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Abstract— This article has two main purposes: (i) to introduce 

and evaluate a modified version of the Dorsch soft decoding 

algorithm for block codes, based on information sets, and (ii) to 

examine the complexity of implementing this kind of decoder in 

hardware (more specifically, in FPGA devices). The 

modifications introduced in the algorithm lead to an optimized 

circuit size when the algorithm is implemented in hardware. 

Indeed, the physical implementation and its detailed analysis 

represent a major departure from traditional decoder analysis, 

increasingly important as more frequently such specialized 

functions are embedded into the hardware, in top-performance 

systems. It is demonstrated that, in the worst case, n – dmin + 1 

iterations suffice to find the most reliable information set, from 

which only a very small fraction of all 2k possible candidate 

codewords needs to be tested to achieve near maximum likelihood 

decoding (MLD) performance. These conclusions are confirmed 

by simulations on a C(48, 24, 12) block code, then used as 

guidelines in the physical implementations of several decoders, in 

order to test their real-time operation. A detailed circuit diagram 

is presented, along with experimental results indicating the 

number of logic cells and registers needed to implement the 

decoder in a high-end FPGA, for various code sizes. 

Keywords - soft-decision; information set decoding; Dorsch 

algorithm; hardware implementation; FPGA; VHDL. 

I. INTRODUCTION 

The use of information sets for decoding linear block codes 
was first proposed by Prange [1], followed by several other 
researchers [2]-[12], leading to an extensive family of related 
decoding techniques. Their common goals are to reduce the 
number of candidate codewords, to obtain better candidates, 
and to reduce the code‟s computational complexity. 

Consider a linear (n, k) block code C, with codewords ci 

(i = 0 to 2
k
1), minimum Hamming distance dmin, and generator 

matrix G (of size k × n). The encoding procedure consists in 
multiplying a message vector u (with k bits) by G to produce a 

corresponding codeword c  C (with n bits). The decoder 
receives a possibly corrupted version of c, from which it 
extracts a hard decoded sequence r, along with a reliability 
measure s, based on the actual analog value of each symbol. 
The latter is needed in order to rank (sort) the symbols in r, 
thus allowing the use of soft-decision decoding. 

G consists of k linearly independent columns (usually, the 
identity matrix Ik) plus n – k columns (linearly dependent on 
the previous ones) responsible for adding the redundancy. In 
blocked form, G can be represented as G = [I | P], where I is a 

k × k identity matrix and P is a k × (n – k) parity matrix. An 
information set (IS) is defined as any set of k linearly 
independent (LI) columns in G [5]. 

Due to its relatively simple software implementation, of 
particular interest is the Dorsch algorithm [4], as well as a 
variant based on ordered statistics decoding introduced by 
Fossorier [7-8]. A modified, hardware-friendlier version of the 
former is introduced, which greatly reduces the circuit size, 
making real-time applications feasible. A detailed analysis of 
its time complexity is presented, which shows that the number 
of trials to find the most reliable information set is bounded by 
n – dmin + 1, therefore a small number. It is also shown that, 
once the IS has been found, the decoding of any codeword 
requires only an order-1 search about the most reliable 
information word to achieve near MLD performance, thus 
limiting the total search space to just k + 1 candidates, which is 
another very small number. These conclusions are confirmed 
by simulations on the extended binary quadratic residue (48, 
24, 12) block code presented in [13], and then used as 
guidelines in the physical implementations of the decoders in 
an FPGA device, in order to test their real-time operation.   

II. HARDWARE-FRIENDLIER INFORMATION SET DECODER 

This section introduces the modified version of the Dorsch 

algorithm, which allows a more compact hardware imple-

mentation. 
The core of information set decoding with soft decision can 

be roughly described as follows. 

A) Extract, from the received codeword, the hard decoded 

sequence r and the corresponding reliability sequence s. 

B) Based on s, select the k most reliable symbols in r and 

disregard the remaining n – k symbols. 

C) Re-encode the k most reliable symbols using a new 

generator matrix Gn, derived from the original G and 

equivalent to it, but with unit columns in the k most reliable 

positions. 

One way of obtaining Gn is by inverting the matrix formed 
by the k elected columns of the original G, then multiplying the 
result by G. A major problem in this procedure is that not all 
sets of k columns from G are LI, so inversion might not be 
possible. In such a case, another set of k symbols is chosen, and 
the process is repeated until k LI columns (an IS) are found.  

Another approach, with much simpler computations and for 
which a guaranteed small search space is demonstrated, is 



described next. The generator matrix is manipulated using 
Gauss-Jordan transformations, which can reduce any row or 
column to a unit vector. The algorithm is summarized in Fig. 1 
and briefly described below, with a (7, 4) code used as an 
example, whose generator matrix G is shown in Fig. 1(a). 

 

Figure 1. Modified information set decoding algorithm. 

A) Extract from the received codeword the hard decoded 

sequence r and the corresponding reliability sequence s. 

Note that the rank values (si) are marked at the top of Fig. 

1(a), where „1‟ indicates the most reliable column.  

B) Using Gauss-Jordan transformations, reduce the k most 

reliable columns (MRCs) of G to unit vectors. Even though 

there is no guarantee that the k MRCs are LI, the process 

does not need to be restarted; just replace the least reliable 

among the MRCs with the next MRC and proceed from 

there. This is illustrated in Figs. 1(b)-(f). Column 6 (the 

MRC) was reduced in Fig. 1(b), column 5 (the next MRC), 

in Fig. 1(c), then column 7, in Fig. 1(d). In Fig. 1(e), the 

algorithm failed to reduce column 3, indicating that the set 

is not LI. Column 3 was then replaced with column 2 (the 

next MRC), which was successfully reduced in Fig. 1(f), 

resulting in a fully reduced matrix Gr.  

C) Create the matrix Gr0, which is simply Gr with all 

unselected columns zeroed (Fig. 1(g). Although this matrix 

is not strictly necessary for the decoding procedure, it 

eases the hardware implementation, since it can be used to 

extract from r only the bits in the positions of the selected 

information set. 

D) Multiply r by Gr0
T
 to attain the source message (that is, u0 

= r×Gr0
T
, as indicated in Fig. 1(h)).  

E) Construct the k remaining candidate messages by simply 

flipping one bit of u0 at a time (note that, in terms of 

hardware, this is a very simple procedure). Thus the total 

number of candidate messages is k + 1, represented by ui 

(i = 0 to k). 

F) Finally, re-encode the candidate messages using ci = ui×Gr 

to get the candidate codewords. Measure the Euclidean 

distance between each codeword so generated and r in 

order to decide the winner. 

It will be demonstrated in the next section that the number 
of iterations to find the most reliable IS in the proposed 
algorithm is never larger than n – dmin + 1, and that only a small 
fraction of all the 2

k
 possible candidate codewords are indeed 

sufficient to produce practical MLD decoding performance. 

III.  ALGORITHM ANALYSIS AND DEMONSTRATIONS 

Three fundamental questions will be discussed and 
answered in this section: 

A) What is the maximum number of columns in G that must 
be inspected until an information set is guaranteed to be 
found? 

B) What is the maximum number of columns in G that picked 
randomly are guaranteed to be LI?  

C) What is the likelihood of needing to run the maximum 
number of trials derived in (A) until an IS is found? 

A. Maximum number of columns in G that must be inspected 
until an IS is guaranteed to be found 

 This can be answered using theorem 1.4.15 of [11], which 
demonstrates that any set with n – dmin + 1 columns from G 
is guaranteed to contain an IS. Another proof can be 
obtained as follows. Say that u is an information word, so 
its corresponding codeword is 

c = uG . (1) 

 This codeword can be rearranged in another codeword cr, 
with all z zeros of c in the initial z positions and the n – z 
ones in the final n – z positions. Rearranging then G in the 
same way, we obtain Gr, which obviously obeys 

cr = uGr . (2) 

 The codeword cr can be written as the concatenation of an 
all-zero vector a and an all-one vector b, that is cr = [a | b]. 
Likewise, Gr can be constructed with the concatenation of a 
z-column matrix A with another (n–z)-column matrix B. 
Therefore, (3) can be written as 

[az | bn-z] = u[Ak×z | Bk×(n-z)] , (3) 

or, equivalently, 
az = uAk×z = 0 ,  (4) 

bn-z = uBk×(n-z) . (5) 

 From (4), we conclude that rank(A) < k, because there is a 
set of rows from A, given by u, whose sum is zero. Since 
the row and columns ranks are alike, we conclude that 
among the z columns of A there cannot be k LI columns. If 
we then take a codeword with z zeros and select the 
corresponding z columns of G, a set of z columns without 



an information set will be attained. Since the largest value 
of z is 

zmax = n – dmin , (6) 

 equation  (6) represents the size of the largest set without an 
IS. Consequently, the maximum (worst case) number of 
iterations (NI) is given by:  

NImax = n – dmin + 1 . (7) 
 

B.   Maximum number of columns from G that selected 

randomly are still guaranteed to be LI 

This is the heft of G (the largest value of t such that any set 

of t columns from G are LI). The heft of the parity matrix H of 

a code is known to be dmin – 1.  Since G is in turn the parity 

matrix of its dual code, then heft(G) = dmin┴ – 1, where dmin┴ 

is the minimum Hamming distance of the dual code (in the 

particular case of self dual codes, this value is the same for 

both, that is, dmin). For example, for the (48, 24, 12) code, 

heft(G) = 11, so any 11 columns from G in this code are 

guaranteed to be LI. 

The values of heft(G) for some well known codes are 

listed in Table I, which also exhibits the largest number of 

columns that is guaranteed to contain an IS (that is, n – 

dmin + 1, as determined in section III-A). 

TABLE I.     MINIMUM NUMBER OF LI COLUMNS AND 
MAXIMUM  NUMBER OF COLUMNS NEEDED TO OBTAIN AN IS 

Code dmin heft(G) n – dmin + 1 

(7, 4, 3) 3 3 5 

(15, 7, 5) 5 3 11 

(23, 12, 7) 7 7 17 

(24, 12, 8) 8 7 17 

(48, 24, 12) 12 11 37 
  

The knowledge of heft(G) is important because it tells that 

the first dmin┴ – 1 most reliable columns of G will never have 

to be replaced during the process of obtaining an IS. Thus any 

column replacement, should it be needed, will happen from 

column dmin┴ to column n – dmin. Taking again the (48, 24, 12) 

code as an example, which is a self-dual code, its 11 MRCs 

can be automatically assigned to the IS. Since in this case an 

IS requires 24 LI columns, the 12
th
 MRC is then tested, then 

the 13
th

 MRC, and so on, until 24 LI columns are finally 

obtained. However, this procedure will never require 

inspection beyond the 37
th

 MRC. Furthermore, as will be 

illustrated in section III-C, the probably of attaining an IS (that 

is, k LI columns) in the first k columns is high (~34% in the 

present example), with the probability rapidly surpassing 99% 

with the inspection of just a few additional columns beyond 

the k initial ones.  

 

C. Likelihood of inspecting the maximum number of columns 

derived in (A) before an IS is found 

We have demonstrated that the number of columns from G 

that might be needed to inspect until an IS is found lies 

between k and n – dmin + 1. For the (48, 24, 12) code, it ranges 

from 24 to 37, although simulations performed on this code 

show that the maximum number is very unlikely to be needed. 

In order to evaluate the number of columns inspected by 

the decoder, a sequence of randomly generated codewords 

subjected to an additive white Gaussian noise channel was 

applied to its input. Simulation results from 10
6
 iterations on 

the (48, 24, 12) code are plotted in Fig. 2. As can be observed, 

in 34% of the cases an IS was found using just the first k (=24) 

most reliable columns. With just one more MRC, 64.5% of the 

cases were covered. Note also that, with 30 columns, the 

success rate was 99.54%. Hence, as expected, the number of 

trials is generally small, with the maximum number rarely 

needed (zero occurrences in the present simulation with 10
6
 

iterations). Finally, it is important to note that, even if the 

maximum number of columns were needed, it would still be a 

reasonably low, manageable value.      

 
Figure 2. Probability of finding an IS as a function of the number of columns 
inspected for the (48,24,12) code, based on simulation results from 106 
iterations.  

IV.  HARDWARE IMPLEMENTATION  

The algorithm described in Section III was implemented as 

a hardware description in VHDL language, and synthesized to 

an FPGA in order to evaluate the cost and performance of a 

physical implementation. The devised hardware architecture 

(Fig. 3) comprises 5 main blocks: (1) input sorting and 

demodulation, (2) modified Gauss elimination on the G 

matrix, (3) candidate messages generation, (4) candidate 

codewords generation and (5) best candidate selection. 

The implemented VHDL code is completely generic, 

allowing for easy experimentation on the configurable 

parameters. Among the parameters that can be configured at 

compile time are the generator matrix G and the quantization 

levels of the input analog word. 

Block (1) receives an analog word x transmitted through the 

channel and produces two outputs: the reliabilities vector s, and 

the received word demodulated in a hard-decision fashion (r). 

The demodulation process is trivial, and consists in inspecting 

the sign bit (most significant bit) of each binary-encoded input 

symbol. Vector s is generated by a linear insertion sorter, based 

on the architecture described in [14]. Since the analog values 

are ordered as they are shifted into the sorter, block (1) outputs 

become available after n clock cycles.  



The reliabilities vector s is promptly used as an input for 
block (2), which performs a modified Gauss elimination on the 
generator matrix G. Instead of sequentially eliminating the 
matrix columns from left to right, the processing order is 
dictated by the reliabilities vector s. The elimination steps 
proceed until k linearly independent columns are found. Since 
it is not always true that the k most reliable columns are 
linearly independent, the block outputs will be available 
somewhere between k and n - dmin + 1 clock cycles, as 
demonstrated in item III. Block (2) outputs are the resulting 
matrix Gr (derived from G after k successful elimination steps) 
and the transformation matrix Gr0, which can be multiplied by 
the received word r in order to extract only those bits in the 
positions of the selected information set. 

Block (3) produces a set of k+1 candidate messages, based 
on the received word r and the information set selected in 
block (2). First, the received word is multiplied by Gr0

T
, in 

order to produce a candidate message u0. Then, another k 
candidate messages will be generated, by flipping each bit of u0 
one at a time. This process is entirely combinational, and so the 
list of candidate messages UC is generated in one clock cycle. 

Next, block (4) computes a list of k+1 candidate codewords 
(CC), re-encoding the candidate messages by multiplying 
matrices UC and Gr. This process is also combinational, and 
takes place in one clock cycle. 

Finally, block (5) evaluates all of the k+1 re-encoded 
words, in order to select the best possible candidate. A soft-
distance between each candidate ccj and the received analog 
word x is calculated as described in [10]: for each received 
symbol represented as a 3-bit quantized level r, the bit distance 
is 7-r to a code bit value „1‟, and r to a code bit value „0‟. The 
total distance between these two words is the sum of all 
individual bit distances. After evaluating this measure for each 
candidate, the codeword with the smallest distance to the 
received analog word is selected as the output of the decoder. 
Each candidate word is evaluated in one clock cycle, and as 
such the total processing time for block (5) is k+1 clock cycles. 

The amount of time required to decode one incoming word 
can be calculated by summing up the clock cycles required by 
each block. Since block (2) processing can take a variable 
amount of clock cycles, we have: 

# of cycles MIN = n + 2k + 3 (8) 

# of cycles MAX = 2n – dmin + k + 4 (9) 

 
It should be noted that although each received word takes a 

significant amount of clock cycles to be completely decoded, 
the implemented architecture operates in a pipelined way, and 
as such the average throughput is dictated by the number of 
clock cycles required by the most demanding stage (block 2), 
which is given in (7). 

V.  RESULTS 

A. Code Simulation Results 

Simulations performed on C(24, 12, 8) and C(48, 24, 12) 

codes showed that the proposed algorithm indeed attains near 

MLD decoding performance. It was also observed the 

reduction of code gain as the number of candidates are reduced, 

starting from k + 1 (complete set) down to k – dmin┴ + 1 (the 

latter corresponds to the limit derived in part B of Sec. III). The 

omitted candidates are those obtained from inversion of the 

most reliable bit, so less likely to be incorrect. 

The 13 curves obtained for the C(48, 24, 12) code are 

exhibited in Fig. 4. They were measured for k + 1 (= 25) 

candidates, then k candidates, next k – 1, and so on, down to 

dmin┴ – 1  (= 11) candidates. As expected, the verified gain 

reduction with respect to MLD for the complete set was very 

small (under 0.1 dB). Also, as expected, this number grew 

progressively as the number of candidates was reduced, 

reaching 0.85 dB when there were only 13 candidates left. 

B. Hardware Results 

The VHDL description was synthesized to a high-end 

Altera Stratix III FPGA (EP3SL70F780C2) for several code 

sizes, as shown in Table II. The correctness of the hardware 

implementation was confirmed by an exhaustive testbench 

simulation of the C(7,4) code, which yielded correct outputs for 

all 2
21

 possible input values (7 input symbols in 3-bit 

encoding).  
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Figure 3. Decoder hardware diagram. 

  



 

Figure 4. Comparison with MLD decoding and coding gain reduction for a 

smaller number of candidates. 

TABLE II.      SYNTHESIS RESULTS 

Code Registers ALUTs 
fMAX 

(MHz) 

Latency 

(cycles) 

ttdMAX 
(cycles)  

Throughput 

(Mbps) 

C(7,4,3) 291 443 159.1 19 5  127.3 

C(15,7,5) 838 1,214 111.1 36 11 70.7 

C(24,12,8) 1,954 3,273 84.2 56 17 59.4 

C(48,24,12) 6,808 10,295 55.5 112 37 36.0 

C(66,33,12) 12,387 17,933 50.1 157 55 30.0 

C(78,39,14) 16,972 26,639 41.4 185 65 24.8 

 

Regarding silicon area usage, it can be seen that logic 
resources utilization (look-up tables and registers) increases 
almost linearly (Fig. 5) with the product n×k, which represents 
the generator matrix dimensions. It should be noted that even 
the large C(78,39,14) code fits in the smallest Stratix III 
device, indicating that the hardware implementation is highly 
area-efficient. 

As for the timing, even though the latency to decode the 
first word can be large, once the pipeline is full the worst-case 
time-to-decode (ttdMAX) is significantly shorter. For the 
C(78,39) code, the first output is available after 185 cycles, 
but subsequent codewords will be output in at most 65 clock 
cycles. The difference between the minimum and maximum 
number of cycles was small for all evaluated codes, with a 
largest value of 16.3% for the C(78,32,14) code. However, 
since the performance of the decoder is dominated by stage 
(2), this is equivalent to a 40% variation in throughput. 

 

 
Figure 5. Performance and hardware resources usage  

for different code sizes. 

Overall, the decoder performance can be better summarized 
by its effective throughput, defined as the number of 
information bits output by the decoder per second. Even for 

large codes, the hardware presents a good performance, with 
an effective throughput of 30 Mbps for the C(66,33,12) code. 

VI.  CONCLUSIONS 

We have introduced and examined an efficient soft 
decoding algorithm for block codes based on information sets. 
It was demonstrated that with just k + 1 candidate codewords, 
easily generated in hardware with order-1 bit inversion, near 
MLD performance is achieved (simulation results confirmed a 
result less than 0.1 dB from MLD in a C(48, 24, 12) code). It 
was also shown that an IS is guaranteed to be found in at most 
n – dmin + 1 iterations (worst case), hence with very low time 
complexity, proper for real-time implementations.  

The hardware version of the proposed algorithm was 
proven to exhibit the exact same behavior of the original 
software implementation. It was shown to be highly area-
efficient in FPGAs; even the large C(78,39,14) code fits in the 
smallest device in the Stratix III family. For this code, the 
decoder was able to process an input word in at most 65 clock 
cycles, yielding an effective throughput of 24.8 Mbps. 
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