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Abstract— Gathering channel data to test telecommunication
systems is an essential step to guarantee the quality of the
product. However, it can be a slow process and demand a
considerable amount of effort and investment since it is costly to
make field measurements of mmWaves. Having a ready dataset
at disposal make things way faster and cheaper, allowing a
developer to focus on more specific tasks. This paper presents an
entire multimodal dataset with different kinds of information like
channel communication, urban traffic and obstacles position, got
from two realistic computer simulations made in two different
city models: Beijing and Rosslyn. It also includes detailed
information on how each data is stored.
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I. INTRODUCTION

Taking advantage of machine learning tools to improve
telecommunications is one of the 5G proposals, but it demands
a large amount of available data to test algorithms and evaluate
the performance of systems. Besides that, millimeter waves
(mmWave) measurements for researches in 5G multiple-input
multiple-output (MIMO) demand costly campaigns in elabo-
rated external areas [1].

One of the biggest challenges for 5G data generation is the
fact that real data related to wave propagation is hard to acquire
due time required to prepare the scenery and configuration of
equipment, and cost, due to the acquisitions of specialized
hardware and human resources. In this context, synthetic data
is a viable alternative once its generation has a relatively low
cost and scalability of environments.

The work in [2] presents a dataset with small scale param-
eters taken from ray-tracing (RT) simulations, in which the
snapshots of the simulation are time-related, like frames in a
video. The dataset presented in [3] also contains time-related
data, but it uses images instead of propagation parameters.

This paper presents a novel dataset generated using multiple
data sources. It starts using RT simulations in a scenery of
urban mobility [2], taking advantage of the RT capacity to
handle 5G requirements such as spatial consistency, which
has been a difficulty in stochastic modelling. Then, it uses
LIDAR scans, an obstacle detector, because of the mobility
involved, to provide spatial data about the environment around
the user equipment (UE) and the base station (BS). Finally,
in order to use vision to assist wireless communications [3], a
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methodology was developed to generate footage from the data
previously mentioned, using realistic textures and illumination.

II. FRAMEWORK DESCRIPTION

This work presents a dataset composed by LIDAR scans,
images, propagation data and geographic coordinates.

The overall procedure to generate realistic data is based
on the methodology in [2], which consists of the extraction
of scenery based in real locations [4], and export it to a
RT simulator called Wireless InSite (WI), which is used in
parallel with the open-source Simulation of Urban Mobility
(SUMO) [5], that is responsible for creating the mobility fea-
ture. A python orchestrator coordinates all this [2], generating
the communication data with time correlation. The acquisition
of LIDAR data integrates the RT simulation, returning a point
cloud [6], obtained with Blender Sensor Simulation (BlenSor).
Lastly, the image acquisition is made taking advantage of the
LIDAR environment, with photo-realistic textures added to the
3D objects, where cameras are positioned in the base station
(BS), and an image is rendered for each simulation scene.

Note that the scenery represented across the software above
are “paired”, which means that objects dimensions and posi-
tions match between the systems, so the different data types
represent the same situation.

III. DATA DESCRIPTION

A. LIDAR Data

LIDAR is a type of sensor that works with light reflection,
being able to measure distances untill the first obstacle. Its
data can be stored as a .pcd file (point cloud) that contains the
exact spots that light reflected, being able to create a 3D map
of the sensor surroundings.

A traffic simulation was created on Blensor in the corre-
sponding scenery to obtain precise LIDAR data from the scans.
Blender is a known free software made to allow 3D modelling,
3D animations, texturing and rendering. Blensor is a modified
version of it that allows simulation of range scanning devices.

A point cloud is obtained for each car with a LIDAR sensor
attached, repeating this process for all the simulation scenes.

The LIDAR scans were performed with the following con-
figurations:

• Model: Velodyne HDL-64E2
• Scan distance(m): 120
• Scan angle resolution: 0.17
• Viewing angle: 360
Quantization is done to convert the results into a format

easier readable by a neural network, converting the pcds
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information into Obstacles Matrices, that represents the zone
of interest of the road. Obstructed spots are represented as
1, non obstructed spots as 0, the base station as -1, and the
transmitter is represented as -2.

B. Image Data

Using cameras is an option to understand the traffic situation
at a specific time with a cheaper device. Its information is not
very detailed like LIDAR scans but can work as support for a
precision gain.

Blender has a render function that simulates a camera,
taking pictures like would be done by a real one. In the
generated scenery, for every simulation frame, three photos
are taken from cameras positioned in the BS. Each photo is
stored in a Portable Network Graphic (PNG) colour image.

C. Ray Tracing Data

The data which describe the propagation rays are organized
in a 4D structure Ns × Ntx,rx × Npath × Np, which are
respectively the number of scenes, number of Tx and Rx
pairs, the maximum number of rays (paths) and the path
parameters. Altogether, there are eight parameters available:
Received power (dBm), time of arrival (seconds), angle of
arrival and departure (both azimuth and elevation), Flag ‘1’
for a line of sight ray, and ‘0’ for non-line of sight, and path
phase (degrees). The associated codes for processing this data
made available at [7], including MIMO channels examples.

D. Coordinates

This data serves the geographical localization of the vehicles
in the modelled scenery. This information can be interesting
for applications which assume that GPS information is avail-
able. This data is provided in a comma-separated values (CSV)
file, wherein each row is found: The index of the episode, the
index of the scene, the Rx index, vehicle identification, vehicle
type(car, bus or truck) and ’X,Y’ coordinates

IV. RESULTS

We generated multimodal data for two scenery, representing
areas of the cities Rosslyn-USA, and Beijing-China, chosen
because they have good maps of their buildings [4]. The
parameters of the simulations are shown in Table I, where
T is the sampling interval, Ns and Nepi are the number
of scenes and episodes, respectively. In both scenery were
considered ten mobile Rx’s, and the transceivers configured
to transmit/receive a carrier 60 GHz.

The Fig. 1 shows an image taken from Rosslyn scenery,
already with the textures and with vehicles travelling at the
lanes.

TABLE I
CONFIGURATION OF THE SCENERY REPRESENTED WITH MULTIMODAL

DATA.

Local Frequency T Ns Nepi Mobile
Rosslyn 60 GHz 1 ms 1 2086 True
Beijing 60 GHz 1 s 40 50 True

Fig. 1. Rosslyn scenery with textures applied on Blender.

Tests were done using a deep learning neural network fo-
cused on the selection of best beam pair between a transmitter
and a receiver, in which the input data were processed LIDAR
data, images and coordinates [6]. The results can be seen in
Fig. 2, which shows the Top-K accuracy.
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Fig. 2. Beamforming Top-K accuracy along the epochs using the RayMob-
Time dataset.

V. CONCLUSIONS

The dataset presented in this work is available at [8], and
was made in order to help developers have easy access to
different types of data obtained from an urban environment,
trying to accelerate the advance of projects that would need
a longer time to be finished due to the need to produce its
simulations.
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