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Channel Estimation for MIMO System Assisted by
Intelligent Reflective Surface

Gilderlan T. de Araújo, Lucas C. de P. Pessoa and André L. F. de Almeida

Abstract— Intelligent reflective surface (IRS) has being envisi-
oned to be the key technology for beyond 5G or 6G systems.
Due to the passive nature of the IRS, channel estimation is
one of the main challenges in IRS-based communications. In
addition, due to hardware constraints, a perfect reflection cannot
always be achieved by the IRS. In this paper, we face the
channel estimation problem in a multiple-input and multiple-
output (MIMO) communication system assisted by an IRS,
where a base station (BS) communicates with an user terminal
(UT) via an IRS panel. We discuss two channel estimation
schemes. The first is based on the least squares (LS) estimator,
while the second adds an extra step based on the Khatri-Rao
factorization (KRF) algorithm to achieve separate estimates of the
BS-IRS and IRS-UT channels via rank-1 approximation steps. By
using simplified models to capture a non-perfect IRS reflection,
we numerically evaluate the performance of the two channel
estimation schemes and discuss their normalized mean square
error (NMSE) performance for some scenarios, including the
effect of quantized IRS phase shifts and non-constant reflection
amplitudes.

Keywords— Intelligent reflective surface, Channel estimation,
MIMO, Least Squares, Khatri-Rao factorization, PARAFAC.

I. INTRODUCTION

The 5G technology is in the commercialization step. Accor-
ding to Cisco Annual Internet Report (2018−2023) [1], mobile
connectivity until 2023 will be over 70 percent of the global
population. Moreover, the report says that over 10 percent of
the devices and connections will be using 5G technology. In
this context, it is necessary to investigate the limits of this
technology. Several researchers have been looking at solutions
for beyond 5G or even 6G technology [2], [3].

Recently, some works have discussed a new paradigm for
wireless communications, which consists of smartly control-
ling the propagation environment by means of an Intelligent
Reflective Surface (IRS) [4], [5]. Generally speaking, an
IRS is a large 2D array composed of nearly passive low-
cost reflecting elements designed to dynamically control the
electromagnetic properties of radio-frequency waves so that
the reflected signals add coherently at the intended receiver or
destructively to reduce co-channel interference. An IRS can
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be used to increase coverage, data rates and energy efficiency
in wireless communication systems [6]–[8]. It differs from
conventional relaying technology since it does not require
dedicated RF sources. Indeed, due to its low power consump-
tion, energy harvesting components can be enough to supply
the necessary power [9]. It is worth mentioning that [10]
establishes a comparative study between IRS and relay systems
where a tradeoff about the number of IRS elements and relay
systems is shown. Figure 1 provides an illustration to show
different scenarios where IRS can be employed in a wireless
communication system.

Despite the potentials of IRS technology, several challenges
must be overcome. Among them, channel estimation is a
critical task in IRS-assisted wireless systems due to the passive
nature and a large number of IRS elements. Research efforts
have been made to better understand the channel estimation
problem and develop cost-effective solutions to it. In [11],
the authors formulate the channel estimation problem as a
non-convex problem, and a manifold optimization is proposed
to solve them. In [12], a tensor approach is employed to
derive channel estimation schemes from a structured time-
domain pilot pattern. In [13], compressed sensing methods
are leveraged to solve the channel estimation in the context
of IRS-assisted THz MIMO systems. In order to reduce the
training time resources, [14] proposes an algorithm that carries
out the channel estimation in three phases, where each step
uses a different training time-window.

Most of the works that deals with IRS performance evalua-
tion assume a perfect IRS reflection, i.e., the reflection ampli-
tudes of the active IRS elements are always fixed and have a
unity amplitudes. However, when considering practical aspects
such as inductance, effective capacitance and resistance, and
angular frequency of the incident signal, an ideal (constant)
reflection amplitude cannot be guaranteed. In addition, the IRS
phase shifts usually have a limited resolution due to hardware
constraints. The work [15] discusses a practical model for the
phase and the amplitude of the IRS-reflected signal. Also,
in [16] the authors study practical effects of the electrical
components over the phase and the amplitude responses.

In this paper, we take such practical amplitude and phase li-
mitations into account in the perspective of channel estimation.
More specifically, we discuss two channel estimation schemes,
where the first is based on the least squares (LS) estimator,
while the second adds an extra step based on the Khatri-Rao
factorization algorithm to achieve separate estimates of the
BS-IRS and IRS-UT channels via rank-1 approximation steps.
We analyze numerically the performance of the two presented
channel estimation schemes, and discuss their involved trade-
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offs, while discussing the impact of limitations on the phase
and amplitude responses of the IRS on the NMSE performance
of the estimated channels. In particular, our numerical results
show that adding the Khatri-Rao factorization step offers a
performance gain over the traditional LS channel estimator.

Fig. 1. Generic IRS-assisted wireless communication system.

Notation: Matrices are represented with boldface capital letters
(A,B, . . . ) and vectors are denoted by boldface lowercase let-
ters (a,b, . . . ). Tensors are symbolized by calligraphic letters
(A,B, . . . ). Transpose and pseudo-inverse of a matrix A are
denoted as AT and A†, respectively. The operator diag(a)
forms a diagonal matrix out of its vector argument, while
�, � and ⊗ denote the Hadamard, Khatri-Rao and Kronecker
products, respectively. IN denotes the N ×N identity matrix.
The operator vec(·) vectorizes an I × J matrix argument by
stacking its columns, while unvecI×J(·) does the opposite
operation.

II. SYSTEM MODEL

We consider a MIMO communication system assisted by
an IRS. Both the transmitter and the receiver are equipped
with multiple antennas. Although the terminology adopted
in this paper assumes a downlink communication, where the
transmitter is the base station (BS) and the receiver is the user
terminal (UT), our signal model also applies to the uplink case
by just inverting the roles of the transmitter and the receiver.
The base station and user terminal are equipped with arrays
of M and L antennas, respectively. The IRS is composed of
N elements, or unit cells, capable of individually adjusting
their reflection coefficients (i.e., phase shifts). The line-of-
sight (LOS) path between the BS and UT is assumed to
be unavailable. The system model is illustrated in Figure 2.
Assuming a block-fading channel, the received signal model
can be expressed as follows

y[t] = G(s[t]�Hx[t]) + n[t], t = 1, . . . , T, (1)

or, alternatively,

y[t] = Gdiag(s[t])Hx[t] + n[t], (2)

where x[t] ∈ CM×1 is the vector containing the transmitted
pilot signals at time t, s[t] =

[
a1,te

jφ1,t , . . . , aN,te
jφN,t

]T ∈
CN×1 is the vector that models the phase shifts and activation
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Fig. 2. IRS-assisted MIMO system

pattern of the IRS, where φn,t ∈ (0, 2π], and an,t ∈ (0, 1)
controls the amplitude of the corresponding element at time t.
In practical terms, the IRS cannot design an infinity number
of phases for each element due to the hardware limitations
[13], [15]–[17]. Thus, considering a limited (finite) number of
discrete phases is more realistic than assuming unconstrained
phases. For this reason, for given φmin and φmax, we can
uniformly distribute the phases such that they fall within a
finite grid defined as

F = {φmin, φmin + ∆φ, . . . , φmin + (F − 1)∆φ}, (3)

where ∆φ =
(φmax − φmin)

F
and F = 2b denotes the number

of discrete phase levels for b bits. It is worth mentioning that
besides this phase shift constraint, the reflection amplitude is
also subject to restrictions. In this paper, we investigate such
an amplitude constraint by assuming sn,t 6= 1. The matrices
of uncorrelated Rayleigh fading channels H ∈ CN×M and
G ∈ CL×N denote the BS-IRS and IRS-UT MIMO channels,
respectively, while n[t] ∈ CL×1 is the additive white Gaussian
noise (AWGN) vector.

The channel coherence time Ts is divided into K blocks,
where each block has T time slots, so that Ts = KT . Let
us define y[k, t]

.
= y[(k − 1)T + t] as the received signal

at the t-th time slot of the k-th block, t = 1, . . . , T , k =
1, . . . ,K. Likewise, denote x[k, t] and s[k, t] as the pilot signal
and phase shift vectors associated with the t-th time slot of the
k-th block. We propose the following structured time-domain
protocol: i) the IRS phase shift vector is constant during T
time slots of the k-th block and varies from block to block;
ii) the pilot signals {x[1], . . . ,x[T ]} are repeated over the K
blocks. Mathematically, this means that

s[k, t] = s[k], for t = 1, . . . , T, (4)
x[k, t] = x[t], for k = 1, . . . ,K. (5)

An illustration of this time-domain protocol is shown in
Figure 3. Under these assumptions, the received signal model
(2) can be written as

y[k, t] = Gdiag(s[k])Hx[t] + n[k, t], (6)

Collecting the received signals during T time slots for the k-th
block in Y[k] = [y[k, 1] . . .y[k, T ]] ∈ CL×T leads to

Y[k] = GDk(S)HXT + N[k], (7)
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Fig. 3. Structured pilot pattern in the time domain

where X
.
= [x[1], . . . ,x[T ]]T ∈ CT×M , N

.
=

[n[1], . . . ,n[T ]]T ∈ CL×T , S
.
= [s[1], . . . , s[K]]T ∈ CK×N ,

and Dk(S)
.
= diag(s[k]) denotes a diagonal matrix holding the

k-th row of the IRS phase shift matrix S on its main diagonal.
The matrix S can be defined as a Hadamard product between
A and Φ whose entries are ak,n and ejφk,n , respectively.

In order to simplify the exposition of the signal model, we
remove the noise term from the following developments. The
noise term will be taken into account later. We can rewrite the
signal part of equation (7) as

Y[k] = GDk(S)ZT, Z
.
= XHT ∈ CT×N . (8)

In fact, the matrix Y[k] can be viewed as the k-th frontal
matrix slice of a three-way tensor Y ∈ CL×T×K that follows
a PARAFAC decomposition, also known as the canonical
polyadic decomposition (CPD) [18]–[21].

III. LEAST SQUARES CHANNEL ESTIMATION

In the previous section, we arrived at a received signal
model that follows a PARAFAC model. Exploiting this tensor
model, we present a closed-form solution consisting of a two-
stage combination of the conventional LS estimation with a
Khatri-Rao Factorization (KRF) method. We first write the
received signal tensor Y using the n-mode product notation
as follows

Y = I3,N ×1 G×2 Z×3 S, (9)

knowing that Z = XHT, the 3-mode unfolding of the received
signal tensor Y is given as

[Y]3 = S
(
XHT �G

)T ∈ CK×TL. (10)

Applying the property (A ⊗ B)(C �D) = (AC) � (BD)
to (10) yields

[Y]3 = S
(
XHT �G

)T
(11)

= S
[
(X⊗ IL)

(
HT �G

)]T
(12)

= S
(
HT �G

)T
(X⊗ IL)

T
. (13)

Defining Ξ = (X⊗ IL) ∈ CTL×ML, equation (13) can be
rewritten as

[Y]3 = S
(
HT �G

)T
ΞT. (14)

or, equivalently,

[Y]
T
3 = Ξ

(
HT �G

)
ST. (15)

From a noisy corrupted version of (15), a bilinear time-domain
filtering is applied at the receiver by exploiting the knowledge

of the IRS matrix and the pilot signal matrix. This filtering
operations lead to an LS estimate of the equivalent channel as

W
.
= Ξ†[Y]T3

(
ST)† =

(
HT �G

)
+ ÑT

3, (16)

where Ñ3 = Ξ†[N ]T3
(
ST
)†

is the filtered noise term. Note
that W ∈ CML×N is a noisy version of the (Khatri-Rao
structured) virtual MIMO channel that models the IRS-assisted
MIMO transmission. Exploiting such a Khatri-Rao structure,
in the next section we present an algorithm to provide separate
estimates of the BS-IRS and IRS-UT channel matrices. As will
be clear later, solving the equivalent channel estimation pro-
blem via KRF algorithm will provides an improved accuracy
compared to the LS scheme thanks to the denoising achieved
by the multiple rank-1 matrix factorization steps.

IV. KRF-BASED CHANNEL ESTIMATION

In the previous section, we have presented the conventional
LS-based channel estimation method, which yields an esti-
mate of the equivalent BS-IRS-UT channel matrix that has a
Khatri-Rao product structure. Starting from the LS solution in
equation (16), we propose to estimate H and G by minimizing
the following cost function

min
H,G

∥∥W −HT �G
∥∥2
F

(17)

An efficient solution to this problem is given by the Khatri-
Rao factorization (KRF) algorithm [22], [23]. The problem
(17) can be interpreted as finding estimates of H and G that
solve a set of rank-1 matrix approximation problems, i.e.,

(Ĥ, Ĝ) = arg min
{hn},{gn}

N∑
n=1

∥∥∥W̃n − gnhT
n

∥∥∥2
F
, (18)

where W̃n
.
= unvecL×M (wn) ∈ CL×M , while gn ∈ CL×1

and hT
n ∈ C1×M are the n-th column and n-th row of G

and H, respectively. The estimates of gn and hn in (18)
can be obtained from the dominant left and right singular
vectors of W̃n, respectively, for n = 1, . . . , N . Hence, our
channel estimation problem translates into solving N rank-1
matrix approximation subproblems, for which several efficient
solutions exist in the literature, such as the well-known power
method [24]. A summary of the algorithm, herein referred
to as KRF, is given in Algorithm 1, where t-SVD denotes a
truncated SVD that returns the dominant singular vectors and
associated singular value.

The estimates Ĝ and Ĥ are affected by scaling ambiguities.
More specifically, the rows of Ĥ and the columns of Ĝ are
affected by unknown scaling factors that compensate each
other, i.e., Ĥ = ∆HH and Ĝ = G∆G. Note, however, that
such a scaling ambiguity is automatically eliminated in the
estimate of the cascaded channel, i.e, ∆G∆H = IN .

Design requirements and computational cost: The KRF
method (Algorithm 1) has a bilinear filtering step as shown
in (16), requiring that S and Ξ be semi-unitary (or column-
orthogonal) matrices, which implies K ≥ N and T ≥ M .
Regarding the computational cost, the extra cost added by the
KRF algorithm corresponds to that of N rank-1 approximation
routines. The computational cost of the KRF algorithm is
approximately equal to O(MLN).
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Algorithm 1: Khatri-Rao Factorization (KRF)
Procedure
begin

Bilinear filtering of [Y]3:
WT ←− S†[Y]3

(
ΞT)†

for n = 1, . . . , N do
W̃n ←− unvecL×M (wn)

(u1, σ1,v1)←− t-SVD(W̃n)

ĥn ←−
√
σ1v

∗
1

ĝn ←−
√
σ1u1

end
Reconstruct Ĥ and Ĝ:

Ĥ←−
[
ĥ1, . . . , ĥN

]T
Ĝ←− [ĝ1, . . . , ĝN ]

V. NUMERICAL RESULTS

In this section, some numerical results are presented. The
channel estimation accuracy is evaluated in terms of the
normalized mean square error (NMSE) given by

NMSE(Ĥ) =
1

R

R∑
r=1

(
‖H(r) − Ĥ(r)‖2F
‖H(r)‖2F

)
, (19)

where Ĥ(r) is the BS-IRS channel estimated at the r-th run,
and R denotes the number of Monte Carlo runs. The same
definition applies to the estimated IRS-UT channel. The SNR
(in dB) is defined as SNR = 10log10

(
‖[Y]3‖2F /‖[N ]3‖2F

)
.

At each run, the channel matrices H and G and noise term
are drawn from an i.i.d. complex-valued Gaussian distribution.
To evaluate the impact of the limited resolution of the IRS
phases on the channel estimation accuracy, we assume that
the IRS phase shift matrix S ∈ RK×N has random entries
to amplitudes lying between 0 and 1, which are drawn from
a uniform distribution at each run. Note that optimizing the
reflection amplitudes it is out of the scope of this work, since
deal with the channel estimation problem and optimization of
the IRS phases requires the knowledge of the BS-IRS and
IRS-UT channels.

First, in (2) we evaluate the impact of the amplitude cons-
traint, i.e, 0 < an,t < 1, on the estimation of the equivalent and
individual channels. Here, the phase shift matrix is designed
as a truncated DFT matrix and no constraints on the resolution
of the phases are imposed. The results are depicted in Figures
4-5. When the LS solution is considered, the equivalent
channel

(
HT �G

)
is estimated directly from equation (15).

On the other hand, when considering the KRF algorithm, the
equivalent channel is reconstructed from the separate estimates
of the channels H and G. As expected, the performance it
is better when the IRS matrix has constant amplitudes (i.e.
ak,n = 1, ∀ k, n). An SNR loss of approximately 1.5dB
can be observed for the whole SNR range when considering
the nonideal amplitude model. In particular, in Figure 4,
we can also observe that the KRF algorithm outperforms
the LS algorithm. The SNR gap between both methods is
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Fig. 4. NMSE of the estimated equivalent channels ĤT � Ĝ.
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Fig. 5. NMSE of the estimated cascaded channel ĤC = ĜĤ.

approximately 3dB, which means that the KRF algorithm
effectively filters out the residual noise that affect the LS
estimate by providing an NMSE performance enhancement in
comparison to the single-stage LS estimation of the equivalent
channel. Indeed, the KRF algorithm adds an extra rank-1
matrix approximation step by reshaping the effective ML×N
“Khatri-Rao"channel in the form of N matrices of dimension
M×L. This rank-1 approximation achieves an additional noise
rejection, which translates into an improved channel estimation
accuracy. Figure 5 shows the impact of the nonideal IRS
amplitude responses on the estimation of the cascaded channel.
We define the cascaded channel as ĤC

.
= ĜĤ. We can also

note a degradation of around 1.5dB, following the results of
the previous figure.

Next, supposing no amplitude fluctuations on the IRS re-
flection matrix, we add the assumption of limited resolution
phase shifts, and evaluate its impact on the channel estimation
accuracy. In this case, the IRS has a limited number of
available phases that belong to finite set F defined in (3).
The results are depicted in Figure 6 (for the LS method) and
in Figure 7 (for the KRF method). We compare two limited
resolution design approaches. The first approach corresponds
to the quantized DFT grid according to [17], while the second
corresponds to a binary design, where the IRS matrix is
designed as a truncated Hadamard matrix. For the quantized
DFT design, we assume b = 4 bits. For the Hadamard design,
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Fig. 6. NMSE of the estimated equivalent channel ĤT � Ĝ.
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Fig. 7. NMSE of the estimated equivalent channel ĤT � Ĝ.

we necessarily have b = 1 bit, i.e., the IRS elements only
assume two states given by {1,−1}. First, we can observe
a degradation on the channel estimation accuracy when the
quantized DFT design is used, while the binary Hadamard
design is very close to the ideal case where no constraints are
imposed on the phase shifts.

VI. CONCLUSION

In this paper, we have discussed different solutions to solve
the channel estimation problem in an MIMO IRS-assisted
system. We found out that the proposed KRF algorithm
provides an improvement on the NMSE of the estimated
channels in comparison to the classical LS estimator. Such
a performance gain comes from the efficient exploitation of
the Khatri-Rao structure of the equivalent channel. We have
also evaluated the impact of nonideal IRS amplitude and phase
shift responses. A slight degradation was observed when the
phase shifts are quantized in a DFT grid. We also noted
that the Hadamard design provides more accurate channel
estimates than the quantized DFT one, while requiring less
bits. This observation has a practical impact, since the IRS
reflection coefficients are usually conveyed from the BS to
the IRS through a low-rate limited feedback control channel.
A perspective of this work is the extension of the KRF channel
estimation method to the multiuser case. The use of more
realistic parametric (circuit-based) phase shift models for the
IRS should also be considered and their impact on the channel
estimation performance should be evaluated.
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