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Abstract— The JPEG standard is the most used algorithm
for image compression, with billions of decoders deployed in
either software or hardware. The standard allows for custom
quantization tables, that are transmitted in the bitstream. This
work examines the application of two promising nature inspired
metaheuristics, Particle Swarm Optimization and Dual Simulated
Annealing, in the generation of custom, image-specific, rate-
distortion optimal quantization tables for the JPEG. Our results
show that this approach is capable of producing a JPEG compli-
ant, backwards compatible images that presents a compression
rate about 9% smaller than standard JPEG.

Keywords— Image Compression, Nature Inspired Heuristics,
Numerical Optimization, JPEG Quantization Tables.

I. INTRODUCTION

Image compression is an important research topic, essential
for some applications such as digital photography and even
internet browsing. Among many standards for image compres-
sion, the JPEG standard [1], [2] has stood the test of time,
remaining for more than 25 years as both the most widely
adopted image compression standard and the most used image
format in the world [3]-[5].

In order to ensure cross-compatibility any JPEG file has
to comply with a standardized format defined by JPEG’s
guideline [1]. Since JPEG started to become widespread,
hardware implementations have been developed in various
platforms and nowadays dedicated hardware accelerators for
JPEG are present in most of modern devices [5], guaranteeing
very fast encoding and decoding cycles, which gives it a huge
advantage against newer compression standards, as they do
not benefit from the existing hardware, being unable to match
JPEG’s compression speed.

Therefore, developing modifications on top of JPEG, so
it can take advantage of the existing hardware, instead of
developing new algorithms is still an efficient way to pro-
mote widespread enhancements on image compression with
immediate application. In this regard, a lot of research has
been conducted in determining and design custom quantization
tables, ranging from designing quantization tables for specific
purposes, as enhancing the feature detection [6], image re-
trieval [7] or the preservation of medical image properties [8]
on the compressed images, to heuristics to generate a custom
optimized table for each image [9], [10].

Since the quantization table design problem can be seen as
a multi-objective, non-differentiable, non-smooth optimization
problem, where one aims to minimize both the rate and the
distortion of the compressed image in relation to the original
image, nature-inspired heuristics have stood up as one of the
leading approaches to this purpose [10], [11].
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This work focuses in applying two of the most promising
nature inspired heuristics, Particle Swarm Optimization (PSO)
[12] and Dual Simulated Annealing (DSA) [13], in order to
create custom, image-specific, quantization tables by directly
optimizing a rate-distortion metric. Since custom quantiza-
tion tables are a standard JPEG feature, the output of our
encoder produces enhanced compressed images that are still
JPEG compliant. Results show that our proposed algorithms
outperform the standard JPEG algorithm by an average 10%
in terms of bitrate used for the same quality.

II. RELATED WORK

According to the JPEG standard [1], the JPEG encoding
process is described by four major steps: first, for each
color component, the image is divided into 8x8 tiles, then a
reversible, linear transform, usually the Discrete Cosine Trans-
form (DCT), is applied at each tile. Next, each transformed
block is flattened into a 64 elements array and quantized
according to an 8x8 quantization table, and last, the quantized
coefficients are rearranged in a procedure called zigzag scan
and submitted to entropy encoding.

As the only lossy step on the compression process occurs
in the quantization stage, the quality of the compressed image
is effectively controlled by the quantization table. Therefore,
the quantization table should be explicitly (directly encoded
on bitstream) or implicitly (via the declaration of the quality
factor) provided as an input to the JPEG decoder,guaranteeing,
through an universal support of custom quantization tables, a
fine-grained control on the compressed image quality.

Multiple approaches for generating custom quantization
tables were proposed to take full advantage of this fea-
ture, of which direct rate-distortion optimization and nature-
inspired excelled themselves and gained ground as the leading
paradigms in the literature [10], [11].

In terms of rate-distortion optimization, Wu and Gersho
[14] proposed an optimization lying on minimizing the vari-
ation of the distortion in relation to the compression rate,
obtaining good results, while Ramchandran and Vetterli [15]
has proposed a fast rate-distortion optimization algorithm that
works both for JPEG and MPEG based on thresholding the
quantization scales, also obtaining real compression gain with
relation to the standard JPEG quantization tables.

On the other hand, Particle Swarm Optimization (PSO) has
also enjoyed considerable success in the literature. Li et al
[16], Snasel et al. [17], Fazli et al. [18] and Rabevohitra
and Sung [19] have all found success applying PSO to design
custom quantization tables to improve the quality of hidden
messages in steganography. On its turn, Ma and Zhang [20]
have suggested a cultural-based multi-objective PSO algorithm
for choosing the quantization tables, establishing a pareto front
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of possible quantization tables, achieving a significant visual
enhancement, despite the fact that no evaluation was provided.
More recently, Abbood [21] has also employed PSO for
optimizing quantization tables, but in a context of minimizing
compressed image distortion, obtaining state-or-the-art results.

Lastly, the Simulated Annealing algorithm was recently
explored as an alternative to design quantization tables in
Hopkins et al. [22], optimizing over an image dataset, finding
static (not image specific) quantization tables that considerably
outperforms JPEG standard tables.

III. PROPOSED METHOD

Differently from these other works, the goal of the proposed
method is to optimize a quantization table specific for the
image being encoded. This quantization table will be trans-
mitted in the bitstream, as specified by the JPEG standard
[1], producing a JPEG compliant bitstream. In order to verify
this concept, two different high-performing swarm intelligence
methods, PSO [12] and DSA [13], are employed to optimize
both chrominance and luminance quantization tables.

Both of these methods usually work by minimizing a given
fitness function. Unlike lossless compression methods, which
can have their performance assessed in terms of a single,
uni-dimensional metric, the compression rate, evaluating and
comparing the performance of lossy compression methods can
be particularly complicated, since lossy compression is, by
its very nature, a multi-objective problem where we aim to
minimize simultaneously the size of the compressed data and
the distortion caused by the compression process, even though
there is always a trade-off between them [23].

In terms of image compression specifically, the evaluation
criteria has often lied in determining a cost function linking
the compression and the distortion rates, allowing us to dis-
criminate whether a given operation point gives us a better
compromise between compression and distortion rates than
other. For this purpose, multiple rate-distortion metrics were
developed in the context of nature inspired computing, as
exhaustively described in [11], with the traditional Lagrangian
Cost Function standing out as the most common metric. But
while these metrics succeed in establishing an exchange rate
between compression rate - usually, expressed in bits per pixel
- and distortion - often defined in terms of PSNR -, they
do so by setting arbitrary, static exchanges rates based on
mathematical or statistical assumptions.

This work proposes a new approach, replacing the tradi-
tional cost functions for a image-specific fitness function, gen-
erated by interpolating the base rate-distortion curve obtained
by encoding the image using the provided default quantization
tables. The proposed function, denominated Expected Rate
Gain (ERG), is explained as follows.

A. The Expected Rate Gain (ERG)

From a theoretical, mathematical point of view, any JPEG
compression process can be summarized as a relation between
two ordered pairs, one composed by the original image and
the quantization table and the second one, yielded by the
compression process from the first pair, composed by the

size of the compressed image and an appropriate distortion
measure, such as the PSNR. As an abuse of notation, we can
represent this idea using the following notation:

C:(I,Q)— (S,PSNR) (1)

Where C denotes the compression process, (I, Q) stands for
the ordered pair original image, quantization table, respectively
and (S, PSNR) is the ordered pair for the size and PSNR of
the compressed image, respectively.

Since (S, PSNR) is an ordered pair, if we can ensure that
for every value of S, there is only one value of PSNR, so
we can also define a function £ : S — PSNR. Even though
we cannot strictly guarantee that this condition holds for every
quantization table for a given image, we can empirically verify
that, for sufficiently different quantization tables, such as the
quantization tables produced by varying the quality factor (q)
of the compression, this condition holds, which is sufficient to
allow us to define our intended function.

Moreover, since we supposed there is a (direct) relationship
between the size of the compressed image, S, and the achieved
PSNR, we can also estimate this relationship through a
linear interpolation of the experimental points of the baseline
quantization tables - the quantization tables produced varying
the quality factor (q) from 1 to 100.

Therefore, we can  chose a set T =
{(S,PSNR) : C(1,Q(q)) | 0 < ¢ <100} where it is
possible to define the function £ : S — PSNR, which
allows us to define F (5) as following:

E (S) = interp (S, PSNR) (2)

where interp (S, PSNR) correspond to the linear interpola-
tion considering the S points as the points for the x coordinate,
while the PSN R points are the points for the y coordinate,
and E (S) stands for the Expected PSNR provided the com-
pressed image has size S.

Provided with the concept of Expected PSNR, we can finaly
define our main metric, the Expected Rate Gain (ERG). For a
given pair (S., PSN R,.) submitted to the compression process
C, with an Expected PSNR function E(S), we can find an S,
that solves F (S) = PNSR,, and thus, define the Expected
Rate Gain as:

n

FERG (S.,PSNR,) = =¢ 3)

g

B. The Fixed Quality Expected Rate Gain (FQ-ERG)

We can intuitively understand the Expected Rate Gain as
a measure of quantization table enhancement, since, for a
custom quantization table, it effectively measures the ratio
of the compressed image size and the size that an image
compressed with the baseline, standard quantization tables
would have to achieve the same distortion rate (PSNR).

For the same reason, it is pretty straightforward to realize
that an attempt to optimize directly the ERG will lead to
determining the operating point where the custom tables
outperforms the standard tables by most. Although this result
can be useful in some contexts, allowing an automatic, optimal
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choice of the operation point for compressing a image, its
range of applications is very limited since it fails to provide
support for a crucial feature: controlling the image target
quality.

To solve this issue, we propose the Fixed Quality Expected
Rate Gain (FQ-ERG), an adaption on the ERG to enable it
to support image quality control. The FQ-ERG is defined as
following:

FQ — ERG = (4)
ERG(S.,PSNR,.) , if [PSNR, — PSNR;| < e
ERG(S., PSNR.) +|PSNR, — PSNR; —¢|- P,

otherwise

where S, and PSN R, are the same as in the Expected Rate
Gain, PSN R, is the targeted PSNR for the compressed image
and e defines the PSNR drift tolerance, and P defines a penalty
for PSNRs out of the tolerated PSNR range.

This new metrics expands the power of Expected Rate Gain
allowing users to set a desired distortion rate, creating, there-
fore, a usable, high performing fitness function that requires
very little parameter tuning, as we can derive a very intuitive
heuristic to find good values for the hyper-parameters in an
automatic fashion while also preserving its compatibility with
the current default way to choose the targeted image quality,
setting the value of the quality factor gq.

For this, if a raw PSNR value is targeted, we can take
advantage of the fact that, when establishing a desired image
quality, we are not actually interested in an exact distortion
rate, but rather in the visual experience that corresponds for
that given rate. Thus, we can establish e = 0.5 to ensure the
target image will not deviate more the 0.5 dB from the target
quality. Alternatively, if the image quality is provided in terms
of a strictly quality factor ¢, we can propose that € = min(]
PSNR(q—1)—PSNR(q) |,| PSNR(¢g+1)—PSNR(q) |)
is also a suitable choice of value for €, since it ensures that
the desired optimization will take place only in the region that
corresponds to the desired quality factor.

On the other hand, for most of the applications, a value
of 2 for the penalty factor P already imposes a punishment
harsh enough to guarantee that the solutions will likely lie in
the desired quality range, but from a theoretical point of view,
we can generalize this idea advocating that P should assume
the value of twice the slope of the PSNR in the tolerange
range, or, in other terms, we can find S, and S, that solves
E(S,) = PSNR; — ¢ and E(Sy;) = PSNR; + ¢ and then
assume a P given by the following equation:

2€

pP=2. .
Sy — Sa

®)

C. Farticle Swarm Optimization (PSO)

The Particle Swarm Optimization is a population-based
meta-heuristic where the candidate solutions, called particles,
search a n-dimensional search space, varying their position
(X) according to an stochastic parameter called velocity (V),
which is influenced both by particle’s (P) and swarm’s (G)
best known position [12], [24], [25], according to the following
update rules:

Vit = CoV! + C1Ry (P, — X!) + CaRy (G — X)) (6)
XP = X[+ Vi

where Ry and Ry are random values sampled from a uniform
distribution, and Cy, C7 and C5 are constants.

Since the Quantization Table Optimization problem can be
seen as a 128-dimensional optimization problem on (0, 255)
bounded search space, where each of the first 64 dimensions of
the search space correspond to the values of the chrominance
quantization table, whereas the other 64 dimensions corre-
sponds to the luminance quantization table, PSO can be di-
rectly applied to the Quantization Table Optimization problem
given a fitness function, such as compression rate, lagragian
rate-distortion cost function or even the newly defined FQ-
ERG.

Despite the fact that PSO is a global optimization algorithm,
being expected, therefore, that it will be able to find the desired
global minimum regardless how it is initialized, if a distortion
rate is targeted, we can take advantage of JPEG’s standard
tables to speed up the convergence, defining each particle in
the initial population as a sum of the standard quantization
table that yields the closest distortion rate to the desired one
and with a discrete random vector of the same dimensions.

D. Dual Simulated Annealing (DSA)

The DSA is a stochastic global optimization metaheuristic
[13], based on the combination of both Classical [26] and
Fast Simulated Annealing [27] with local search improvements
[28]. The idea behind SA is to minimize a fitness function in
the same fashion as physical systems minimize their internal
energy, Thus, for each step, the system stochastically decides
between staying on its current position or transitioning to a
new, neighbor position.

The acceptance probability of a transition is determined
both by the value of the fitness function evaluated in the
current and in the neighbor positions and a external, time-
varying, hyper-parameter called Temperature, which controls
the operation point of the exploration-exploitation by adjusting
the tendency of the algorithm to accept uphill moves. For
the quantization table optimization, we will employ the most
frequent probability acceptance function, the Cauchy-Lorentz
visiting distribution, with a hyperbolic decay temperature
function, as comprehensively described in [29] and [30].

Analogously to the Particle Swarm Optimization, the Duan
Simulated Annealing can also be applied for optimizing
JPEG Quantization Tables in a very straight-forward fashion,
representing chrominance and luminance tables by a 128-
dimensions vector and accepting the closest standard quan-
tization tables to the target image quality as the initial guess.

IV. EXPERIMENTAL RESULTS

To evaluate the performance of the proposed methods, PSO
and SA are employed to generate quantizations tables by
optimizing both a typical Lagrangian Rate-Distortion Cost
Function (J = D+AR, where J is the cost, D is the distortion,
measured as the mean squared error, R is the rate, amd A\ is
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Fig. 1: Rate-distortion results for images: (a) kodim09, (b) kodim15, and (c) kodim20.

a parameter that controls the exchange between ditortion and
rate) and the newly proposed Fixed Quality Expected Rate
Gain (FQ-ERG).

The algorithms were benchmarked on the Kodak Image
Dataset, presented on Fig. 2, a dataset composed by 24
uncompressed, 768 x 512 true color images. For each image,
each algorithm generated a custom quantization table for 19
different target quality factors, from ¢ = 5 to ¢ = 95 in steps
of 5. For the Lagrangian Rate-Distortion Optimization, the
value of the Lagrangian multiplier A was determined, for each
point, through a grid search.

Fig. 2: The Kodak Image Dataset

For the PSO, our reference implementation was the one
from DEAP library [31], with the following hyper-parameters:

o Population Size = 20

e Maximum Number of Generations = 50

o Maximum Local Update Factor = 2.0

o Maximum Global Update Factor = 2.0

e Minimum Speed = -3.0

e Maximum Speed = 3.0

On the other hand, the Scipy’s Dual Simulated Annealing
implementation [32] is taken as our reference implementation
for DSA, with the default set of parameters, except for the
maximum number of allowed function evaluations (maxfun),
which is set as 1000. For the JPEG encoding, the popular
Independent JPEG Group’s JPEG still image codec v9 encoder
is employed [33].

The described methods are compared with respect to size of
the compressed image (bits per pixel), Peak Signal-to-Noise

Ratio (PSNR) and both Rate and PSNR Bjontegaard Delta
values [34].

Method BD-Rate (%) BD-PSNR (dB)
PSO FQ-ERG -7.96 0.47
DSA FQ-ERG -7.40 0.46
PSO Lagrangian -7.92 0.49
DSA Lagrangian -3.21 0.21
Pointwise Best -9.11 0.56

TABLE I: Bjontegaard Delta for each Method
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Fig. 3: Average Compression
Ratio vs Number of JPEG
Evaluations

As we can see in the table I, both PSO and DSA opti-
mizations yield considerable enhancements in compression,
providing file sizes about 8% smaller or PSNRs around
0. 5dB higher. More importantly, this enhancement can be
obtained through a process that not only ensures backwards
compatibility, producing a JPEG compliant bitstream, but also
can be performed in near real-time in hardware due to the low
number of required JPEG evaluations.

Furthermore, the support for near real-time implementations
can be extended by appropriately tuning the population size
and the number of generations for the PSO or the maximum
number of iterations and functions evaluations for the DSA
according to the available hardware capabilities. The expected
behaviour of the compression ration with respect to the number
JPEG of evaluations is described in the fig. 3. For the PSO,
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the number of JPEG evaluation is given by the product of the
population size and the number of generations.

Another noteworthy observation is that our new metric,
FQ-ERQ, performs, at average, no worse than the classical
Lagrangian Cost Function, while demands far less hyper
parameter tuning and adjusts itself automatically to any given
image and quality factor, hence being a appropriate option for
an automatic nature inspired JPEG encoder.

V. CONCLUSIONS AND FUTURE WORK

This work presents a framework for generating custom,
image-specific, rate-distortion optimized quantization tables
in an automatic fashion, producing JPEG compliant images
that does not require any change in deployed decoders and
outperform the vanilla JPEG using standard quantization tables
by about a 9% in terms of compression rate. The complexity
of the proposed algorithm is relatively low, and can be further
reduced depending on application requirements.

In terms of future work, a lot of research directions can
be explored, but extending the nature inspired metaheuristic
to jointly optimize both the applied transform and the choice
of the quantization table seems promising. Similarly, there is
a lot of room for improvements in the application of nature
inspired metaheuristics for real-time or near real-time JPEG
encoding. Further research could also investigate the design
of new rate-distortion metrics for nature inspired quantization
table optimization, since our results suggests that an appro-
priate choice for the fitness function may play a role in the
obtained quantization tables, speeding up the convergence of
the algorithms.
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