XXXVIII SIMPOSIO BRASILEIRO DE TELECOMUNICACOES E PROCESSAMENTO DE SINAIS - SBrT 2020, 22-25 DE NOVEMBRO DE 2020, FLORIANOPOLIS, SC

Signal Compression for Efficient Partitioning of
Deep Neural Networks

Flavio Brito, Ingrid Nascimento, Luan Goncalves, Silvia Lins, Neiva Linder and Aldebaro Klautau

Abstract— Fifth generation (5G) mobile networks are adopting
several techniques to provide higher data rates while meeting
strict latency requirements. Advanced compression techniques
and distributed data processing are among them supporting cost
efficient network deployments. Also, the usage of machine lear-
ning techniques to optimize telecommunication systems is gaining
momentum, specially after promising results with deep learning
models. Following this trend, there are investigations towards
splitting the processing of such models between different network
nodes, making these applications more suitable and adaptable
to scenarios with low processing capacity nodes. Therefore, in
this work we investigate and propose different compression
techniques for efficient partitioning of deep neural networks. We
combine several splits with quantization and Huffman coding
compression algorithms, providing insights on the configurations
with the best performance. We compress the output score of the
model to reduce the overhead of transmitting such scores through
the network and evaluate how the accuracy is affected by this
compression, and which compression technique provides the best
performance.

Keywords— Deep Learning, 5G, Telecommunications, Split Re-
search, Compression

I. INTRODUCTION

Fifth-generation mobile networks promote cost-efficient de-
ployments embracing more adaptable network architectures.
Centralized Radio Access Networks (C-RANs) come into
sight in this context providing increased flexibility and lower
cost of deployment. On the other hand, it imposes strict
requirements in the fronthaul links (i.e. the connection between
the centralized baseband processing and the radio nodes at the
network edge).

To address such requirements, several techniques are being
evaluated and adopted in C-RAN scenarios towards reducing
the overhead and optimizing data transmission. One of the
challenges in C-RAN is the increased bandwidth required for
transmission in fronthaul links. In this sense, several works
evaluate the efficiency and computational cost of different
compression methods for fronthaul traffic.

A. Compression methods for C-RAN scenarios

In [1] the authors propose a low-latency baseband signal
compression algorithm that adopts resampling, block scaling,
Scalar Quantization (SQ) and Huffman coding to reduce the
required bandwidth for fronthaul data transmission. Also, the
authors in [2] use the same block structure as described in [1]

LASSE-5G & IoT research Group, Federal University of Pard
(UFPA), Belém-PA, Brazil, Ericsson Research, Kista, Sweden, E-
mails: flavio.brito, ingrid.nascimento, luan.goncalves@itec.ufpa.br silvia.lins,
neiva.linder @ericsson.com, aldebaro@ufpa.br

but use Vector Quantization (VQ) instead of SQ. Using VQ
decreases the Error Vector Magnitude (EVM) but with the cost
of higher computational burden in comparison to SQ.

The authors in [3] use the same structure from [1] and [2]
but adopt Trellis Coded Quantization (TCQ) [4] which gives
a lower EVM than SQ with a lower computational burden
than VQ. In contrast with the works [1], [2] and [3], the
authors in [5] use Linear Predictive Coding (LPC) to predict
the n,, sample of an OFDM symbol and quantize the error
prediction with SQ, compressing it with Huffman Coding.
The LPC-based technique was also improved in [6] with the
implementation of high rate adaptation.

The inherent complexity associated with 5G scenarios
is also challenging in C-RAN architectures, motivating the
exploration of Machine Learning (ML) techniques towards
making mobile network deployments more cost-efficient. One
promising ML technique under intense investigation in this
sense by the research community is Deep Learning (DL).

B. Deep Learning for 5G

The authors in [7] proposed an adaptive beam management
scheme based on deep learning. Also, the authors in [8] develo-
ped a dynamic network slicing technique for short term traffic
prediction, applying deep learning techniques. The authors
in [9] use deep learning for power allocation to reduce the
effects of imperfect SIC (Successive Interference Cancellation)
for the NOMA (Non-Orthogonal Multiple Access) system.
Deep learning was also applied successfully in 5G networks
security [10] and congestion control fields [11].

1) Challenges in Deep Learning adoption: An issue regar-
ding the adoption of deep learning techniques is that some of
them require high computational capacity devices to perform
real-time processing. If low capacity nodes are adopted, it may
either negatively impact accuracy or the application latency
and response time. To overcome the computational cost and
latency impact, there are works assessing where is the best
place to deploy and process the neural networks [12]. In
another study [13] the authors propose a split to the neural
network model in order to perform its processing in different
network nodes. Also, another work regarding neural network
splitting is described in [14], where the authors investigate
three possible options: processing performed entirely at the
edge; entirely at the cloud, or splitting the model to deploy
the initial part of the neural model at the edge and the final
part at the cloud.

2) Compression and Partitioning of Deep Neural Networks:
To continue evolving the investigation in this field, this work

XXXVIII SIMPOSIO BRASILEIRO DE TELECOMUNICACOES E PROCESSAMENTO DE SINAIS - SBrT 2020, 22-25 DE NOVEMBRO DE 2020, FLORIANOPOLIS, SC

Channel

End DL
device

z[n] n

Compression
Encoder

End device

(e. g wirelesss + fronthaul)

8q[n]

Edge / Cloud
Module

in]

Compression

Decoder ——> Ypred [n]

Edge/Cloud Device

Fig. 1: System model. Our proposed work is to split and compress the intermediate output of the model.

proposes a framework for the deployment of the deep neural
network models based on both splitting and compression
techniques. We first split the neural networks into two parts
and then we apply compression algorithms in the scores (i.e
intermediate output of the neural network). To summarize, our
contribution is described as follows:

o We propose a framework for deep learning deployment
adopting splitting and compression algorithms.

o« We apply different compression techniques based on
quantization and Huffman coding in order to reduce the
total of bits sent to the cloud.

The rest of this paper is organized as follows: Section II
describes the system model proposed for the deep neural
network partitioning and compression. Section III details the
experiments performed to assess its performance. Section IV
presents the results obtained with the proposed solution and
Section V provides the conclusions of the paper.

II. SYSTEM MODEL

Fig. 1 describes the model of the system used in this work.
As can been seen, the original deep learning model is split
into two parts: the end device and the edge/cloud device.
We adopt images as the system input, represented by the
variable z[n]. The variable x[n] is the input for the first part
of the (partitioned) deep neural model, deployed at the end
device. The variable variable s[n] represents the output of this
model, which is only the intermediate output. Before sending
the variable s[n| to the cloud, s[n] is compressed used a
combination of quantization and Huffman encoding resulting
in the compressed signal s,[n], which is sent to the cloud.

At the cloud side, the compressed signal §,[n] (which is
the signal s,[n] plus some noise) is decompressed by the
quantization and Huffman decoder block resulting in the signal
k[n). Finally, the signal k[n] is used as input to the Cloud DL
module, resulting in the predicted signal gpreq[n].

In this work, we evaluate two compression algorithms for
different split configurations. The first compression is com-
posed of a scalar quantization and Huffman coding whereas
the second compression system is composed of the TCQ and
Huffman coding. Also, for this work, the serial convolutional
network VGG16 [15] is used in the experiment.

III. EXPERIMENT DESCRIPTION

In this section, we describe the experiment scenario. First
of all, the dataset of our experiment is a smaller version of

the dog-vs-cat Kaggle dataset [16] which is composed of two
classes: cat and dog. The training set is composed of 100
images of cats and 100 images of dogs and the test set are
composed of 20 images of cats and 20 images of dogs.

The model which will be split is the VGG16 which is
composed of 13 convolutional layers, 5 pooling layers and
3 dense layers. In this experiment, we use Keras to load and
process the architecture. The Keras model is trained in the
ImageNet dataset and, therefore, the output layer is composed
of 1000 neurons. In this work, we replace the number of
neurons in each dense layer in a way that the first dense
layer is composed of 4096 neurons, the second dense layer
is composed of 1024 neurons; the third is composed of 512
neurons. Also, we added a fourth dense layer which is the
output layer and is composed of 2 neurons, one for each
class. All the dense layers, except the output layer, uses the
ReLu activation function and the output layer uses the softmax
function. We use this new VGGI16 configuration and train
again the model using our smaller version of the dog-vs-cat
dataset. Before the training process, the kernel and the bias
weights of all the convolutional layers were freeze in order
to guarantee that only the dense layer will be updated in the
training process. In the training process, the training dataset is
divided into train and validation sets where 70% of the original
training dataset is designed to the train set and 30% of the test
dataset is designed to the validation set.

The Compression system is composed of two blocks: the
first one is the quantization block. In this work, we use two
quantization techniques: Scalar Quantization (SQ) and Trellis
Coded Quantization (TCQ). The second block is the Huffman
algorithm which is responsible for reducing the necessary
amount of bits that will be transmitted to the cloud. In this
experiment, we are considering that there is no impact w.r.t.
to noise added from the transmission to the cloud, i.e. s4[n]

= §4[n].

For the split configuration, in this work we have chosen
nine different configurations. Table I describes each split
configuration. For the first split configuration (ID = 1) for
example, only one Layer (input layer) is deployed at the edge
where the rest is deployed at the cloud. For the second split
configuration (ID = 2), the two first layers of the VGGI16
(input layer and the first convolutional layer) are deployed at
the edge and the other layers are deployed at the cloud.

XXXVIII SIMPOSIO BRASILEIRO DE TELECOMUNICACOES E PROCESSAMENTO DE SINAIS -

SB:T 2020, 22-25 DE NOVEMBRO DE 2020, FLORIANOPOLIS, SC

70 70 ~
" 60 ~-Cumulative Mega FLOPs x 0
% - Memory Usage (MB) ﬁ_:@ | %
g Stacking Pooling Layers — , ’ ' =
@ 40 " . a0
= . PR | o
y Y Lk E
! = s

g 30 > ,ir -@ - o f 4 30§
R Al layers at the cloud /| ’ ’_x" ' o
320 / [N & / 20 2
£ / [4 e All layers at the edge =
= v LK -
w10 | i o 10 =
'..-' - ¥ > " ’:-_-%L-ﬂ-f ~ E
0 L ——he—he- -@—dr- k. G-t ; L L1 0o ¥

o N

Q“" 3 4?\?4*}4?"\‘1‘#4? ? 4}\?4/ 4 - ‘\?\? N »"’&f’\f’ ° &r @ @
& (’00 (Jo QOO (’0¢ C_Oo Qoo (‘0¢ (‘o':\ (‘0¢ QOO (’0 ooo {\""" ’Qo° Q“ /{\4 '0“1 ’Qoo ? {‘"

Fig. 2: Accumulative Mega Flops at the edge. The first layer is when all the model is deployed at the cloud where the last
layer is when all the model is deployed at the edge. The cumulative curve does not increase when we stack pooling layers as

shown in the graph.

Split configuration ID | Layers at the edge | Layers at the cloud
1 1 22
2 2 21
3 3 20
4 4 19
5 5 18
6 6 17
7 7 16
8 8 15
9 9 14

Table I: Split configuration of the VGGI16.

IV. RESULTS

The first results discussed here are regarding the Floating-
Point Operations per Second (FLOPs) needed to process the
neural network. Fig. 2 shows the cumulative Mega FLOPs
required at the edge for the different split configurations.
The x-axis shows how many layers are deployed at the edge
and the y-axis shows the cumulative Mega FLOPs required.
It is important to notice that the Mega FLOPs does not
increase so much when pooling layers are stacked at the edge.
However, convolutional layers require more FLOPS, and a
linear increase is noticed when that layer is deployed at the
edge.

Fig. 3 shows the accuracy when we deploy the first con-
volutional layer at the end device. As can be seen in this
example, using Scalar Quantization at the quantization block
results in faster convergence of the system with an accuracy
of 0.98. Therefore, using SQ can be a good choice for the
compression method.

Regarding the histogram pattern of the scores, Fig. 4 shows
the histogram of all nine intermediate outputs for a system with
a quantizer of 8 bits. As can been seen, in all the histograms,
the probability distribution is a function that concentrates

0.99 : ‘
e
5.0.98 4 x~
o -7 SQ + Huffman
© - #TCQ + Huffman
50.97% 5
0
-] /
Y006 4]
/
0.95% : :
1 1.5 2 2.5 3

Rate (bits per sample)

Fig. 3: Accuracy results when the first convolutional layer
is deployed at the end device and the output scores are
compressed using Trellis Coded Quantization with Huffman
Coding vs. Scalar Quantization with Huffman coding.

almost all the values around zero. The zero concentrated
values in the histogram can explain the high compression rate
achieved in the experiments.

It is relevant to evaluate the entropy and the Signal to
Noise Quantization Ratio (SQNR) performance for the 8 bits
quantizer using scalar quantization. As can been seen, Fig. 5
shows that, for each layer used in the experiment, we achieve
at least an SQNR of 30 dB, which means that a low

V. CONCLUSIONS

This work assessed the joint usage of split processing and
compression techniques at the intermediate outputs of deep
convolutional neural network models. The results showed that
it is possible to achieve high compression rates with minor
impact on the model accuracy.

XXXVIII SIMPOSIO BRASILEIRO DE TELECOMUNICACOES E PROCESSAMENTO DE SINAIS - SBrT 2020, 22-25 DE NOVEMBRO DE 2020, FLORIANOPOLIS, SC

0.6
Fy
= 0.4
Qo
©
e}
fo0.2
o

0 [-
0 100 200
Values

(a) Histogram for first layer intermediate output.

0.25

Probability
°e o o
N w H

e
[

Probability
o

°© L ©°

= (8] N

OAIM
0 100

Values

(b) Histogram for second layer output compression.

200

0.05 m
0
0

(c) Histogram for third layer output.

100

Values

200

0.4 0.6 0.4 — ‘
>0.3 > >0.3
= 0.4 =
0.2 - 0.2
Ko} 2 o2
e go.2 e
a 0.1 o o 0.1
0 11— [— 0
o 100 200 0 100 200 o 100 200
Values Values Values
(d) Histogram for fourth layer output. (e) Histogram for fifth layer output. (f) Histogram for sixth layer output.
0.6 0.5 0.6
> 30.4 2
= 0.4 = =0.4
‘s 5 0.3 ‘s
s g, s
0.2 g fo.2
Q- & 0.1 o
0 L e 0 L Immmmme.... 0
0 100 200 0 100 200 0 100 200
Values Values Values
(g) Histogram for seventh layer output. (h) Histogram for octave layer output. (i) Histogram for nineth layer output.
Fig. 4: Histogram of each experiment using the system with a quantizer of 8§ bits.
Our approach was the following:
o o We used a small version of the dog-vs-cat dataset contains
36 10 g— 100 images of dog and cat for training (50 images of cats
(e~ g and 50 images of dogs). For testing, we used a test dataset
33 a \ _Q 18 o containing 20 images of cats and 20 images of dogs.
) \ Q g_ Also, we used python2.7 equipped with Keras in order to
(4 0 / \ 6 I load the VGG16 model and we changed the dense layers
3'32 ,9~ \(5 % ® O) of the model, and, in the output, layer, we use only 2
n ou * X - =X 14 - neurons.
¥ *® g- We froze the convolutional learnable parameters and we
30 S S 12 s trained the modified VGG16 on this dataset. We set 70%
1 2 3 4 5 6 7 8 910 ﬁ of the training images for the trains set and the remaining
Layers 30% of the images were used in the validation set. We
Fig. 5: Entropy and Signal to Noise Quantization Ratio also used a small portion of the training set to generate

(SQNR) performance for each layer.

the uniform codebook.
In the test step, we used python to load the model (and for
splitting). We used Matlab to quantize, get the histogram,

XXXVIII SIMPOSIO BRASILEIRO DE TELECOMUNICACOES E PROCESSAMENTO DE SINAIS - SBrT 2020, 22-25 DE NOVEMBRO DE 2020, FLORIANOPOLIS, SC

and perform the entropy calculation. In this step, we used
a quantizer with 2,3,4,5,6,7 and 8 bits.

After the Matlab step, the python was used again to set
the Matlab quantized signal as the input to the cloud
model.

In our approach, we consider that there is no noise
between the signal output of the edge and input of the
cloud. Therefore, we consider that s,[n] = §[n].

As future work, the following steps are envisioned:

Using another quantization algorithm (e.g. vector quan-
tization). This could result in a more accurate model but
has as drawback the increased computational complexity.
Evaluate other serial models like the well know AlexNet
and VGG19 in order to generalize our results.

Evaluate non-serial models like Residual Net and Dense
Nets in order to evaluate how the intermediate output will
be affected by the non-linear system.

Evaluate the compression of the weights and bias of each
neural network in order to reduce the total size of the edge
model.

Use the Lloyd algorithm in order to optimize the code-
book parameters to get higher accuracy.

ACKNOWLEDGMENT

This work was supported by the Innovation Center, Ericsson
Telecomunicacdes S.A, CNPq and Capes Foundation, Brazil.

(1]

(2]

(3]

(4]

(5]

(6]

(71

(8]

(91

REFERENCIAS

Bin Guo, Wei Cao, An Tao, and Dragan Samardzija. LTE/LTE-A
signal compression on the CPRI interface. Bell Labs Technical Journal,
18(2):117-133, 2013.

Hongbo Si, Boon Loong Ng, Md Saifur Rahman, and Jianzhong Zhang.
A novel and efficient vector quantization based CPRI compression
algorithm. [EEE Transactions on vehicular technology, 66(8):7061—
7071, 2017.

Flavio Brito, Miguel Berg, Chenguang Lu, Leonardo Ramalho, Ilan
Sousa, and Aldebaro Klautau. A Fronthaul Signal Compression Method
Based on Trellis Coded Quantization. In 2019 IEEE Latin-American
Conference on Communications (LATINCOM), pages 1-6. IEEE, 2019.
Michael W Marcellin and Thomas R Fischer. Trellis coded quantization
of memoryless and Gauss-Markov sources. IEEE transactions on
communications, 38(1):82-93, 1990.

Leonardo Ramalho, Maria Nilma Fonseca, Aldebaro Klautau, Chen-
guang Lu, Miguel Berg, Elmar Trojer, and Stefan Host. An LPC-
based fronthaul compression scheme. [EEE Communications Letters,
21(2):318-321, 2016.

Leonardo Ramalho, Igor Freire, Chenguang Lu, Miguel Berg, and Al-
debaro Klautau. Improved LPC-based fronthaul compression with high
rate adaptation resolution. [EEE Communications Letters, 22(3):458—
461, 2018.

Woongsoo Na, Byungjun Bae, Sukhee Cho, and Nayeon Kim. Deep-
learning Based Adaptive Beam Management Technique for Mobile
High-speed 5G mmWave Networks. In 2019 IEEE 9th International
Conference on Consumer Electronics (ICCE-Berlin), pages 149-151.
IEEE, 2019.

Qize Guo, Rentao Gu, Zihao Wang, Tianyi Zhao, Yuefeng Ji, Jian Kong,
Riti Gour, and Jason P Jue. Proactive Dynamic Network Slicing with
Deep Learning Based Short-Term Traffic Prediction for 5G Transport
Network. In 2019 Optical Fiber Communications Conference and
Exhibition (OFC), pages 1-3. IEEE, 2019.

Worawit Saetan and Sakchai Thipchaksurat. Application of Deep Lear-
ning to Energy-Efficient Power Allocation Scheme for 5G SC-NOMA
System with Imperfect SIC. In 2019 16th International Conference on
Electrical Engineering/Electronics, Computer, Telecommunications and
Information Technology (ECTI-CON), pages 661-664. IEEE, 2019.

[10]

(11]

[12]

[13]

[14]

[15]

[16]

Nagarathna Ravi, P Vimala Rani, and S Mercy Shalinie. Secure
Deep Neural (SeDeN) Framework for 5G Wireless Networks. In
2019 10th International Conference on Computing, Communication and
Networking Technologies (ICCCNT), pages 1-6. IEEE, 2019.

Ingrid Nascimento, Ricardo Souza, Silvia Lins, Andrey Silva, and
Aldebaro Klautau. Deep reinforcement learning applied to congestion
control in fronthaul networks. In 2019 IEEE Latin-American Conference
on Communications (LATINCOM), pages 1-6. IEEE, 2019.

Diego Dantas, Kaio Forte Carnot Braun, Andrey Silva Flavio Brito,
Neiva Linder Silvia Lin, and Aldebaro Klautau. Testbed for Connected
Artificial Intelligence using Unmanned Aerial Vehicles and Convolutio-
nal Pose Machines. 2019.

Surat Teerapittayanon, Bradley McDanel, and Hsiang-Tsung Kung.
Distributed deep neural networks over the cloud, the edge and end
devices. In 2017 IEEE 37th International Conference on Distributed
Computing Systems (ICDCS), pages 328-339. IEEE, 2017.

Jong Hwan Ko, Taesik Na, Mohammad Faisal Amir, and Saibal Mukho-
padhyay. Edge-host partitioning of deep neural networks with feature
space encoding for resource-constrained internet-of-things platforms. In
2018 15th IEEE International Conference on Advanced Video and Signal
Based Surveillance (AVSS), pages 1-6. IEEE, 2018.

Karen Simonyan and Andrew Zisserman. Very deep convolutio-
nal networks for large-scale image recognition. arXiv preprint ar-
Xiv:1409.1556, 2014.

Dogs vs. Cats: Create an algorithm to distinguish dogs from cats.
https://www.kaggle.com/c/dogs-vs-cats, 2014. [Online;
accessed 3-April-2020].

