
XXXVIII SIMPÓSIO BRASILEIRO DE TELECOMUNICAÇÕES E PROCESSAMENTO DE SINAIS - SBrT 2020, 22–25 DE NOVEMBRO DE 2020, FLORIANÓPOLIS, SC

Leveraging Reinforcement Learning for User
Pairing in Full Duplex Networks

João Rafael Barbosa de Araújo e Francisco Rafael Marques Lima

Abstract— In this article we employ a reinforcement learning
solution called Upper Confidence Bound (UCB) over the
framework of Multi-Armed Bandit (MAB) to solve User
Equipment (UE) pairing problem in Full Duplex (FD) network.
In the context of the total data rate maximization problem,
our proposed solution is capable of learning the best UE pair
iteratively by exploring and exploiting the solution space. By
the presented simulation results, we show that our proposed
algorithm is more robust to the absence of knowledge about inter-
UE Channel State Information (CSI). In the complete absence
of CSI about inter-UE channel gains, our proposed solution
overperforms the Maximum Rate (MR) solution by 26%.

Keywords— Reinforcement Learning, Full-Duplex, Multi-
armed bandit.

I. INTRODUCTION

Mobile communication sector is in constant evolution and
it is one of the most important industries nowadays since it is
directly related to the development of several other businesses.
However, the demands over mobile networks increase at a
rapid pace. According to Ericsson Mobility Report [1], there
will be 8.9 billion of mobile subscriptions in 2025 (without
accounting Internet of Things (IoT) devices). When mobile
traffic is regarded, from the first quarter of 2019 to the first
quarter of 2020, mobile data traffic grew 56%.

In order to cope with the increased number of subscriptions
and mobile data traffic, more frequency bands should be
available in order to improve system capacity. Unfortunately,
the release of new frequency bands or refarming of existing
ones is a slow and intricate process in nationwide and
worldwide scopes. In this sense, new techniques that are
able to improve spectral efficiency have been studied in the
literature [2]. In this article, we deal with in-band Full Duplex
(FD) technology.

FD is expected to be the next step towards efficient
use of spectrum resources. With FD, transceivers are able
to transmit and receive signals in the same time-frequency
resource, thus boosting spectral efficiency by providing a
twofold performance gain compared to typical Half Duplex
(HD) networks [2]. The interest in FD technology has arisen
last years thanks to the advances in the capacity to attenuate
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the so called Self Interference (SI), i.e., the signal transmitted
by one device that appears as interference to its own receiver.

Interestingly, FD gains can be attained even in point-to-
multipoint scenarios with FD-capable Base Station (BS) and
HD User Equipments (UEs). In this case, the same time-
frequency resource can be used in downlink (from BS to UE)
and in uplink (from UE to BS). This is a very appealing
solution in an initial deployment of FD technology since the
HD mobile terminals can remain with cheap hardware and
processing capabilities whereas most of the complexity is left
to the FD-capable BS.

However, in this setup, some problems should be mitigated.
Besides SI that must be canceled at the receiver of the BS, the
uplink UE generates interference to the other UE in downlink
direction; the so called Co-Channel Interference (CCI). In
order to combat the CCI, the proper choice of uplink and
downlink mobile terminals to share the same resource is of
utmost importance. In this article we define the choice of
uplink and downlink UEs to transmit on FD mode as UE
pairing.

Conventionally, in order to mitigate CCI, the BS need to
know specific information about UE’s geographical positions
or Channel State Information (CSI) of inter-UE links. In
order to make this available, control messages should be
exchanged between UEs and BS, which consumes precious
time-frequency resources that otherwise could be used to
transmit data traffic.

Machine Learning (ML) have been successfully applied
in many areas such as computer vision and autonomous
systems. Recently, ML algorithms have been applied to
telecommunications problems including network management
and physical layer optimizations [3]. In this article, we intend
to show the potential of the use of ML algorithms to the UE
pairing in FD point-to-multipoint connections in order to solve
the total data rate maximization problem.

The remaining of this article is organized as follows. In
Section II we present the state of the art related to this
research topic. In Section III we present the assumed system
model as well as the mathematical formulation of the studied
problem. Sections IV and V present the proposed solution and
numerical results, respectively. Finally, the main conclusions
of our article are depicted in section VI.

II. LITERATURE REVIEW

Radio resource allocation for FD networks has been studied
in the literature with different approaches and problem
objectives. The interested reader can see [2] for a deeper
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survey on different problems in FD networks. In this article,
our focus is on the total data rate maximization problem in
point-to-multipoint scenario.

Some articles have studied the joint resource allocation
problem of UE pairing, subcarrier assignment and power
allocation for total data rate maximization [4, 5, 6]. In [4],
those problems were decomposed into three subproblems
to reduce complexity while in [5] the authors provide the
necessary conditions for optimality and proposed a suboptimal
solution. To tackle this complex problem more efficiently, the
authors in [5] formulate the joint problem as a three-sided
matching problem. In [6], the same approach to decompose the
joint problem into subproblems is employed with an iterative
algorithm. The main difference is that, differently of [4, 5], the
authors in [6] consider the unrealistic assumption of FD UEs,
which imposes a high complexity burden on the UE side.

In [7], the authors solved the joint problem in a different
scenario setup: heterogeneous networks. In this case, the
authors also considered the UE-BS association problem. In the
new problem, firstly, the integer variables are relaxed and then,
the resulting problem is solved with interior-point method.
In all aforementioned works, the authors employed classical
optimization techniques to obtain the solutions. Furthermore,
they assumed perfect CSI in all links in an FD network;
including inter-UE links. According to the related literature,
the inter-UE CSI acquisition is performed by means of
pilot signals that are sent by all UEs in specific orthogonal
time-frequency channels. After estimating the inter-UE CSI,
those measurements should be sent to the BS by means of
control channels so as to the BS take centralized decisions
about subcarrier assignment, power allocation and, mainly, UE
pairing. Therefore, full CSI knowledge in FD network is an
assumption difficult to hold in practice and may drain all the
theoretical performance gains of FD.

As previously mentioned, in this article we leverage
ML solutions to solve UE pairing problem in FD
networks. Particularly, we are interested in this article in a
specific category of ML called Reinforcement Learning [8].
Reinforcement Learning is a process where an algorithm
interacts with an environment through an agent and evaluate its
actions by a reward function. Based on the rewards, a strategy
can be derived to find/improve a policy.

Our focus in this article is in the application of Multi-Armed
Bandit (MAB) problem; an ML framework that belongs to
the class of reinforcement learning. MAB is a reinforcement
learning problem where a fixed limited set of actions must be
performed in a way that maximizes the expected gain [8]. For
each action, a value reward is given and the distribution of
the value rewards is not initially known. Trying to maximize
expected gain by using current system estimates is known as a
greedy strategy, where the current estimated knowledge of the
system is exploited. Another option is to explore by choosing
non-optimal actions to better estimate the value rewards for
some chosen actions. Therefore, there is a trade-off between
exploration vs exploitation.

As far as we know, few articles have applied MAB in the
context of FD networks. In [9] the authors consider a scenario
where Unmmaned Aerial Vehicle (UAV) is used as a relay

Fig. 1: Illustration of an FD-capable BS and UEs in a point-
to-multipoint scenario.

between a BS and terrestrial vehicles. The UAVs are FD-
capable but MAB is employed to solve the problem of UAV
positioning so as to maximize the total data rate. In [10] the
authors consider FD stations but in the context of Carrier
Sense Multiple Access (CSMA) networks. MAB is applied
to maximize total data rate by adjusting transmit power and
carrier sense threshold.

In summary, the main contribution of our article is the use
of MAB to perform UE pairing. Differently of the previous
works, our proposal does no rely on the perfect knowledge
of inter-UE CSI. Indeed, our proposed algorithm is able to
interact with the environment and, after a convergence period,
learn an efficient policy to perform UE pairing.

III. SYSTEM MODEL

We assume a single-cell system with an FD-capable BS and
multiple HD UEs in a point-to-multipoint wireless network. In
a given Transmission Time Interval (TTI), the BS is capable of
transmitting information to a UE, hereby defined as Downlink
(DL) UE, and receiving information from another UE, hereby
defined as Uplink (UL) UE. As previously explained, the
uplink is impaired by SI whereas the downlink direction is
impaired by the CCI generated by the UL UE. Figure 1
illustrates this scenario.

We assume that I = {1, · · · , I} is the set of DL UEs
while J = {1, · · · , J} is the set of UL UEs. Without loss
of generality, we assume in this article that the number of
DL and UL UEs is the same, i.e., I = J . Moreover, we
consider an Orthogonal Frequency Division Multiple Access
(OFDMA) network where a Resource Block (RB) is defined
as a time-frequency grid composed of a number of Orthogonal
Frequency Division Multiplexing (OFDM) symbols in the time
domain and a given number of subcarriers in the frequency
domain. We define F = {1, · · · , F} as the set of available
RBs.

The adopted channel model takes into account the distance-
dependent path loss, shadowing and fast fading. Before
presenting the involved variables, we highlight that all
variables are time-dependent, i.e., they depend on the current
TTI, t. For the sake of notational simplicity, we omit the time
dimension and will only include it when it is relevant to the
context. We define gd

i,f as the channel gain between the BS and
DL UE i on RB f in downlink. Furthermore, gu

j,f is defined
as the channel gain between UL UE j and the BS on RB f
in uplink. The channel gain between UL UE j and DL UE i
on RB f is represented by gi,j,f .
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We assume that a constant transmit power per RB is applied
in both downlink an uplink. So, we define pd and pu as the
transmit power per RB on the BS and on UEs, respectively.
As previously explained, the BS is capable of canceling part
of the SI. In our model, we assume that the remaining SI after
cancellation is given by β ·pd for a given RB where β accounts
for the capacity of mitigating SI.

We consider a dynamic scenario where at each TTI, the BS
performs UE pairing, i.e., chooses a pair of UL and DL UEs
to transmit and receive information, respectively. We consider
an OFDMA/Time Division Multiple Access (TDMA) network
where the chosen pair gets assigned the whole bandwidth in
a given TTI. According to those definitions and assuming that
the pair DL UE i and UL UE j was chosen in a specific
TTI, the experienced Signal to Interference plus Noise Ratio
(SINR) in downlink and uplink in RB f are given by

γd
i,j,f =

pd · gd
i,f

σ2 + pu · gi,j,f
, and γu

j,f =
pu · gu

j,f

σ2 + pd · β
, (1)

respectively, where σ2 is the noise power in the bandwidth of
an RB.

We assume a link adaptation functionality where the
transmit data rate is adapted according to the channel quality
by selecting different combinations of modulation order and
channel coding rate, i.e., Modulation and Coding Scheme
(MCS). Consider a function e (m, γ) that has as input an
MCS index m that belongs to the set M = {1, · · · ,M}
and an SINR γ, and returns the block error probability. M
is the number of available MCSs. Furthermore, we assume
that the raw data rate transmitted when using MCS m is wm.
According to this, the effective data rate when transmitting
with MCS m in an RB for a received SINR of γ is given by
re (m, γ) = wm · (1− e (m, γ)).

The assumed link adaptation in this work is based on
throughput maximization. Therefore, for a given estimated
SINR, γ, on each RB, the selected MCS is the one that
maximizes the effective data rate, i.e.,

m∗ = arg max
m∈M

{re (m, γ)}. (2)

Based on the previous definitions, assume henceforth that
function g (γ) returns the effective data rate based on the just
described link adaptation method. Note that γ is given by
equation (1). Assuming that a given pair DL UE i and UL
UE j was selected to transmit on TTI t, then, the transmitted
effective data rate on downlink and uplink1 are, respectively,

rtot,d
i,j (t) =

∑
f∈F

g
(
γd
i,j,f (t)

)
and rtot,u

i,j (t) =
∑
f∈F

g
(
γu
j,f (t)

)
.

(3)
As motivated in section II, we also evaluate the impact

of imperfect CSI on inter-UE links. Therefore, when perfect
CSI is not known at the BS, the link adaptation illustrated in
equation (2), as well as other functionalities at the BS, are
performed with an estimate of gi,j,n, i.e., ĝi,j,n. In this work,
we model the CSI knowledge of gi,j,n at the BS, ĝi,j,n, in
different levels: (CSI1) or perfect CSI where ĝi,j,n = gi,j,n;

1Note that in these equations the time dimension is explicit for convenience.

(CSI2) where ĝi,j,n is composed by path loss and shadowing
components of gi,j,n whereas fast fading is left out; (CSI3)
where ĝi,j,n is composed only by path loss component of gi,j,n
whereas shadowing and fast fading are not known; finally,
(CSI4) where ĝi,j,n = 0, i.e., the case when the interference
between UEs is completely ignored.

Our objective in this work is to maximize the long-term
data rate over a time horizon of T TTIs by performing UE
pairing at each TTI. Assume that xi,j,t is equal to 1 if the pair
DL UE i and UL UE j is selected by the BS at TTI t, and 0
otherwise. This can be mathematically formulated as

max
xi,j,t

{
T∑
t=1

xi,j,t ·
(
rtot,d
i,j (t) + rtot,u

i,j (t)
)}

, (4a)

s.t.
∑
∀i∈I

∑
∀j∈J

xi,j,t ≤ 1, ∀t ∈ {1, · · · , T}. (4b)

IV. PROPOSED SOLUTION

In order to solve problem (4) we propose the use of MAB
framework. Basically, in MAB, at each iteration an agent has
to choose one specific action from a list of available ones
(action set) in order to maximize an expected (long-term)
gain. After taking a decision, the agent receives a feedback
from the environment that measures how good/bad was the
chosen action; the so called reward. The MAB strategy used
here is the Upper Confidence Bound (UCB) strategy where
uncertainty in the action-value estimates is used for balancing
exploration and exploitation. In our application, we assume
the BS as the agent and we define the actions and reward as
follows:
• Actions: An action, a, is defined as the choice of a pair

composed of a DL UE and UL UE. The action at TTI t,
A (t), is chosen from the action set, A, that is composed
by all DL UE and UL UE pairs, i.e., a ∈ A = I × J
where the operator × represents the Cartesian product.

• Reward: The reward corresponding to the action taken
at TTI t, R (t), is given by:

R (t) =
rtot,d
i,j (t) + rtot,u

i,j (t)

2 · F · wM
. (5)

In our model, R (t) is a number between 0 and 1. The
reward is 0 when the previous transmission in uplink and
downlink had an effective data rate equal to zero, i.e.,
the packets could not be decoded2. On the other hand,
the reward is 1 when both link directions transmitted at
the maximum possible data rate, i.e., F · wM in uplink
and F · wM in downlink.

In order to estimate the expected reward for each action
a ∈ A at TTI t, R (a, t), we use the average of the rewards
yield per each action as in the following expression:

R(a, t) =
N (t− 1, a)R(a, t− 1)

N (t, a)
+
R(a, t)

N (t, a)
, (6)

2Note that in order to calculate rtot,d
i,j (t) and rtot,u

i,j (t) in the reward, we
consider the actual inter UE channel since this is the effective received
data rate in donwlink and uplink, respectively. In downlink, this can be
estimated by means of Hybrid Automatic Repeat Request (HARQ) feedback
(ACKs/NACKs).
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Algorithm 1: UCB algorithm
1 for t = 1; t ≤ T ; t = t+ 1 do
2 Choose action A(t) according to Eq. (7);
3 for f = 1; f ≤ F ; f = f + 1 do
4 Estimate SINR using the available CSI
5 Select MCS according to the method described in section III
6 end
7 Transmits data with the configured MCS in uplink/donwlink
8 Based on the received data rate, calculate reward R(t) according to

Eq. (5)
9 Update average reward R according to Eq. (6)

10 end

TABLE I: Simulation Parameters

Parameters Value
Cell Ring Area rmin = 30m , rmax = 100m
Number of UEs 10
Monte Carlo Iterations 20
Carrier frequency 2.5 GHz
System bandwidth 180 kHz
Number of RBs 15
Number of subcarriers in an RB 12
Number of OFDM symbols in an RB 14
LOS path-loss model 34.96 + 22.7 log10(d)
NLOS path-loss model 33.36 + 38.35 log10(d)

LOS probability min( 18
d , 1) · (1− e

−d
36 ) + e

−d
36

Shadowing st. dev. LOS 3 dB
Shadowing st. dev. NLOS 4 dB
Thermal noise power σ2 -116.4 dBm/channel
Average user speed 3 km/h
User antenna height 1.5 m
BS antenna height 10m
SI cancelling level [β] -110 dB
UCB constant c 5
Forgetfulness factor τ 0.9

where N (t, a) consists in the number of times that action a
was chosen until TTI t.

The choice of the action at TTI t, A (t), is as follows [8]:

A (t) = argmax
a∈A

[
R (a, t) + c ·

√
ln (t)
N (t, a)

]
. (7)

In Algorithm 1 we summarize the steps of our proposed
MAB-based solution for UE pairing.

V. NUMERICAL RESULTS

We implemented the main aspects of the system model
presented in section III in a computational simulator in Python.
The main parameters of our model are presented in Table I
and are in accordance with [11]. We assume that the BS is
placed at coordinate (0, 0) and UEs are uniformly distributed
across a circular ring where the smaller radius is 30 m and
the larger radius is 100 m.

The performance of our proposed algorithm is compared
with the following benchmark solutions:
• Random (RND): At each TTI, UE pairs are chosen at

random;
• Proportional Fair (PF): At each TTI, the chosen pair is the

one that provides the highest value of F , as described by
F =

(
rtot,d
i,j (t) + rtot,u

i,j (t)
)
/
(
rtot,d
i (t) + rtot,u

j (t)
)

where

rtot,d
i (t) and rtot,u

j (t) are, respectively, defined by

rtot,d
i (t) = τ · rtot,d

i (t− 1)) + (1− τ) · rtot,d
i,j (t) (8)

rtot,u
j (t) = τ · rtot,u

j (t− 1) + (1− τ) · rtot,u
i,j (t) ; (9)

Fig. 2: Acummulated regret of different solutions.

Fig. 3: Average total data rate UL/DL under different scenarios
of CSI

• Maximum Rate (MR): At each TTI, the chosen pair is the
one that provides the maximum sum of estimated transmit
data rate in both uplink and downlink. The transmit data
rate depends on the available CSI as explained in section
III;

The performance of the algorithms can be measured in
terms of regret. Regret is defined as the difference between
the reward of the best possible pair and the reward of the
pair selected by the algorithm. Fig. 2 shows the regret of
each algorithm where we are using the result of maximum
rate algorithm for the upper limit of data throughput for each
TTI. During the first iterations the proposed algorithm could
identify a good strategy as shown by the value of regret during
the transmission.

In Fig. 3 we calculate the average total data rate for each
algorithm. As we can see, the CSI degradation from CSI1 to
CSI4 deteriorates the performance of all algorithms. However,
our proposed solution is more robust to CSI uncertainty.
For CSI1, CSI2, CSI3 and CSI4, UCB achieves 98.92%,
98.21% 98.19% and 97.91% of the maximum achievable data
rate, respectively3. Interestingly, for CSI4, the UCB algorithm
has an overall better performance with a gain of 26.44%
over maximum rate solution with the same CSI conditions.
Maximum rate presented a performance loss in total data rate
of 22.57% from CSI1 to CSI4. As PF and RND are fairness-
oriented algorithms, their total data rate are lower than MAB
and maximum rate solutions.

3Maximum data rate is obtained from the use of MR solution with CSI1
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(a) MAB

(b) MR

Fig. 4: Total UL/DL data rate per TTI for MAB and MR
solutions.

Finally, Fig. 4 shows in details the CSI degradation effects
in MAB and MR data rates along the TTIs. In Fig. 4a we can
see an exploration period in the first TTIs but, after that, MAB
CSI4 presents a very small performance loss compared to
MAB CSI1. In contrast, Fig. 4b shows that the MR algorithm
present a strong data rate degradation along the TTIs when
compared to MR CSI1.

In summary, the great advantage of our solution is that it is
more robust to the absence of inter-UE channel information.
Our solution is capable of learning the best pairs by an
intelligent exploration of the available actions, i.e., evaluating
the impact on the effective received data rate of each UE pair.
Although all algorithms experience performance degradation
from CSI1 to CSI4 since link adaptation is performed with an
estimated value for inter-UE channel gain, the algorithms MR
and PF are more dependent on this since the UE priorities are
based on estimated transmit data rates. Last but not least, we
should emphasize that in MR and PF, in every TTI, the priority
for each possible pair must be calculated, which increases
computational complexity. In our proposed solution, only the
expected reward for the last action should be updated and the
action with maximum expected reward is chosen.

VI. CONCLUSION

In this article we propose the use of an ML solution
based on reinforcement learning to solve the UE paring
problem in point-to-multipoint FD systems. By using the
MAB framework and employing UCB solution, simulation

results have shown that our proposed method achieves quasi-
optimum performance after the learning period when full
CSI is available. Furthermore, when the CSI knowledge
is degraded, our solution is more robust than benchmark
solutions. Therefore, our proposed algorithm is capable to
solve the UE pairing problem in FD networks without the
need for inter-UE CSI knowledge.
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