The proposed method maintains
the characteristic of the recurrence plots to be symmetrical
about the main diagonal. In this case, some types of operations
could include new features in the database, which could be
erroneously attributed to a non-existent anomaly.

C. Convolutional Neural Network
1) Architecture: CNNs are a type of ANN specialized in

applications involving data whose format is known as grid

Fig. 2. Sub-images delimited by red squares.

topology, such as images and videos. In these networks, con-
volution can be highlighted as the most important operation. A
CNN model was developed to classify the recurrence plots of
voice signals into two classes: healthy and pathological. The
CNN architecture was based on the ones used by Andrearczyk
[11]. More specifically, the number of convolutional layers was
based on the network that obtained the best performance in
the classification of texture images from different databases,
which had a total of 3 convolutional layers. According to
Andrearczyk [11], the experiments conducted demonstrate that
simple networks with reduced number of neurons and weights
are able to obtain competitive results on texture recognition
datasets.
In these circumstances, the architecture consisted of three

convolutional layers followed by pooling operators, a flatten
layer and two fully connected layers. The convolutional layers
were composed of 32 filters of size 3×3. These filters convolve
inputs of size 128 × 128 pixels producing feature maps. The
ReLU activation function was applied with the main purpose
of avoiding a problem known as leak gradient, which can be
circumvented due to the value assigned to the gradient being
always constant. The pooling layers had the discretization
process based on the max value of the receptive field. This
operation is also known as max pooling, which was applied
with a 2 × 2 kernel and a stride of 2. This layer was used in
order to reduce the input image, also reducing computational
cost, memory usage and the number of parameters [18].
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Fig. 3. CNN architecture.

2) Training: Because of the small number of healthy sam-
ples, the number of pathological ones was reduced. Thus, 30
samples of edema, 14 of nodule and 30 of paralysis were
randomly selected, also reducing problems associated with
the high degree of heterogeneity of the pathological class.
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Consequently, the final set used for testing and training the
CNN was made of 53 healthy and 74 pathological samples.

After composing the dataset, 80% of the samples were
reserved for training and 20% for testing, considering each
class proportion. The training group was split according to
the technique of data augmentation exposed in this study. The
images were then used as independent inputs to train the CNN.

A back-propagation algorithm was used to estimate the
network parameters, which is a method based on the gradient
descent optimization. More specifically, the Adam optimizer
algorithm was used, with a learning rate [ = 10−4, V1 = 0.9,
V2 = 0.999 and n = 10−7. During training, the stop conditions
were if the number of epochs reached 100, or, to avoid
overfitting, if the validation loss increased five consecutive
times. In order to ensure a good generalization of the network
regardless of the dataset division, a 5-fold cross-validation
technique was applied, which also helps on avoiding network
overfitting.

The CNN was performed with TensorFlow on a NVIDIA
GeForce GTX 1050 GPU, with 768 CUDA cores and 3 GB
of dedicated memory. Each training epoch took 0.26 seconds
on average, while the prediction of each recurrence plot took
7.3 milliseconds.

3) Classification: After the training finished, the classifica-
tion of the test dataset was performed. In this process, each
image was sliced according to the split applied in training
dataset. An example of the class assignment method is shown
in Figure 4. According to that, the class of the original image
is assigned by summing the classification of different parts of
the image.

Healthy

Recurrence
plot

Sub-images
classification

Recurrence plot
classification

Healthy

Healthy

Pathological

Fig. 4. Method for sample class assignment.

V. Results
The performance evaluation of a neural network consists on

verifying if the class predicted corresponds, in fact, to the class
of the input sample. It can be considered that a pathological
sample corresponds to a positive class, while a healthy sample
corresponds to a negative class. Given that, four outcomes
can be considered: true positives (TP), false positives (FP),
true negatives (TN) and false negatives (FN). Some measures,
such as accuracy, sensitivity and specificity can be obtained
from the parameters TP, FP, TN and FN, contributing to the
evaluation of the network’s performance.
• Accuracy – Indicates the network’s ability to classify
samples correctly. It is mathematically expressed by Equa-
tion 2.

Accuracy =
TP + TN

TP + TN + FP + FN (2)

• Sensitivity – Measures the network’s ability to correctly
identify pathological samples. It is mathematically ex-
pressed by Equation 3.

Sensitivity =
TP

TP + FN (3)

• Specificity – It measures the network’s ability to correctly
determine healthy samples. It is mathematically expressed
by Equation 4.

Specificity =
TN

TN + FP (4)

Results obtained from the CNN trained with an augmented
database are given in Table I. The averages and the respective
standard deviations for accuracy, sensitivity and specificity are
shown for individual classification of sub-images and for the
original recurrence plots.

TABLE I
Classification results.

Sub-Images Recurrence Plots

Accuracy (%) 96.4 ± 2.3 98.3 ± 2.3
Sensitivity (%) 94.3 ± 3.6 97.1 ± 3.9
Specificity (%) 99.3 ± 1.5 100.0

The accuracy was satisfactory, with an average 98.3% and
standard deviation of 2.3% for the original recurrence plots. In
addition, the network showed better efficiency in classifying
healthy images, as indicated by the specificity of 100 %.
Table II gives a comparison between Souza et al. [10] and

the approach proposed in this work. Our method obtained
the most satisfactory results for all parameters with a smaller
standard deviation. In particular, the network obtained an even
greater gain in relation to the classification of pathological
samples, as indicated by sensitivity. This proves that the
approach proposed was able to perform a better generalization
of the characteristics of the pathology when compared to the
state of the art. In these circumstances, it is important to
highlight that the intraclass variation is greater in the set of
pathological samples, which is composed of three types of
pathology. In this case, the features extraction using classical
methods has a greater disadvantage because it is unable to
satisfactorily relate the attributes of all pathology types.

TABLE II
Comparison between proposed CNN and Souza et al. [10]

CNN Souza et al. [10]

Accuracy (%) 98.3 ± 2.3 86.3 ± 2.7
Sensitivity (%) 97.1 ± 3.9 66.5 ± 6.7
Specificity (%) 100.0 89.8 ± 2.9

VI. Conclusions
A CNN was proposed as an alternative method for the

classification of recurrence plots of voice signals. A types
of data augmentation made specifically for recurrence plots
were applied in the network’s training. In addition, the best
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performance obtained in this work were compared to Souza
et al. [10], which classified the same dataset with a method
based on feature extraction.

In general, the approach proposed in this study was efficient.
When compared to Souza et al. [10], the method proposed also
had a superior performance, demonstrating average accuracy
12% higher.
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