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Abstract— Adaptive filtering algorithms are flexible mecha-
nisms that adapt themselves to the environment statistics in
which they are immersed. It is known that in practice several
transfer functions are sparse, in the sense that their energy
is concentrated in a few (sometimes clustered) coefficients. In
this paper, a new normalized adaptive algorithm tailored to
identifying block-sparse systems using a mixed ℓ2,0-norm of the
adaptive coefficients is devised. Since the presence of noise in
the input signal may induce an additional asymptotic bias in the
estimation procedure, a compensation scheme is also advanced
to address such an issue. At last, the computational burden is
controlled by the adoption of a selective partial-update strategy.
Simulated results indicate that the proposed algorithms present
good performance compared to state-of-the-art alternatives, and
allows the designer the choice of a convenient point regarding
the trade-off between computational cost and convergence rate.

Keywords— Block-Sparsity, Bias Compensation, Selective Par-
tial Update

I. INTRODUCTION

Adaptive filtering algorithms find wide application in areas
such as channel equalization, acoustic echo cancellation and
noise cancellation [1]. It is widely known that several systems
in practice are sparse (or compressible), which means that
most of their entries are close to zero (or even zero) and only a
small fraction of nonzero or large coefficients exist in the im-
pulse response [2]. Unfortunately, traditional sparsity-agnostic
algorithms do not take advantage from this feature. In order
to enhance both steady-state and transient abilities, sparsity-
aware adaptive schemes are proposed and modelled [3]–[6].
Block-sparse systems (such as in satellite-linked or indoor
MIMO) are an important kind of sparse transfer functions,
whose impulse response concentrates itself in one or more
clusters [7].

This paper advances a deterministic optimization problem
whose solution describes the update equation of a normalized
adaptive algorithm optimized for the identification of block-
sparse plants. The estimated transfer function is partitioned
into M equal-length groups and a penalization of solutions
with large mixed ℓ2,0-norms is enforced.
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This work is based on [7] and covers the following new
contributions: i) the derivation methodology exploits the La-
grange multiplier method, instead of the stochastic gradient
optimization; ii) the possibility of using a normalized update
scheme, which facilitates the adoption of a step size β that
guarantees convergence [8]; iii) the incorporation of a bias
compensation mechanism, which takes into account the exis-
tence of a measurement noise in the input sequence x(k) and
does not impact the reference signal d(k); iv) the insertion
of a selective update procedure, which is able to reduce the
required computation burden.

The paper is structured as follows. Section II describes
the standard NLMS algorithm. Section III derives the pro-
posed Block-Sparsity Induced NLMS algorithm, which is
generalized in Section IV in order to compensate the bias
caused by noise at the input of the adaptive filter. A further
evolution of the advanced algorithm that reduces the required
computational burden is described in Section V. Section VI
shows simulation results. Concluding remarks are presented
in Section VII.

II. THE NLMS ALGORITHM

The normalized least mean squares (NLMS) algorithm
consists of an adaptive scheme that solves the following
optimization problem:

min
w(k+1)

F [w(k + 1)] ,
1

2
‖w(k + 1)−w(k)‖2

s.t. ep(k) = (1− β)e(k), (1)

in which1 w(k) ∈ R
N denotes the adaptive coefficient vector,

e(k) , d(k)−wT (k)x(k), (2)

ep(k) , d(k)−wT (k + 1)x(k), (3)

with the current excitation data concatenated in the vector

x(k) ,
[
x(k) x(k − 1) . . . x(k −N + 1)

]T
. (4)

It is noteworthy that F [w(k + 1)] penalizes solutions that
are distant from the current estimated parameters w(k), which
is an application of the conservative minimum disturbance
principle [9]. The use of the Lagrange multipliers technique
to solve the constrained optimization problem (1) leads to the
NLMS algorithm [10]

w(k + 1) = w(k) + β
x(k)e(k)

‖x(k)‖2
, (5)

1All vectors in this paper are of column type.
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which does not take advantage from the block-sparsity of the
system it intends to emulate. In the next section, a new block-
sparsity-aware normalized algorithm is devised, in order to
circumvent such an issue.

III. BS-NLMS ALGORITHM

In order to improve NLMS performance on block-sparse
system identification, in this paper a mixed ℓ2,0-norm regu-
larization term is inserted into the optimization problem (1).
Such a regularization is applied to a partition of M equal-size
groups, so that w(k) is decomposed into M blocks wi(k), for
i ∈ {0, 1, . . . ,M − 1},

w(k) =
[
wT

0 (k) wT
1 (k) . . . wT

M−1(k)
]T

, (6)

where the length L of each block is given by L = N/M ,
where2 L ∈ N.

Assuming that the unknown large coefficients are clustered
(rather than being spread in an arbitrary manner), it is expected
that the following mixed ℓ2,0-norm does not present large
values in practice [7]:

‖w(k)‖2,0 ,

∥
∥
∥
∥
∥
∥
∥
∥
∥








‖w0(k)‖2
‖w1(k)‖2

...
‖wM−1(k)‖2








∥
∥
∥
∥
∥
∥
∥
∥
∥
0

, (7)

where the ℓ0-norm (actually, a pseudo-norm) is commonly
approximated in order to make the mathematics tractable [11].

By using a regularization term related to ℓ2,0-norm penaliza-
tion into (1), one obtains the following proposed optimization
problem:

min
w(k+1)

FBS[w(k+1)] ,
1

2
‖w(k+1)−w(k)‖2 + γ‖w(k+1)‖2,0

s.t. ep(k) = (1− β)e(k), (8)

where γ ∈ R+ is an adjustable parameter that controls the
regularization intensity.

Remarks: It should be emphasized that (8) consists in a
new paradigm for the derivation of block-sparsity-induced
algorithms, since it employs a deterministic local optimization
problem, instead of the stochastic gradient adopted by [7].
Furthermore, as will be seen, it engineers a normalized update
scheme, which is not the case of the algorithm advanced
by [7].

A solution for (8) can be encountered by the Lagrange mul-
tiplier technique, which provides the equivalent unconstrained
problem

min
w(k+1)

GBS [w(k + 1)] , FBS[w(k+1)]+λ [ep(k)− (1− β)e(k)] ,

(9)
whose solution can be obtained by zeroing its gradient w.r.t.
w(k + 1):

∇
w(k+1)GBS [w(k + 1)] = w(k + 1)−w(k)− λx(k)

−γg[w(k + 1)] = 0, (10)

2For simplicity, it is assumed that the ratio N/M is an integer.

where the i-th element of g[w] is defined by

gi(k) ,

{

2ρ2wi(k)−
2ρwi(k)

‖w⌊i/L⌋‖2

, 0 < ‖w⌊i/L⌋‖2 < 1/ρ

0, otherwise.
,

where ρ ∈ R+ is a user-defined parameter that influences the
approximation of the ℓ0-norm [12]. Fig. 1 depicts g0(k) in the
bi-dimensional case (i.e., N = 2).
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Fig. 1. Function g0(k) w.r.t. w0(k) and w1(k), for ρ = 2.

Using the approximation g [w(k + 1)] ≈ g [w(k)] in order
to obtain a proper recursion [2], (10) can be rewritten as

w(k + 1) = w(k) + γg[w(k)] + λx(k), (11)

where λ can be computed by applying the affine constraint
of (8) into (11), which leads to

λ‖x(k)‖2+γgT [w(k)]x(k)
︸ ︷︷ ︸

≈0

= βe(k) ⇒ λ =
βe(k)

‖x(k)‖2
, (12)

where the approximation in (12) (which reduces the computa-
tional burden required by the algorithm) is motivated by [13].
From (12) and (11), the update equation of the proposed BS-
NLMS (block-sparsity-induced NLMS) algorithm is given by

w(k + 1) = w(k) + γg[w(k)] + β
x(k)e(k)

‖x(k)‖2
. (13)

Remark: it is noteworthy that term γg[w(k)] in (13) is
responsible for inserting a bias in the steady-state solution
obtained by the normalized algorithm. Such a bias leads to
enhanced mean square performance when the unknown plant
indeed presents a sparse characteristic [11], [14].

IV. BC-BS-NLMS

Recent papers bring attention to a bias introduced in the
adaptive filtering approach by the presence of a noise η(k) at
the input of the adaptive filter [15], [16], as depicted in Fig.
2.

An additional contribution of this paper in order to attenuate
the impact of η(k) is the insertion of a bias compensation term

ψ(k) in (13), given by

w(k + 1) = w(k) + γg[w(k)] + β
x(k)e(k)

‖x(k)‖2
+ψ(k), (14)
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Fig. 2. Block diagram of a system identification adaptive filtering system,
where the adaptive filter input is corrupted by noise η(k).

where the compensation vector ψ(k) should not impose an
asymptotic unbiased estimation3, but aims at reducing the
component of the resulting bias derived from the noise η(k).

In order to obtain a feasible vector ψ(k), consider

w̃(k) , w⋆ −w(k) (15)

as the deviation vector, so that the error signal can be written
as

e(k) = w̃T (k)u(k) + ν(k)−wT (k)η(k), (16)

where

u(k) ,
[
u(k) u(k − 1) . . . u(k −N + 1)

]
, (17)

η(k) ,
[
η(k) η(k − 1) . . . η(k −N + 1)

]
. (18)

Using (14)-(16) and applying the expectation operator E [·],
the following average recursion on w̃(k) can be established:

E [w̃(k + 1)] = E [w̃(k)]− βE

[
x(k)uT (k)w̃(k)

‖x(k)‖2

]

−βE

[
x(k)ν(k)

‖x(k)‖2

]

+ βE

[
x(k)ηT (k)w(k)

‖x(k)‖2

]

−E [ψ(k)]− γE {g[w(k)]} , (19)

which can be simplified by the usage of the following stochas-
tic hypotheses:

⋆ H1: zero-mean sequences ν(k), u(k) and η(k) are statis-
tically independent;

⋆ H2: ν(k) and η(k) are white processes;
⋆ H3: excitation vector x(k) and weight vector w(k) are

statistically independent.
Remarks: whereas H1 and H2 are popular in the open

literature and often valid, the independence assumption H3

is clearly violated in practice, since the tapped-delay adaptive
structure imposes a deterministic coherence between consecu-
tive vectors x(k) [17]. Such an assumption, popular in the field
of stochastic approximations, turns the mathematics tractable,
and thereby more accurate when the step size is not large.
It is noteworthy that this presumption can be circumvented
by the exact expectation analysis method, which requires
a cumbersome number of algebraic manipulations, even for
small-length filters [18]–[20].

3It should be noted that the original BS-NLMS imposes a bias in order to
enhance mean square performance of the identification of block-sparse plants.

Consider bss , limk→∞ E [w̃(k)] as the steady-state bias
implied by (14). Using H1-H3, it can be shown that such a
bias can be written as

bss = lim
k→∞

{
βσ2

ηE [w(k)]− E [ψ(k)] + χ(k)
}
, (20)

where Ru , E
[
u(k)uT (k)

]
, σ2

η denotes the variance of η(k)
and

χ(k) , βRuE [w̃(k)]− γE {g [w(k)]} (21)

depends on the block-sparsity induced penalization. Note that
component βσ2

ηE [w(k)] is due to η(k), and that its cancelling
leads to

E [ψ(k)] = βσ2
ηE [w(k)] . (22)

Since (22) imposes a constraint in the mean value of random
vector ψ(k), it is necessary to approximate it by using infor-
mation observable in practice, which leads to the following
choice:

ψ(k) = βσ̂2
ηw(k), (23)

where σ̂2
η is the estimate of σ2

η . Methods for estimating σ2
η are

not addressed in this paper. Identity (23) leads to the update
equation of the devised BC-BS-NLMS algorithm

w(k + 1) = w(k) + γg[w(k)] + β
x(k)e(k)

‖x(k)‖2
+ βσ̂2

η

w(k)

‖x(k)‖2
.

(24)
Note that by rewriting optimization problem (8) as

min
w(k+1)

FBS[w(k+1)] ,
1

2
‖w(k+1)−w(k)‖2 + γ‖w(k+1)‖2,0

s.t. ep(k) = (1− β‖x(k)‖2)e(k), (25)

and using similar steps than those that have led to (24), one
may obtain the following (proposed) BC-BS-LMS algorithm:

w(k+1) = w(k)+γg[w(k)]+βx(k)e(k)+βσ̂2
ηw(k). (26)

V. SPU-BC-BS-NLMS

Applications that require large-length adaptive filters may
demand a prohibitively high computational burden. In such
critical cases, a selective partial update (SPU) method can
be performed. The use of a SPU strategy implies that only a
fraction of the adaptive coefficients is updated at each iteration.

In order to motivate the SPU-BC-BS-NLMS, consider the
following partition of the regressor vector into M equal-length
blocks4:

x(k) ,
[
xT
0 (k) xT

1 (k) . . . xT
M−1(k)

]T
, (27)

where in each iteration the devised algorithm updates B blocks
of the adaptive weight vector (see (6)).

The SPU method can be obtained by the resulting solution
of the constrained optimization problem

min
wi(k+1)

1

2
‖wi(k + 1)−wi(k)‖

2 + γ‖wi(k + 1)‖2,0

s.t. ep(k) = (1− β)e(k), (28)

4Note that it is not necessary that the number of partitions of the SPU
strategy be the same as that of the BS method. Such an equality was enforced
in order to simplify the equations.
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which leads to5

wi(k + 1) = wi(k) + γg[wi(k)] + β
xi(k)e(k)

‖xi(k)‖2
, (29)

whereas the remaining blocks of w(k) last unaltered. Note
that (29) does not indicate which block should be updated. In
this paper, the following criteria is proposed:

i = arg min
1≤j≤M

‖wj(k + 1)−wj(k)‖
2

≈ arg min
1≤j≤M

[

β2e2(k)

‖xi(k)‖2

]

= arg max
1≤j≤M

‖xj(k)‖
2
, (30)

whose approximation neglects the component γg[wi(k)] in
(29), in order to reduce the computational effort.

The update of one block per iteration can be a very
restricted method. Consider that the designer intends to up-
date B blocks in each iteration, whose indices are denoted
by IB = {i0, i1, . . . , iB−1}, which are a subset of S =
{0, 1, . . . ,M − 1}. In order to address such a configuration,
one may generalize (28), which leads to

min
wIB

(k+1)

1

2
‖wIB

(k + 1)−wIB
(k)‖2 + γ‖wIB

(k + 1)‖2,0

s.t. ep(k) = (1− β)e(k), (31)

whose solution (following the same steps that gave rise to
(29)) is

wIB
(k+1) = wIB

(k)+γg[wIB
(k)]+β

xIB
(k)e(k)

‖xIB
(k)‖2

, (32)

where
IB = arg max

JB∈S

∑

j∈JB

‖xj(k)‖
2 (33)

is a selection criterion that requires N+BL+2 multiplications.
Using the same steps of Section IV, Eq. (32) can be general-
ized in order to obtain the proposed SPU-BC-BS-NLMS:

wIB
(k + 1) = wIB

(k) + γg[wIB
(k)] + β

xIB
(k)e(k)

‖xIB
(k)‖2

+βσ̂2
η

wIB
(k)

‖xIB
(k)‖2

. (34)

VI. RESULTS

In the following simulations, the transfer functions to be
estimated are sampled from a Markov-Gaussian (M-G) model
M(N, p1, p2, σ

2
s), which engineers a wide range of block-

sparse systems [7]. In such a model, the impulse response
w⋆ is computed in two steps. In the first one, a first-order
Markov process is responsible for producing the sets which
contain the index of nonzero and zero coefficients (see Fig.
3), according to the following rule:

P{sj = 0|sj−1 = 0} = p1, (35)

P{sj 6= 0|sj−1 6= 0} = p2, (36)

where p1 and p2 are adjustable parameters. Note that (1−p2)
should be far larger than (1 − p1) in order to guarantee a
block-sparse system response [7].

After the determination of the index set of nonzero coeffi-
cients, the amplitudes of the nonzero coefficients are sampled

5The derivation is omitted here due to lack of space.
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=
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p2 p2
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Fig. 3. Diagram for block-sparse model with impulse-response generation.

from a zero-mean Gaussian distribution with variance σ2
s .

Mathematically, one may write

w⋆
i =

{
0, if si = 0
r, if si = 1

, (37)

where r is a Gaussian random variable with variance σ2
s .

In the following simulations, the configuration (p1, p2, σ
2
s) =

(0.999, 0.9, 1) was adopted.
Fig. 4 depicts the evolution of the mean square deviation

(MSD) of LMS, BC-LMS and BC-BS-LMS (proposed) algo-
rithms, where the MSD is defined by

MSD(k) , E
[
‖w⋆ −w(k)‖2

]
. (38)

The following parameters were employed in Fig. 4: N = 800,
ρ = 1, σ2

ν = 2 · 10−2, σ2
u = 1, σ̂2

η = σ2
η = 10−1, P = 4,

δ = 10−8, βLMS = 0.5
N ·σ2

x
, βBSLMS = 0.5

N ·σ2
x

, βℓ0BSNLMS = 0.6

and κ = 1.5·10−6. All results were computed from the average
of 200 independent Monte Carlo trials. From Fig. 4, one may
notice that the advanced BC-BS-LMS algorithm outperforms
the other ones.
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Fig. 4. MSD evolution (in dB) for the LMS, BS-LMS and BC-BS-LMS
algorithms.

Fig. 5 shows the evolution of the NLMS, BS-NLMS and
BC-BS-NLMS algorithms as a function of the number of
iterations, also demonstrating the superior learning capability
of the proposed BC-BS-NLMS algorithm. For generating Fig.
5, the following parameters were employed: βNLMS = 0.5,
βBSNLMS = 0.4, βBCBSNLMS = 0.4 N = 800, ρ = 1,
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σ2
ν = 2 · 10−2, σ2

u = 1, σ̂2
η = σ2

η = 10−1, P = 4, δ = 10−8.
All results were computed from 100 independent Monte Carlo
trials.
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Fig. 5. MSD evolution (in dB) for the NLMS, BS-NLMS and BC-BS-NLMS
algorithms.

Fig. 6 presents the MSD as a function of the number of
iterations for four values of B ∈ 1, 2, 3, 4 and M = 4,
using the same parameters as those of the experiment that
led to Fig. 5. When B = 4, the algorithm degenerates
into the proposed BC-BS-NLMS and that the SPU versions
allow one to exchange convergence rate by computational
complexity. All results were computed from the average of
100 independent Monte Carlo trials.
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Fig. 6. MSD evolution (in dB) of the SPU-BC-BS-NLMS algorithm for
different values of B.

VII. CONCLUSIONS

Recently, adaptive filtering algorithms tailored to the iden-
tification block-sparse transfer functions have been proposed.
The first contribution of this paper is their extension to
normalized schemes, which has the advantage of presenting
a stability upper bound on the step size that is less dependent
on the input signal statistics. Furthermore, the steady-state bias
induced by the presence of additive noise in the excitation
data is mitigated by a novel bias compensation strategy. The

last contribution is the adoption of a partial update method
that can be used to reduce the computational burden of the
devised methods. The results have confirmed the performance
enhancement obtained by the advanced algorithms.
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