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Abstract— This paper presents a feasibility study of performing
equipment inspection on networked environments by exploring
networks specially designed for semantic segmentation task. It
is assumed that the neural network needs to be split and the
resulting two pieces need to be allocated in two devices. The
provided results suggest that the current state of the art on
semantic segmentation is not well-suited for the splitted networks
applications even in the context of the 5G networks.
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I. INTRODUCTION

A typical process inside the industries, to ensure the quality
of the production, is the inspection of products, parts, equip-
ment and components. When performed manually, it can be
a cumbersome and an expensive process by several reasons,
like 1) it requires the creation of specialized labour to perform
such inspections; 2) these inspections can cause bottlenecks
in the production/time to market timeline; and 3) as manual
inspections do not scale as products do, further training is
required to have enough specialists for performing timely
inspections. Many efforts have been directed for researches
like Computer Vision (CV), Internet of Things (IoT), Edge
Computing (EC) and Deep Neural Networks (DNN5s) in order
to automate the inspection process.

In this context, devices with low memory usage, com-
putation cost, power consumption and optimized bandwidth
usage are indispensable. For this propose, the adaptation of
the applications that run through a specific telecommunica-
tion medium plays an important role. The nature of these
adaptations are mainly represented by DNNs compression
and edge-computing, like network pruning [1], [2], [3] and
partitioning of Neural Networkss (NNs) [4], [5] between the
User Equipment (UE) and edge or cloud.

Compressing a DNN can reduce the number of parameters,
computational cost and memory access to the point that a
UE could run it without much accuracy loss while optimizing
energy consumption. The method introduced by Han et al. [1]
achieves a high compression rate by a three-stage pipeline:
pruning, quantization and Huffman coding, being able to run
large networks on sensing devices. Despite working very well
on the majority DNNs, more complex networks can perform
poorly depending on the compression pipeline, so it should be
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used wisely. Another compression algorithm proposes a lossy
compression scheme to achieve a parameter and computational
reduction while maintaining a good accuracy [3]. Although
the above methods achieve good results, for some applications
like drone live target detection [6], running the DNN in the
UE is not practical and can lead to performance loss. Live
drone detection mostly requires image capture, processing and
transmission in real-time, which is too much to handle in one
device, considering the power, bandwidth and computational
costs. In that case, a distributed approach would be well suited.

Surat er al. [7] provided an example of distributed com-
puting that uses a smaller model on the UE for feature
extraction and a larger model on the cloud or edge for post-
processing and classification. Jong et al. [4] proposed a split
at an intermediate layer of the network, focusing on the
transmission accuracy to the end-user machine with minimum
energy consumption. Also, encodes the feature map before
transmission, to reduce bandwidth usage. Although both seem
very similar, distributed computing works by sharing resources
between UEs and cloud or edge (multiple DNNs). In contrast,
network partitioning splits a DNN in a specific layer and
segments the task between the EU and cloud or edge. These
approaches decrease memory access and processing on the
UE devices by implementing collaborative inference between
different entities and increase battery time, allowing better
performance in automated tasks.

Industries of several kinds can be benefited by these
strategies. As an example, the steel industry struggles with
difficulties related to the manual inspection of the production,
ranging from the time that this kind of process requires, to
dangers related to the trade. As a result of this concern, on
the part of the steel industries, Severstal proposed a challenge
on Kaggle for steel defect detection [8] in late 2019.

As image segmentation is particularly interesting to perform
equipment inspection, it is essential to explore the structure of
well-established DNN5s for semantic segmentation assignment,
like Fully Convolutional Networks (FCN) [9], U-Net [10]
and PSPNet [11], in split neural networks scenarios, in or-
der to make possible the automatic object inspection with
good resource usage (memory usage, computational cost and
bandwidth usage).

This paper presents a feasibility study of using splitted
DNNs between UE and cloud for semantic segmentation of de-
fects in steel sheets. In this study, the Severstal dataset [8] was
used as a benchmark and some networks specially designed for
semantic segmentation (FCN [9], U-Net [10] and PSPNet [11])
were analyzed, exploring its resource usage especially in the



XXXVIII SIMPOSIO BRASILEIRO DE TELECOMUNICACOES E PROCESSAMENTO DE SINAIS - SBrT 2020, 22-25 DE NOVEMBRO DE 2020, FLORIANOPOLIS, SC

UE and in the transmission medium.

The major contributions of this paper are 1) to summarize
some of the difficulties related to performing complex tasks on
splitted neural networks scenarios and 2) to show a feasibility
test of using splitted neural networks for automatic detection
of defects on steel sheets, using some well-established DNNSs.

This paper is organized as follows: the adopted evaluation
methodology is described in Sec. II. In Sec. III we present the
results and discuss them and, finally, Sec. IV concludes the

paper.

II. ADOPTED EVALUATION METHODOLOGY

The methodology wused in this paper explores well-
consolidated neural networks for image semantic segmentation
task, which consists of classifying each pixel of an image into
an instance, considering each of it as an object in the scene. In
this study, we consider FCN [9], U-Net [10] and PSPNet [11],
which are DNNs widely used in the detection of minute
details. The FCN structure is an adaptation of DNNs designed
and trained for image classification (like AlexNet [12], VGG
nets [13] and GoogLeNet [14]). The U-Net has an encoder-
decoder structure. The encoder is responsible for collecting
precise information of the image, by contracting the feature
maps, while the decoder expands it, recovering higher charac-
teristics, i.e. spatial information [15]. Finally, the PSPNet [11]
is composed of a ResNet [16] model with dilated network
strategy [17], [18] followed by a Pyramid Pooling Module
(PPM) that provides the fusion of local and global context
information.

A robust dataset was obtained in the Kaggle platform,
available at Severstal: Steel Defect Detection competition [8].
Severstal is a Russian company operating mainly in the steel
and mining sector. It provided a dataset in December 2019
composed of images of steel sheets and its corresponding
defect masks, containing 12568 samples on the training set and
5506 samples on the testing set. The objective of this compe-
tition is to detect defects while classifying them, considering
four labels of defect masks. Fig. 1 depicts an example of the
mentioned dataset of some steel sheets with different defect
masks. However, it is not conspicuous to perceive what is the
real defect (e.g. bubbles), which makes this a complicated task.

The adopted method was developed aiming a feasibility
study of using some well-referenced DNNs designed for se-
mantic segmentation in a networked environment via splitting
them in different layers, analyzing computation cost, memory
usage and operating speed in Frames Per Second (FPS) for
the UE. In this scenario, a Visual Processing Unit (VPU) from
Intel Corporation, named Movidius Myriad X [19] (USB stick)
acts as the UE. Movidius supports frameworks like Tensorflow
and PyTorch besides operating in systems like Windows and
Linux. The end-user machine is an ordinary computer, with
the following specifications: i7 7th Gen, Nvidia RTX 2070
video card (8GB) and 16GB of RAM. In the aforementioned
scenario, an optimal recovery system of the information sent
by the UE is assumed on the cloud.

Fig. 1. Four samples from Severstal dataset [8]. The areas surrounded by
different colors represent different types of defects.

A. Data measure

This subsection exposes how the data presented in this paper
was obtained. The FPS data was acquired by executing infe-
rence on the USB stick, using the benchmark software from
OpenVINO [20]. The inference time was 30 minutes for all
models in which the achieved frame rate was collected. Finally,
all the models were converted to Intermediate Representation
(IR) format using OpenVINO model optimizer with 16-bit
precision.

For memory usage (MB) and computation (GFLOPS),
another OpenVINO software, the model analyzer, dumps data
by analyzing the model .xml (describes the network topology)
and .bin (contains the weights and biases binary data) files.

B. Training process

As the Severstal’s dataset [8] is compounded by a training
set and a test set, 20% of the training set were used in the
validation phase.

Both networks used in this paper were trained in an end-
to-end manner for 100 epochs with batch size equals to 4
samples. To prevent overfitting, the model which achieved the
best evaluation metric was used in the performed experiments.
The initial learning rate for both models is 1 x 10~3 and the
default Adam algorithm [21] is used for stochastic optimiza-
tion.

During the training process, the function that should be
minimized is

Loss(X,X) = BOE(X, X) + Dicejoss(X, X) (1)

where BCE(X,X ) is the binary  cross-entropy,

Diceyoss(X, X) is the dice loss, given by
Diceloss(X, X) =1 = Dicecper (X, X) 2)

and Dicecocs (X, X ) is the dice coefficient between the
ground truth and its predicted set of pixels, respectively.

In order to evaluate the behaviour of the DNNs for this task,
we used the evaluation metric required by the Severstal: Steel
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Defect Detection competition [8], which is the dice coefficient
(Eq. 3). K
. 2x | XNX

Dicewer (X, X) = X OX] 3)
| X+ [X]

III. RESULTS AND DISCUSSIONS
A. Neural network analysis

For all DNNs five possible splitting points were considered:
i) all the five max-pooling layers of the U-Net encoder
structure; ii) all the five maximum pooling layers of the FCN-
X (i.e. FCN-32s, FCN-16s, FCN-8s) backbone (VGG-16 [13]);
iii) the first maximum pooling and the last convolutional layer
of all residual block of the PSPNet backbone (dilated ResNet-
50).

The results in Fig. 2 presents the bitrate and the number
of layers allocated in the UE for a given DNN and splitting
point. According to the picture on top, the achieved bitrate
can be controlled by choosing a specific splitting point inside
the DNN structures, and the FCN-X provides more variations
in the bitrate when switching the splitting point. On the other
hand, from the picture on the bottom, the PSPNet allocates
more layers in the UE when its structure is split from the
second splitting point (which means high computational cost).
As the U-Net has almost the same number of layers in the
UE per splitting point and provides low values of bitrate, this
network is considered in the following results of this paper.
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Fig. 2. Comparison of resource usage of the UE for different DNNs and

different splitting points. The picture on top presents the bitrate required
to transmit the layers’ output allocated in the UE, through communications
channel, to the cloud and the corresponding number of layers allocated in the
UE is presented in the picture on the bottom.

Concerning the quality of the response generated by the
DNN, as can be seen in Fig. 3, the U-Net structure presented
a good behaviour of the loss function (Eq. 1) on both stages
(training and validation).

In practice, the learning strategy presented on Sec. II-B
also provided satisfactory results. As can be seen in Fig. 4
there is not a large difference between the dice coefficients of
the training and validation stages, indicating a good power of
generalization.
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Fig. 3. Similar results for loss function achieved by U-Net in training and

validation stages.
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Fig. 4. Similar results for dice coefficient achieved by U-Net in training and
validation stages.

B. Networked scenario analysis

This section presents the most critical analysis of this paper.
It explores the U-Net structure in order to assess the feasibility
of using splitted neural networks for equipment inspection
tasks in networked environments.

The first considered aspect is the tradeoff analysis of the
partitioning approach based on the inference/transmission de-
mand of the networks when they are split at different layers
(Fig. 5). As can be seen on Fig. 5(a), in both networks
the computational cost is strongly affected by the firsts and
lasts layers, due to the size of their inputs, but when the
shortcuts are used to propagate the outputs of the max-pooling
layers, there is a reduction of the computational cost. Fig. 5(b)
presents the size of the outputs of the UE for each possible
splitting point, which clearly shows the enormous contribution
of firsts and lasts layers on the memory consumption.

Fig. 5(b) also presents the processing speed of the UE, in
frames per second (FPS), for every possible splitting point. At
the input point, the whole network is allocated in the cloud, so
there is no frame rate related to DNNs models to be registered.
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Fig. 5. Behaviour of the sensing device for every possible splitting point of the U-Net. Picture (a) presents the cumulative computation and memory access

demand of inference and the picture (b) presents the output feature size and frame rate for each split of U-Net.

In general, the frame rate decreases as the network is split
deeper. Although the maximum pooling layers performs a kind
of downsampling in the information, the volume to be sent
by the UE in these points does not decrease because of the
skipped connections along with the U-Net structure. So it is
clear that sending information from any intermediate state of
the U-Net structure is more costly than sending its input.

The same problem should probably be observed in the
others networks (FCN-X and PSPNet), as suggested by Fig. 2,
because networks specially designed for semantic segmenta-
tion suffer from losing accuracy when downsampling strategies
(e.g. pooling, stride) are performed along its structure [17],
[18]. For this reason, these networks were built on strategies
specially designed to avoid losses of global and local infor-
mation (e.g. skipped connections [16] and dilated convoluti-
ons [17], [18]).

TABLE I
BIT RATE ON SPECIFIED FRAME RATES (MBPS) FOR UE WHEN U-NET IS
SPLITTED ON MAX POOLING LAYERS WITH 16-BIT PRECISION.

Splitting point 12 FPS 10 FPS
MaxPool_1 786.43 655.36
MaxPool_2 1022.36  851.97
MaxPool_3 1140.33  950.27
MaxPool_4 1199.31  999.42
MaxPool_5 1204.22  1003.52

Tab. I summarizes the bitrate achieved by the UE when
the U-Net is split in one of its five maximum pooling layers
given a specific FPS with 16-bit precision and no compression
scheme. Clearly, the bitrate increases as the U-Net is split dee-

TABLE I
BIT RATE ON SPECIFIED FRAME RATES (MBPS) FOR UE WHEN U-NET IS
SPLITTED ON MAX POOLING LAYERS WITH 4-BIT PRECISION.

Splitting point 12 FPS 10 FPS
MaxPool_1 196.61 163.84
MaxPool_2 255.59 212.99
MaxPool_3 285.08  237.57
MaxPool_4 299.83  249.86
MaxPool_5 301.06  250.88

per and all values provided by the two option of FPS in which
only some of them are achievable only by the requirements for
the indoor hotspot scenario of the specification TS 22.261 [22]
(1Gbps). On the other hand, if a more aggressive quantization
scheme (4-bit precision) is performed, as can be seen in Tab. II,
an impressive bitrate reduction is achieved.

IV. CONCLUSION

This paper brings an overview of the problems related to the
usage of neural network structures well designed for semantic
segmentation (e.g. U-Net, FCN and PSPNet) for the equip-
ment inspection task in networked environments. As the UE
commonly has scarce resources, the network split needs to be
guided by three aspects: computational and transmission costs,
operation speed and the energy efficiency of the edge device.
As the networks specially designed for semantic segmentation
suffer from losing accuracy when downsampling strategies
(e.g. pooling, stride) are performed along with their structures,
it is not easy to achieve a good tradeoff between computational
and transmission costs.
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The presented results confirm that the strategies specially
designed to avoid losses of global and local information
(e.g. skipped connections and dilated convolutions) can pro-
vide a side effect when the network needs to be split in
networked environments, by increasing the memory usage
and, consequently, resulting in a bad usage of the bandwidth,
which represents obstacles for performing real-time inspection
(semantic segmentation) in networked environments, through
splitted networks environments.
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