
Hardware-Friendly Implementation of

Soft Information Set Decoders

A. Gortan, R. P. Jasinski, W. Godoy Jr., V. A. Pedroni

UTFPR, Dept. of Electronics Engineering

Curitiba – PR, Brazil

Abstract— This article has two main purposes: (i) to introduce

and evaluate a modified version of the Dorsch soft decoding

algorithm for block codes, based on information sets, and (ii) to

examine the complexity of implementing this kind of decoder in

hardware (more specifically, in FPGA devices). The

modifications introduced in the algorithm lead to an optimized

circuit size when the algorithm is implemented in hardware.

Indeed, the physical implementation and its detailed analysis

represent a major departure from traditional decoder analysis,

increasingly important as more frequently such specialized

functions are embedded into the hardware, in top-performance

systems. It is demonstrated that, in the worst case, n – dmin + 1

iterations suffice to find the most reliable information set, from

which only a very small fraction of all 2k possible candidate

codewords needs to be tested to achieve near maximum likelihood

decoding (MLD) performance. These conclusions are confirmed

by simulations on a C(48, 24, 12) block code, then used as

guidelines in the physical implementations of several decoders, in

order to test their real-time operation. A detailed circuit diagram

is presented, along with experimental results indicating the

number of logic cells and registers needed to implement the

decoder in a high-end FPGA, for various code sizes.

Keywords - soft-decision; information set decoding; Dorsch

algorithm; hardware implementation; FPGA; VHDL.

I. INTRODUCTION

The use of information sets for decoding linear block codes
was first proposed by Prange [1], followed by several other
researchers [2]-[12], leading to an extensive family of related
decoding techniques. Their common goals are to reduce the
number of candidate codewords, to obtain better candidates,
and to reduce the code‟s computational complexity.

Consider a linear (n, k) block code C, with codewords ci

(i = 0 to 2
k
1), minimum Hamming distance dmin, and generator

matrix G (of size k × n). The encoding procedure consists in
multiplying a message vector u (with k bits) by G to produce a

corresponding codeword c  C (with n bits). The decoder
receives a possibly corrupted version of c, from which it
extracts a hard decoded sequence r, along with a reliability
measure s, based on the actual analog value of each symbol.
The latter is needed in order to rank (sort) the symbols in r,
thus allowing the use of soft-decision decoding.

G consists of k linearly independent columns (usually, the
identity matrix Ik) plus n – k columns (linearly dependent on
the previous ones) responsible for adding the redundancy. In
blocked form, G can be represented as G = [I | P], where I is a

k × k identity matrix and P is a k × (n – k) parity matrix. An
information set (IS) is defined as any set of k linearly
independent (LI) columns in G [5].

Due to its relatively simple software implementation, of
particular interest is the Dorsch algorithm [4], as well as a
variant based on ordered statistics decoding introduced by
Fossorier [7-8]. A modified, hardware-friendlier version of the
former is introduced, which greatly reduces the circuit size,
making real-time applications feasible. A detailed analysis of
its time complexity is presented, which shows that the number
of trials to find the most reliable information set is bounded by
n – dmin + 1, therefore a small number. It is also shown that,
once the IS has been found, the decoding of any codeword
requires only an order-1 search about the most reliable
information word to achieve near MLD performance, thus
limiting the total search space to just k + 1 candidates, which is
another very small number. These conclusions are confirmed
by simulations on the extended binary quadratic residue (48,
24, 12) block code presented in [13], and then used as
guidelines in the physical implementations of the decoders in
an FPGA device, in order to test their real-time operation.

II. HARDWARE-FRIENDLIER INFORMATION SET DECODER

This section introduces the modified version of the Dorsch

algorithm, which allows a more compact hardware imple-

mentation.
The core of information set decoding with soft decision can

be roughly described as follows.

A) Extract, from the received codeword, the hard decoded

sequence r and the corresponding reliability sequence s.

B) Based on s, select the k most reliable symbols in r and

disregard the remaining n – k symbols.

C) Re-encode the k most reliable symbols using a new

generator matrix Gn, derived from the original G and

equivalent to it, but with unit columns in the k most reliable

positions.

One way of obtaining Gn is by inverting the matrix formed
by the k elected columns of the original G, then multiplying the
result by G. A major problem in this procedure is that not all
sets of k columns from G are LI, so inversion might not be
possible. In such a case, another set of k symbols is chosen, and
the process is repeated until k LI columns (an IS) are found.

Another approach, with much simpler computations and for
which a guaranteed small search space is demonstrated, is

described next. The generator matrix is manipulated using
Gauss-Jordan transformations, which can reduce any row or
column to a unit vector. The algorithm is summarized in Fig. 1
and briefly described below, with a (7, 4) code used as an
example, whose generator matrix G is shown in Fig. 1(a).

Figure 1. Modified information set decoding algorithm.

A) Extract from the received codeword the hard decoded

sequence r and the corresponding reliability sequence s.

Note that the rank values (si) are marked at the top of Fig.

1(a), where „1‟ indicates the most reliable column.

B) Using Gauss-Jordan transformations, reduce the k most

reliable columns (MRCs) of G to unit vectors. Even though

there is no guarantee that the k MRCs are LI, the process

does not need to be restarted; just replace the least reliable

among the MRCs with the next MRC and proceed from

there. This is illustrated in Figs. 1(b)-(f). Column 6 (the

MRC) was reduced in Fig. 1(b), column 5 (the next MRC),

in Fig. 1(c), then column 7, in Fig. 1(d). In Fig. 1(e), the

algorithm failed to reduce column 3, indicating that the set

is not LI. Column 3 was then replaced with column 2 (the

next MRC), which was successfully reduced in Fig. 1(f),

resulting in a fully reduced matrix Gr.

C) Create the matrix Gr0, which is simply Gr with all

unselected columns zeroed (Fig. 1(g). Although this matrix

is not strictly necessary for the decoding procedure, it

eases the hardware implementation, since it can be used to

extract from r only the bits in the positions of the selected

information set.

D) Multiply r by Gr0
T
 to attain the source message (that is, u0

= r×Gr0
T
, as indicated in Fig. 1(h)).

E) Construct the k remaining candidate messages by simply

flipping one bit of u0 at a time (note that, in terms of

hardware, this is a very simple procedure). Thus the total

number of candidate messages is k + 1, represented by ui

(i = 0 to k).

F) Finally, re-encode the candidate messages using ci = ui×Gr

to get the candidate codewords. Measure the Euclidean

distance between each codeword so generated and r in

order to decide the winner.

It will be demonstrated in the next section that the number
of iterations to find the most reliable IS in the proposed
algorithm is never larger than n – dmin + 1, and that only a small
fraction of all the 2

k
 possible candidate codewords are indeed

sufficient to produce practical MLD decoding performance.

III. ALGORITHM ANALYSIS AND DEMONSTRATIONS

Three fundamental questions will be discussed and
answered in this section:

A) What is the maximum number of columns in G that must
be inspected until an information set is guaranteed to be
found?

B) What is the maximum number of columns in G that picked
randomly are guaranteed to be LI?

C) What is the likelihood of needing to run the maximum
number of trials derived in (A) until an IS is found?

A. Maximum number of columns in G that must be inspected
until an IS is guaranteed to be found

 This can be answered using theorem 1.4.15 of [11], which
demonstrates that any set with n – dmin + 1 columns from G
is guaranteed to contain an IS. Another proof can be
obtained as follows. Say that u is an information word, so
its corresponding codeword is

c = uG . (1)

 This codeword can be rearranged in another codeword cr,
with all z zeros of c in the initial z positions and the n – z
ones in the final n – z positions. Rearranging then G in the
same way, we obtain Gr, which obviously obeys

cr = uGr . (2)

 The codeword cr can be written as the concatenation of an
all-zero vector a and an all-one vector b, that is cr = [a | b].
Likewise, Gr can be constructed with the concatenation of a
z-column matrix A with another (n–z)-column matrix B.
Therefore, (3) can be written as

[az | bn-z] = u[Ak×z | Bk×(n-z)] , (3)

or, equivalently,
az = uAk×z = 0 , (4)

bn-z = uBk×(n-z) . (5)

 From (4), we conclude that rank(A) < k, because there is a
set of rows from A, given by u, whose sum is zero. Since
the row and columns ranks are alike, we conclude that
among the z columns of A there cannot be k LI columns. If
we then take a codeword with z zeros and select the
corresponding z columns of G, a set of z columns without

an information set will be attained. Since the largest value
of z is

zmax = n – dmin , (6)

 equation (6) represents the size of the largest set without an
IS. Consequently, the maximum (worst case) number of
iterations (NI) is given by:

NImax = n – dmin + 1 . (7)

B. Maximum number of columns from G that selected

randomly are still guaranteed to be LI

This is the heft of G (the largest value of t such that any set

of t columns from G are LI). The heft of the parity matrix H of

a code is known to be dmin – 1. Since G is in turn the parity

matrix of its dual code, then heft(G) = dmin┴ – 1, where dmin┴

is the minimum Hamming distance of the dual code (in the

particular case of self dual codes, this value is the same for

both, that is, dmin). For example, for the (48, 24, 12) code,

heft(G) = 11, so any 11 columns from G in this code are

guaranteed to be LI.

The values of heft(G) for some well known codes are

listed in Table I, which also exhibits the largest number of

columns that is guaranteed to contain an IS (that is, n –

dmin + 1, as determined in section III-A).

TABLE I. MINIMUM NUMBER OF LI COLUMNS AND
MAXIMUM NUMBER OF COLUMNS NEEDED TO OBTAIN AN IS

Code dmin heft(G) n – dmin + 1

(7, 4, 3) 3 3 5

(15, 7, 5) 5 3 11

(23, 12, 7) 7 7 17

(24, 12, 8) 8 7 17

(48, 24, 12) 12 11 37

The knowledge of heft(G) is important because it tells that

the first dmin┴ – 1 most reliable columns of G will never have

to be replaced during the process of obtaining an IS. Thus any

column replacement, should it be needed, will happen from

column dmin┴ to column n – dmin. Taking again the (48, 24, 12)

code as an example, which is a self-dual code, its 11 MRCs

can be automatically assigned to the IS. Since in this case an

IS requires 24 LI columns, the 12
th
 MRC is then tested, then

the 13
th

 MRC, and so on, until 24 LI columns are finally

obtained. However, this procedure will never require

inspection beyond the 37
th

 MRC. Furthermore, as will be

illustrated in section III-C, the probably of attaining an IS (that

is, k LI columns) in the first k columns is high (~34% in the

present example), with the probability rapidly surpassing 99%

with the inspection of just a few additional columns beyond

the k initial ones.

C. Likelihood of inspecting the maximum number of columns

derived in (A) before an IS is found

We have demonstrated that the number of columns from G

that might be needed to inspect until an IS is found lies

between k and n – dmin + 1. For the (48, 24, 12) code, it ranges

from 24 to 37, although simulations performed on this code

show that the maximum number is very unlikely to be needed.

In order to evaluate the number of columns inspected by

the decoder, a sequence of randomly generated codewords

subjected to an additive white Gaussian noise channel was

applied to its input. Simulation results from 10
6
 iterations on

the (48, 24, 12) code are plotted in Fig. 2. As can be observed,

in 34% of the cases an IS was found using just the first k (=24)

most reliable columns. With just one more MRC, 64.5% of the

cases were covered. Note also that, with 30 columns, the

success rate was 99.54%. Hence, as expected, the number of

trials is generally small, with the maximum number rarely

needed (zero occurrences in the present simulation with 10
6

iterations). Finally, it is important to note that, even if the

maximum number of columns were needed, it would still be a

reasonably low, manageable value.

Figure 2. Probability of finding an IS as a function of the number of columns
inspected for the (48,24,12) code, based on simulation results from 106
iterations.

IV. HARDWARE IMPLEMENTATION

The algorithm described in Section III was implemented as

a hardware description in VHDL language, and synthesized to

an FPGA in order to evaluate the cost and performance of a

physical implementation. The devised hardware architecture

(Fig. 3) comprises 5 main blocks: (1) input sorting and

demodulation, (2) modified Gauss elimination on the G

matrix, (3) candidate messages generation, (4) candidate

codewords generation and (5) best candidate selection.

The implemented VHDL code is completely generic,

allowing for easy experimentation on the configurable

parameters. Among the parameters that can be configured at

compile time are the generator matrix G and the quantization

levels of the input analog word.

Block (1) receives an analog word x transmitted through the

channel and produces two outputs: the reliabilities vector s, and

the received word demodulated in a hard-decision fashion (r).

The demodulation process is trivial, and consists in inspecting

the sign bit (most significant bit) of each binary-encoded input

symbol. Vector s is generated by a linear insertion sorter, based

on the architecture described in [14]. Since the analog values

are ordered as they are shifted into the sorter, block (1) outputs

become available after n clock cycles.

The reliabilities vector s is promptly used as an input for
block (2), which performs a modified Gauss elimination on the
generator matrix G. Instead of sequentially eliminating the
matrix columns from left to right, the processing order is
dictated by the reliabilities vector s. The elimination steps
proceed until k linearly independent columns are found. Since
it is not always true that the k most reliable columns are
linearly independent, the block outputs will be available
somewhere between k and n - dmin + 1 clock cycles, as
demonstrated in item III. Block (2) outputs are the resulting
matrix Gr (derived from G after k successful elimination steps)
and the transformation matrix Gr0, which can be multiplied by
the received word r in order to extract only those bits in the
positions of the selected information set.

Block (3) produces a set of k+1 candidate messages, based
on the received word r and the information set selected in
block (2). First, the received word is multiplied by Gr0

T
, in

order to produce a candidate message u0. Then, another k
candidate messages will be generated, by flipping each bit of u0
one at a time. This process is entirely combinational, and so the
list of candidate messages UC is generated in one clock cycle.

Next, block (4) computes a list of k+1 candidate codewords
(CC), re-encoding the candidate messages by multiplying
matrices UC and Gr. This process is also combinational, and
takes place in one clock cycle.

Finally, block (5) evaluates all of the k+1 re-encoded
words, in order to select the best possible candidate. A soft-
distance between each candidate ccj and the received analog
word x is calculated as described in [10]: for each received
symbol represented as a 3-bit quantized level r, the bit distance
is 7-r to a code bit value „1‟, and r to a code bit value „0‟. The
total distance between these two words is the sum of all
individual bit distances. After evaluating this measure for each
candidate, the codeword with the smallest distance to the
received analog word is selected as the output of the decoder.
Each candidate word is evaluated in one clock cycle, and as
such the total processing time for block (5) is k+1 clock cycles.

The amount of time required to decode one incoming word
can be calculated by summing up the clock cycles required by
each block. Since block (2) processing can take a variable
amount of clock cycles, we have:

of cycles MIN = n + 2k + 3 (8)

of cycles MAX = 2n – dmin + k + 4 (9)

It should be noted that although each received word takes a

significant amount of clock cycles to be completely decoded,
the implemented architecture operates in a pipelined way, and
as such the average throughput is dictated by the number of
clock cycles required by the most demanding stage (block 2),
which is given in (7).

V. RESULTS

A. Code Simulation Results

Simulations performed on C(24, 12, 8) and C(48, 24, 12)

codes showed that the proposed algorithm indeed attains near

MLD decoding performance. It was also observed the

reduction of code gain as the number of candidates are reduced,

starting from k + 1 (complete set) down to k – dmin┴ + 1 (the

latter corresponds to the limit derived in part B of Sec. III). The

omitted candidates are those obtained from inversion of the

most reliable bit, so less likely to be incorrect.

The 13 curves obtained for the C(48, 24, 12) code are

exhibited in Fig. 4. They were measured for k + 1 (= 25)

candidates, then k candidates, next k – 1, and so on, down to

dmin┴ – 1 (= 11) candidates. As expected, the verified gain

reduction with respect to MLD for the complete set was very

small (under 0.1 dB). Also, as expected, this number grew

progressively as the number of candidates was reduced,

reaching 0.85 dB when there were only 13 candidates left.

B. Hardware Results

The VHDL description was synthesized to a high-end

Altera Stratix III FPGA (EP3SL70F780C2) for several code

sizes, as shown in Table II. The correctness of the hardware

implementation was confirmed by an exhaustive testbench

simulation of the C(7,4) code, which yielded correct outputs for

all 2
21

 possible input values (7 input symbols in 3-bit

encoding).

sorter

 soft-
 distance

vmm

x
n

sn

G

i = 1 ?

1

0 WM

(working matrix)k × n

1-column Gauss elimination

WM Gr

col_index
s(i)

i

n s

k × n

n

r

Gr0
T n × k u0

uk

 1000...

 0100...

 ...0001

u0k

mmm

k+1 × kUC

Gr
k × n

Gr

CC Cc(j)

j

k+1 × n

B

A
d(A,B)

x
n

keep lowest
distance values

c’n

hard-decision

demodulator
Gr0Gr0

Block 1: Input sorting and demodulation Block 2: Modified Gauss Elimination

Block 3: Candidate messages generation Block 4: Candidate

codewords generation

Block 5: Best candidate selection

n

k × n k × n k × n

k × n

Figure 3. Decoder hardware diagram.

Figure 4. Comparison with MLD decoding and coding gain reduction for a

smaller number of candidates.

TABLE II. SYNTHESIS RESULTS

Code Registers ALUTs
fMAX

(MHz)

Latency

(cycles)

ttdMAX
(cycles)

Throughput

(Mbps)

C(7,4,3) 291 443 159.1 19 5 127.3

C(15,7,5) 838 1,214 111.1 36 11 70.7

C(24,12,8) 1,954 3,273 84.2 56 17 59.4

C(48,24,12) 6,808 10,295 55.5 112 37 36.0

C(66,33,12) 12,387 17,933 50.1 157 55 30.0

C(78,39,14) 16,972 26,639 41.4 185 65 24.8

Regarding silicon area usage, it can be seen that logic
resources utilization (look-up tables and registers) increases
almost linearly (Fig. 5) with the product n×k, which represents
the generator matrix dimensions. It should be noted that even
the large C(78,39,14) code fits in the smallest Stratix III
device, indicating that the hardware implementation is highly
area-efficient.

As for the timing, even though the latency to decode the
first word can be large, once the pipeline is full the worst-case
time-to-decode (ttdMAX) is significantly shorter. For the
C(78,39) code, the first output is available after 185 cycles,
but subsequent codewords will be output in at most 65 clock
cycles. The difference between the minimum and maximum
number of cycles was small for all evaluated codes, with a
largest value of 16.3% for the C(78,32,14) code. However,
since the performance of the decoder is dominated by stage
(2), this is equivalent to a 40% variation in throughput.

Figure 5. Performance and hardware resources usage

for different code sizes.

Overall, the decoder performance can be better summarized
by its effective throughput, defined as the number of
information bits output by the decoder per second. Even for

large codes, the hardware presents a good performance, with
an effective throughput of 30 Mbps for the C(66,33,12) code.

VI. CONCLUSIONS

We have introduced and examined an efficient soft
decoding algorithm for block codes based on information sets.
It was demonstrated that with just k + 1 candidate codewords,
easily generated in hardware with order-1 bit inversion, near
MLD performance is achieved (simulation results confirmed a
result less than 0.1 dB from MLD in a C(48, 24, 12) code). It
was also shown that an IS is guaranteed to be found in at most
n – dmin + 1 iterations (worst case), hence with very low time
complexity, proper for real-time implementations.

The hardware version of the proposed algorithm was
proven to exhibit the exact same behavior of the original
software implementation. It was shown to be highly area-
efficient in FPGAs; even the large C(78,39,14) code fits in the
smallest device in the Stratix III family. For this code, the
decoder was able to process an input word in at most 65 clock
cycles, yielding an effective throughput of 24.8 Mbps.

REFERENCES

[1] E. Prange, “The use of information sets in decoding cyclic codes,” IRE
Transactions on Information Theory, Vol. IT-8, pp. 5-9, Sep. 1962.

[2] G. D. Forney, Jr., “Generalized minimum distance decoding,” IEEE
Transactions on Information Theory, Vol. IT-12, No. 2, pp. 125-131, April
1966.

[3] D. Chase, “A class of algorithms for decoding block codes with channel
measurement information,” IEEE Transactions on Information Theory,
Vol. IT-18, No. 1, pp. 170-182, Jan. 1972.

[4] B. G. Dorsch, “A decoding algorithm for binary block codes and j-ary
output channels,” IEEE Transactions on Information Theory, Vol. IT-20,
pp. 391-394, May 1974.

[5] G. Clark, J. Cain, Error-Correction Coding For Digital Communication,
Plenum Press, 1981.

[6] J. Coffey, R. Goodman, “The complexity of information set decoding,”
IEEE Transactions on Information Theory, Vol. IT-36, No. 5, pp. 1031-
1037, Set. 1990.

[7] M. Fossorier, S. Lin, “Soft-decision decoding of linear block codes based
on order statistics,” IEEE Transactions on Information Theory, Vol. IT-41,
No. 5, pp. 13791396, Sep. 1995.

[8] M. Fossorier, S. Lin, J. Snyders, “Reliability-based syndrome decoding of
linear block codes,” IEEE Transactions on Information Theory, Vol. IT-44,
No. 1, pp. 388-398, Jan. 1998.

[9] M. Fossorier, “Reliability-based soft-decision decoding with iterative
information set reduction,” IEEE Transactions on Information Theory,
Vol. IT-48, No. 12, pp. 3101-3106, Dec. 2002.

[10] P. Sweeney, Error Control Coding From Theory to Practice, Wiley, 2002.

[11] W. Huffman, V. Pless, Fundamentals of Error-Correcting Codes,
Cambridge University Press, 2003.

[12] W. Godoy, Jr., E. Wille, “A simple acceptance criterion for binary block
codes soft-decision algorithms,” Adv. Int. Conf. on Telecommunications
and Int. Conf. on Internet and Web Applications and Services
(AICT/ICIW), 2006.

[13] M. Jimbo, K. Shiromoto, "A construction of mutually disjoint Steiner

systems from isomorphic Golay codes", Journal of Combinatorial Theory,
Series A, Vol. 116, pp 1245–1251, Oct. 2009.

[14] L. Ribas, D. Castells, J. Carrabina, “A linear sorter core based on a

programmable register file”, XIX Conference on Design of Circuits and
Integrated Systems - DCIS, pp. 635-640, France, 2004.

