
XXXVIII SIMPÓSIO BRASILEIRO DE TELECOMUNICAÇÕES E PROCESSAMENTO DE SINAIS - SBrT 2020, 22–25 DE NOVEMBRO DE 2020, FLORIANÓPOLIS, SC

Automatic Generation of Error Correcting Systems
Based on Convolutional Codes

Lucas F. Muniz, Daniel G. Silva, Romis Attux, Carla N. Lintzmayer, Denis G. Fantinato

Abstract— Due to the wide use of digital systems, bit error
control is an important task. Convolutional codes are error
correcting codes widely used due to their efficiency. However, the
large number of parameters involved in their generation results
in a problem with high complexity. In this work, we used the
metaheuristics GA and BRKGA to search for efficient coding
systems, which showed relevant results in our simulations.

Keywords— Convolutional codes, Error correction, Genetic
Algorithms.

I. INTRODUCTION

Recent technological advances prompted the immersion in
the fast and complex digital world, which demanded reliable
methods for data transmission and storage. Such task could
be achieved through error-correcting codes [3], whose origins
can be traced back to the pioneering work of Shannon [1],
which showed that errors can be made arbitrarily low if proper
encoding and decoding techniques are chosen – i.e., respecting
the channel’s capacity. As a result, a search for efficient en-
coding/decoding schemes begun. Throughout decades, several
efficient methods have been proposed, achieving performance
close to that defined by Shannon. Among them, convolutional
codes occupy a notorious position due to their relatively simple
structure to introduce redundancy through the combination
of elements in a given sequence [2]. However, a reliable
performance is conditioned to a suitable choice of parameters,
which may be a hard task due to the considerably large search
space.

Considering this complex parameter adjustment task in
convolutional codes, we propose the use of two different
metaheuristics for performing the search: the Genetic Algo-
rithm (GA) and the Biased Random-Key Genetic Algorithm
(BRKGA). In order to constrain the search space, we adopt
decoders based on the Majority Logic (ML) [3]. The per-
formance of the metaheuristics are compared in scenarios
with Binary Symmetric Channels (BSC), with very promising
results. We highlight, to the best of our knowledge, that no
previous work in literature uses metaheuristics to search for
convolutional encoders along with the ML decoding.

Lucas F. Muniz, Carla N. Lintzmayer, Denis G. Fantinato, Centro de
Matemática, Computação e Cognição, Universidade Federal do ABC, Santo
André-SP, e-mail: l.muniz@aluno.ufabc.edu.br, {carla.negri,
denis.fantinato}@ufabc.edu.br. Daniel G. Silva, Dep. Engen-
haria Elétrica, Universidade de Brasília, e-mail: danielgs@ene.unb.br.
Romis Attux, Faculdade de Engenharia Elétrica e de Computação, Universi-
dade Estadual de Campinas, e-mail: attux@dca.fee.unicamp.br. This
work was funded by São Paulo Research Foundation (FAPESP), grant no

2019/16997-0, and CNPq, grant no 433887/2018-4 and 308811/2019-4.

II. CONVOLUTIONAL CODES

Data transmission systems consist of three parts: an encoder,
which receives a message u and transforms it into a code word
v; a channel, which receives v for transmission, but it can
change some bits due to noise, so it returns a sequence r;
and a decoder, which receives r and transforms it into û. It is
desired for û to be as close as possible to u.

A convolutional code is an encoder that inserts redundancy
bits, allowing error correction. It splits u into blocks of k bits,
which are encoded into blocks of n bits. Each encoded block
depends on k bits from the original block and on m previous
message blocks, being m the encoder memory order. Thus, a
convolutional code is defined by the parameters (n,k,m) [3].

The message encoding is defined by generator sequences
g
(j)
` = (g

(j)
`,0 , . . . , g

(j)
`,m), where 1 ≤ j ≤ n and 1 ≤ ` ≤ k,

which correspond to the memory registers responsible for
generating the encoded bit. As the message block encoding
depends on the m previous encoded blocks, it is characterized
by a time unit t that denotes the encoding system state. Thus,
each message block and code word processed by the encoding
in a time t are denoted by ut e vt, respectively. So, the
convolution operation in a discrete time t ≥ 0 will be defined
by v

(j)
t =

∑m
i=0

∑k
`=1 u

(`)
t−ig

(j)
`,i , where 1 ≤ j ≤ n, and the

sum and multiplication operations are defined by the logic
(module-2) operations exclusive-OR and AND, respectively.
In this work, we generated systematic convolutional codes,
which uses k original bits of the message block and encodes
the n− k redundancy bits.

A sequence r received from the channel can be modeled as
r = v + e, where e is the error sequence. From r, we define a
syndrome sequence which is given by the operation s = rHT ,
where H is the parity-check matrix. The matrix H is based on
the generator sequences and is constructed so that if a sequence
v belongs to the encoding, then the property vHT = 0 is valid.
Thus, s = (v + e)HT = vHT + eHT = eHT , and s only
depends on the channel error.

The ML method uses the orthogonal check sum concept.
Each syndrome bit or sum of syndrome bits represents a sum
of the channel errors, called parity-check sums. If there are
errors in r, some syndrome bits will value 1. From a set with J
orthogonal sums over bit e(`)i in position ` of block i, for
1 ≤ ` ≤ k, we define tML = bJ/2c as the majority logic
decoding rule. If more than tML sums have value 1, then the
estimated error bit value will be ê(`)i = 1. The bit recovery is
performed using the module-2 operation û(`)i = r

(`)
i + ê

(`)
i .



XXXVIII SIMPÓSIO BRASILEIRO DE TELECOMUNICAÇÕES E PROCESSAMENTO DE SINAIS - SBrT 2020, 22–25 DE NOVEMBRO DE 2020, FLORIANÓPOLIS, SC

III. RESULTS

Given that the convolutional code structure is based on
a binary domain, the population based metaheuristics GA
and BRKGA were chosen. All algorithms were implemented
using Julia1 language. The GA and BRKGA implementations
followed the classic approaches [4], [5].

For simulation, we implemented a channel that changes a
bit with probability p, hence the probability for a bit in e
to be 1 is p, and otherwise it is 1 − p. The encoder uses
a code given by the metaheuristics and the decoder uses the
ML method. To evaluate error correcting property of a code C
over a sequence u, we used the accumulation error measure
E(C,u) =

∫ 1

0
te(C,u, p)dp, where p is the probability of

error, and te(C,u, p) = Ne(C,u, p)/N is the measured error
rate, being Ne(C,u, p) the number of measured errors in v
(the encoding of u using C) after transmission through the
channel, and N the total number of transmitted bits. This
measure indicates the error correcting capacity of C, since
it represents the total variation of errors introduced by the
channel and not recovered by the code – bit inversion for error
rate larger than 0.5 was not considered. Thus, low values of
E(C,u) indicate that C has high error correcting capacity.

For the search, random bit sequences u with 1500 bits
each were generated, and p ∈ [0, 1] was varied in steps of
0.05 over the interval. Parameters (n,k,m) generated by the
metaheuristics were defined in the intervals 2 ≤ n ≤ 20
and 1 ≤ k,m ≤ 20, to guarantee higher simulation speed
and to limit the search space. Using E(C,u), five objective
functions were created, in order to guide the search for
good encoder/decoder with low structural complexity (the
encoder structure has spacial complexity of O(nmk)) and
low accumulation error E(C,u). The objective function that
obtained the best results was f(C) = R/(E(C,u) + nkm),
where R = k/n is the code rate.

The GA implementation has parameters (nG, tp, pm, pp),
where nG ∈ [50, 200] is the number of generations, tp ∈
[50, 150] is the population size, pm ∈ [0.2, 0.4] is the per-
centage of mutated individuals in the population, and pp ∈
[0.1, 0.3] is the percentage of individuals selected by the
crossover operation. The parameters’ values with best results
during the search were (50, 150, 0.2, 0.1). The chromosomes
are formed by (n − k)k sequences of m + 1 bits (system-
atic convolutional code) that directly represent the generator
functions. We also keep parameters n, k, and m for each
chromosome. The best convolutional code C1 obtained by GA
has structure (2,1,1) and is defined by the generator functions
g
(1)
1 = (1, 0), g(2)

1 = (1, 1). Its error capacity showed average
E(C1,u) ≈ 0.4.

The BRKGA implementation has parameters (nG, tp, ρe,
pm, pe), where nG and tp are defined as in GA, ρe ∈ [0.8, 0.9]
is the probability of a generated individual to inherit a key
from an elite parent, pm ∈ [0.2, 0.4] is the percentage of
mutants added to the next generation, and pp ∈ [0.1, 0.3] is
the percentage of individuals that will be selected for the elite
population. The parameters’ values with best results during the
search were (50, 50, 0.85, 0.2, 0.2). The BRKGA chromosome

1Official website of the language: https://julialang.org.

Fig. 1
ERROR RATE OF C1 (SOLID) AND C2 (DASHED) AS A FUNCTION OF p.

is formed by (n − k)k real numbers, resulting in a set of
real values {r1, . . . , r(n−k)n}, each of which represent bit
sequences of m + 1 bits (generator functions). Each number
ri belongs to an interval Ia = [ca, c(a + 1)), where a ∈ N
and c = 0.1 is a scale factor that defines the intervals’ length.
Each interval Ia encodes a binary sequence Sa of length m+1,
being (Sa)2 = (a)10 and the least significant bit the left-most
position. The decoded generator sequence is the set of binary
sequences (Sa)2 that match the interval of each number ri,
for i = 1, . . . , (n − k)k, from the chromosome’s generator
sequences set. We also keep parameters n, k, and m for each
chromosome.

The best convolutional code C2 obtained by BRKGA has
structure (3,2,1) and is defined by the generator functions
g
(1)
1 = (1, 0), g

(2)
1 = (0, 0), g

(3)
1 = (0, 1), g

(1)
2 = (0, 0),

g
(2)
2 = (1, 0), g

(3)
2 = (0, 1). The error capacity showed

average E(C2,u) ≈ 0.33.
Figure 1 shows the average error rate of C1 and C2, using

sequences of 1500 bits when p was varied in steps of 0.05
in the interval [0, 1]. Note that for p in the interval [0, 0.5),
C1 showed smaller error rate than C2 (greater correction
capacity), while the contrary occurred in the interval (0.5, 1].

IV. CONCLUSION

We proposed the use of metaheuristics GA and BRKGA to
generate efficient convolutional codes, and both have found
solutions with low structural complexity and low error rate.
The solutions found depended directly on the objective func-
tion. Thus, the search for other objective functions could be
important to find even more efficient convolutional codes.

REFERENCES

[1] C. E. Shannon, "A mathematical theory of communication", Bell system
technical journal, vol. 27, no. 3, pp. 379 - 423, 1948.

[2] W. C. Huffman and V. Pless, Fundamentals of error-correcting codes.
Cambridge university press, 2010.

[3] S. Lin and D. J Costello, Error control coding. Pearson Education India,
2004.

[4] R. Martí, M. Pardalos and M. G. C. Resende, Eds., Handbook of
Heuristics, Springer International Publishing, 2018.

[5] I. Boussaïd, J. Lepagnot and P. Siarry, "A survey on optimization
metaheuristics", Information Sciences, vol. 237, pp. 82 - 117, 2013

https://julialang.org

	Introduction
	Convolutional codes
	Results
	Conclusion
	References

