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Analysis of an Adversarial Approach to Blind
Source Separation

Juan M. Espinoza, Romis Attux and Levy Boccato

Abstract— Here, we analyze the adversarial network proposed
in [5], named Anica, to solve the problem of independent compo-
nent analysis (ICA). Guided by a discriminator of independence,
a linear autoencoder can learn to codify the observations into
estimates of their independent components. This study establishes
the conditions for convergence of Anica and proposes a blind
criterion to select the best training epoch. Additionally, having
JADE and FastICA as benchmarks, we analyze its performance
by varying the number of samples and sources, and the noise
variance. The obtained results indicate that Anica has a signifi-
cant potential of extension to more general scenarios.

Keywords— Blind source separation, Independent component
analysis, Adversarial learning, Autoencoders.

I. INTRODUCTION

Blind Source Separation (BSS) can be safely regarded as
a most relevant problem related to the notion of information
retrieval. Essentially, given a set of observed variables, x(t),
which are implicitly generated by an unknown mixing process
of latent variables (or sources) s(t), the goal in BSS is to
recover these sources considering a minimum amount of a
priori information [1], [2]. Different instances of this problem
have been studied in the literature during the last decades [1],
which vary according to the character of the mixing process.
The classical scenario of BSS assumes that the mixing process
is linear, instantaneous and noiseless, so that:

x(t) = As(t), (1)

where A ∈ Rn×m is the mixing matrix, n denotes the
number of mixtures and m is the number of sources. In many
situations, it is considered that n = m.

In this case, the separation process consists in designing a
matrix W ∈ Rm×n capable of inverting the mixture system,
thus yielding a set of estimates

y(t) = Wx(t), (2)

which should be as similar as possible to the original sources.
Fig. 1 exhibits a block diagram of the classical BSS problem.

A fundamental hypothesis explored to solve this problem is
the independence of the sources, which is in the core of the
well-established approach known as independent component
analysis (ICA) [1]. In fact, ICA comprises a set of effective
algorithms, such as FastICA and JADE [1], which seek a
matrix W that directly or indirectly maximizes the level of
independence between the estimates in y(t).
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Fig. 1. Main elements involved in the classical BSS problem.

In this sense, ICA can be seen as a generalization of
principal component analysis (PCA). It is pertinent to apply
a decorrelation (or whitening) procedure before attempting to
find the independent sources, since it reduces the search space
to the set of orthogonal matrices [1].

Interestingly, the field of machine learning (ML) [4], [7] also
offers a repertoire of techniques for retrieving latent variables
from a collection of observations. In particular, autoencoders
(AEs) represent an important approach [4], as they explore
the flexibility of artificial neural networks to represent the
available data in a latent space.

In simple terms, an AE is a neural network that aims to
reproduce its input data x at its output x̂. The structure of an
AE is composed of two parts: (1) an encoder function, fen(·)
and (2) a decoder fde(·). While the encoder is responsible
for mapping the input data to an internal code, h = fen(x),
the decoder tries to reconstruct the original data given the
generated code, yielding x̂ = fde(h). Fig. 2 shows the
architecture of an AE and its components.
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Fig. 2. General architecture of an autoencoder.

An AE is designed in such a way that its encoder in-
directly learns to create a meaningful representation of the
data, while the network attempts to minimize a dissimilarity
measure between x and x̂. In this context, it is important
to avoid attaining trivial solutions, i.e., when the decoder
becomes a perfect inverse of the encoder, fde(·) = fen(·)−1,
without considering the information contained in the code,
making it useless. For example, sparse and undercomplete
AEs [4] force the encoder to retrieve latent information of
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the data by imposing sparsity over the code, or a reduced
dimensionality, respectively. In general, if the structure and the
training approach are properly chosen, as exposed in Section
II, the encoder effectively becomes a feature extractor, which
provides a set of latent variables for the input pattern that still
allow its reconstruction with an acceptable error.

Since AEs represent powerful options for latent variable
analysis, it is pertinent to ponder whether they can be used
to retrieve estimates of the sources s(t), given the set of
mixtures x(t), in the BSS problem. Since AEs can implement
a nonlinear generalization of PCA [4], they have sufficient
flexibility to solve the classical BSS problem. Ideally, the en-
coder should play the role of the separation system, capturing
a representation of the sources in the code, while the decoder
should mimic the unknown mixing system.

However, when the training process focuses solely on min-
imizing the reconstruction error, the network may still learn
a completely different representation in the latent space when
compared to the original sources, since it is free to determine
the characteristics of the latent variables during the learning
process. This means that, due to its flexibility, an AE can
extract features from the mixtures and still reconstruct them
at the output, but without recovering the actual latent variables.

Having in view this dilemma, an inevitable question arises:
is it possible to guide the training process so that the AE ends
up discovering the desired latent representation? Interestingly,
this question has been tackled in the recent work of Brakel and
Bengio [5] with the aid of an elegant adversarial approach.

The strategy they proposed, called Anica, involves training
an AE and a discriminator network in an adversarial scheme,
where the discriminator pushes the AE towards creating fea-
tures that are independent. The goal of the discriminator is
to recognize whether its input is a vector containing inde-
pendent variables or not. Simultaneously, the AE is trained
to minimize the reconstruction error, as well as to minimize
the performance of the discriminator network. In other words,
the encoder is encouraged to obtain a code that allows the
reconstruction of the input and, at the same, contains variables
that are more independent until the discriminator can no
longer distinguish them from samples taken from the product
of the marginal distributions (which truly are composed of
independent elements).

In spite of the promising results reported in [5], there are
many aspects that still require further investigations concerning
the behavior of Anica in the BSS problem. For instance, how
does Anica scale with the number of sources, or the number
of samples? Additionally, how is it affected by the presence
of noise in the mixtures?

The present work aims to study the limitations and advan-
tages of Anica in the context of the classical BSS problem. A
detailed analysis of the behavior and convergence of the train-
ing algorithm is offered. Additionally, we suggest a criterion
to blindly select the learning epoch in which the AE yields the
best estimates of the sources. More specifically, we propose
to monitor the independence between the code variables by
means of the mutual information. Then, a validation of the
proposed strategy is provided considering the evolution of the
normalized Amari error [9] during training. We also perform

a comparative analysis between Anica and other well-known
ICA algorithms, such as JADE and FastICA, considering
different scenarios in terms of the number of samples, the
number of sources and the noise variance.

The next section is devoted to the exposition of Anica, as
well as of the minor modifications we proposed. Then, in
Section III, we present the performance analysis of Anica in
detail. Finally, in Section IV, we bring the final considerations
and perspectives for the sequence of the research.

II. ANICA: OVERVIEW AND EXPECTED CONVERGENCE

The Anica model is composed of an AE and a discrimi-
nator network, which are trained according to an adversarial
approach, in a similar fashion as employed in generative
adversarial networks (GANs) [6]. Fig. 3 depicts the main
elements of Anica [5].
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Fig. 3. The general structure of Anica model.

The AE input corresponds to the whitened mixtures, which
are obtained via z(t) = Vx(t), where V ∈ Rn×n is a
whitening matrix (e.g., V is composed of the n eigenvectors of
the autocorrelation matrix of the mixtures associated with the
n largest eigenvalues). Since we are addressing the classical
BSS scenario, as defined in (1), both the encoder and decoder
are linear structures, characterized by the weight matrices
Wen and Wde, respectively.

As usual, the AE is designed to produce an output ẑ as close
as possible to its input z. Interestingly, in the Anica model,
the AE also interacts with a discriminator network, which acts
as an inspector that attest if the latent variables created by the
encoder are, in fact, independent.

More specifically, the discriminator is a neural network
trained to classify whether its input comes from the distribu-
tion of independent latent variables (positive class), or if it is
a fake sample created by the encoder (negative class). Hence,
in order to be properly trained, the discriminator must have
access to samples composed of independent latent variables.
In this context, Brakel and Bengio [5] proposed a resampling
procedure to generate samples based on the available code as
if they were truly drawn from the PDF corresponding to the
product of the marginal PDFs of the latent variables. In simple
terms, the resampling procedure shuffles the samples of every
component of the code in a minibatch, separately, to break
their mutual dependence, producing a new vector h̄rs that can
be seen as a sample taken from the product of the marginal
PDFs.



XXXVIII SIMPÓSIO BRASILEIRO DE TELECOMUNICAÇÕES E PROCESSAMENTO DE SINAIS - SBrT 2020, 22–25 DE NOVEMBRO DE 2020, FLORIANÓPOLIS, SC

Then, a cross-entropy cost function JD is minimized during
the discriminator training, so that it learns to distinguish
between input samples coming from the resampling procedure
h̄rs ∼ pr, or from the normalized code h̄ ∼ pe, where d(·)
denotes the class prediction:

JD = −1/2
(
Epr [log d(h̄rs)] + Epe [log(1− d(h̄))]

)
(3)

On the other hand, the AE is trained not only to minimize an
error measure between z and ẑ, but also to create an internal
code with mutually independent features. This is accomplished
by adopting the following cost function:

JAE = JRAE + λJCAE , (4)

where

JRAE = Epz [|z− ẑ|] (5)

JCAE = −Epe [log d(h̄)] (6)

In this work, we adopted λ = 0.1 and the mean absolute
error as the reconstruction cost function for (5), following
the same selection by [5]. Different values for λ and other
measures of error, such as the mean squared error, could
be selected, but the experimental results favour the original
selection. The term in (6) is minimized when the discrimi-
nator assigns the code samples to the positive class, which
means that the generated code actually contains independent
latent variables. Hence, by establishing this two-player game
between the AE and the discriminator, the AE is forced
to improve the encoder in order to fool the discriminator,
while the latter becomes more competent in recognizing the
code samples as fake. The adversarial approach can also be
interpreted as promoting a PDF matching in the code layer
[6]: the encoder is encouraged to create code samples whose
joint PDF approximates a target PDF, which corresponds to
the product of the marginal PDFs of the latent variables within
the code.

As shown in Fig. 3, we normalize the code vector before
the resampling procedure is applied, by removing the mean
and dividing by the standard deviation of each variable, which
helps to speed up the convergence of the discriminator. The
decoder tries to reconstruct the input based on the original code
h. In Algorithm 1, we summarize the main steps involved in
the training process of Anica.

As we can observe, for each minibatch, the discriminator is
updated to minimize JD over a balanced labeled dataset A,
so that it improves its ability to separate whether its input
comes from the resampling procedure (and, thus, contains
independent variables in h̄rs ∼ pr), or from the encoder
after normalization h̄ ∼ pe. Then, for the same minibatch
and keeping the parameters of the discriminator fixed, the AE
is updated to minimize JAE . The term of JAE highlighted
in (6) is computed by feeding the discriminator only with
normalized codes u = h̄ ∼ pe, but labeled as if they belong to
the positive class. So, by minimizing JAE , the AE also adapts
its parameters to generate codes that resemble samples taken
from the joint distribution after resampling pr, and, ultimately,
it tends to generate independent latent variables.

A. Convergence Analysis

Based on the theorems derived in [6], we establish in
Theorem 1 that the training process of Anica converges if,
and only if, the distributions pe and prs become equal, which
occurs when the costs JD and JCAE converge to log 2.

Algorithm 1: Training process of Anica for BSS.
Result: code of independent components
Apply a whitening procedure to the mixtures: z = Vx
Initialize parameters of Anica
while Not converged do

Sample N minibatches from the whitened dataset
for minibatch i ∈ [1, ..., N ] do

Obtain the codes and the outputs of the AE to i
h̄← normalized codes
h̄rs ← resampled normalized codes
A ←

{
h̄rs(label 1); h̄(label 0)

}
Update the discriminator to minimize JD
Update the autoencoder to minimize JAE

end
end

Theorem 1: Convergence of Anica is achieved if, and only
if, pe = pr, and when the cost function JD and the classifica-
tion term JCAE converge to log 2. In this case, the discriminator
can no longer distinguish its inputs, so that d(·) = 0.5.

Proof: As proved in [6], for a fixed AE, the discriminator
learns the optimal mapping, which corresponds to

dopt(u) =
pr(u)

pr(u) + pe(u)
(7)

Then, by maintaining the discriminator unchanged, the mini-
mum value of the classification term JCAE is log 2, which is
obtained if, and only if, pe = pr. This can be verified by
substituting (7) in (6), as shown in the sequence:

JCAE = −Epe [log dopt(u)]

=

∫
pe(u) log

(
pr(u) + pe(u)

pr(u)

)
du

(8)

To simplify the notation, we shall omit the argument (u) of
the PDFs. Then, by introducing some additional terms, we can
rewrite (8) in terms of Kullback-Leibler divergences, denoted
by D(·||·):

JCAE = 2

∫ [
pe + pr − pr

2

]
log

(
2(pr + pe)/2

pr

)
du

= 2

∫ [
pe + pr

2

]
log

(
pe+pr

2

pr

)
du

+ log 2

∫
pedu−

∫
pr log

(
pe+pr

2

pr

)
du

= log 2 + 2D

(
pe + pr

2
||pr
)

+D

(
pr||

pe + pr
2

)
(9)

Since D(·||·) ≥ 0, the minimum value of JCAE is log 2,
which occurs when both divergences are zero, or, equivalently,
when pr = pe. As a consequence, dopt = 0.5 and, finally,
JD(dopt(u)) becomes equal to log 2, concluding the proof.
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III. EXPERIMENTS AND RESULTS

In this section, we present the experimental setup and the
results attained by Anica in different scenarios of the BSS
problem. For each experiment, a synthetic dataset of mixtures
was created from zero-mean, unit-variance sources and mix-
ing matrices, each drawn from uniform and gaussian PDFs,
respectively. The mixtures were whitened before training.

Similarly to [5], the discriminator network consisted of a
multilayer perceptron containing one hidden layer with 64
ReLu neurons, and a single output neuron using logistic
activation function. As already mentioned, both the encoder
and decoder apply linear transformations according to square
matrices Wen and Wde, respectively. We adopted Xavier ini-
tialization [7] for the discriminator, while random orthogonal
matrices were used for the AE. The RMSProp algorithm [7],
with default parameters, was employed to train the model
during 4000 epochs, considering minibatches of 1024 samples.

The performance of Anica was evaluated on each epoch
through the Normalized Amari Error (NAE) [9], which mea-
sures the ability of the encoder to deliver permuted and scaled
estimates of the sources. Ideally, we would like to select the
training epoch, and the corresponding AE configuration, when
the NAE reaches its minimum. However, it requires exact
knowledge of the actual mixing matrix (A). Therefore, in
order to blindly select the “best” epoch (and the corresponding
Wen), we employed a shifted version of the mutual informa-
tion (SMI), based on [3]. The SMI was calculated directly from
the generated samples of the normalized code h̄ by estimating
its marginal entropies H(h̄i):

SMI(h̄) =

n∑
i=1

H(h̄i)− log(|det(Wen)|) (10)

Hence, in this work, the best epochs were selected according
to the minimum value of the SMI, and the NAE was calculated
for corroboration. Each experiment was repeated 10 times to
compensate for the effects of random initialization, so we
report the average NAE across the repetitions. Available im-
plementations of parallel FastICA (running for 200 iterations)
and JADE were also explored for the sake of comparison.

In order to illustrate the behavior of Anica, we display in
Fig. 4 the evolution of the costs JCAE and JCD , which, as
we can observe, converge to log 2 approximately after 1700
epochs (e). Additionally, we also show the distribution of the
samples related to (a) the sources, (b) the mixtures, (c) the
whitened mixtures and (d) the independent estimates obtained
in the code. Clearly, the encoder successfully learned a linear
transformation to rotate a 2-component input set of whitened
mixtures (c) into their independent estimates (d), while the
reconstruction cost function is kept at a minimum (f).

The first aspect we shall analyze refers to impact of the
size of the training set on the performance and convergence
of Anica. Considering a scenario with m = 9 sources, we
exhibit in Fig. 5 the average NAE obtained by Anica, FastICA
and JADE as a function of the number of samples. As we can
observe, increasing the size of the dataset reduces both the
average NAE (a), improving the performance, and the dashed
region between the minimum and maximum NAE across

Fig. 4. Data distribution and training curves. From top left to bottom right:
synthetic sources (a), mixtures (b), whitened mixtures (c), normalized code
(d), convergence between JC

AE and JC
D (e), reconstruction cost JR

D (f).

repetitions, making the model more robust. Nonetheless, the
NAE values associated with Anica are above those attained by
FastICA and JADE (b).

Fig. 5. Average NAE w.r.t the number of training samples. From left to
right: NAE improves with more samples (a). Anica becomes more robust (b).

The effect on convergence is shown in Figure 6, where the
cost functions converge for datasets of 8192 (b) and larger
(c), but fail to converge when presented to fewer samples
(a), which helps to explain the previous results and confirms
that the size of the dataset is critical for Anica. Additionally,
Figure 7 shows how the NAE behaves as training progresses
and convergence is achieved (a), while the SMI is minimized,
indicating independence. As we can notice, the SMI captures
almost every NAE value fluctuation, which motivates its use
as a valid blind selection criterion (b) in an early stopping cri-
terion. Based on these results, all the subsequent experiments
considered 16384 samples.

Fig. 6. Worst and best Convergence w.r.t the number of training samples.
From left to right: Convergence for 211 (a), for 213 (b), for 216 samples (c).

Secondly, we analyzed how Anica is influenced by the
number of sources. Fig. 8 shows the NAE values for n varying
from 2 to 9. In general, the performance of Anica deteriorates
as the number of sources is increased (a). Nonetheless, we can
see that Anica performs better than FastICA and JADE in the
cases up to 6 sources (b). It is important to mention that it was
necessary to repeat training once for the 3-component dataset
in order that the algorithm converges 10 times.
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Fig. 7. Metrics w.r.t the epoch. From left to right: NAE (a), SMI (b).

Fig. 8. Average NAE w.r.t the number of sources. From left to right: NAE
increases with more components (a). Anica outperforms JADE and FastICA
(b).

Finally, we assessed how Anica behaves when the mixtures
include noise. So, we generated samples of white Gaussian
noise, with variance σ2

n, adding them to the linear mixtures
of 9 sources. The obtained NAE values are presented in Fig.
9 w.r.t. the Signal-To-Noise Ratio SNRdB = 10 log(

σ2
s

σ2
n

),
considering that all sources are unit-variance. As we can
observe, Anica is capable of yielding independent estimates of
the sources from noisy mixtures, but it also is more susceptible
to initialization, so its NAE varies in a wider range for
SNRdB = 0 (a). However, as the noise is reduced, Anica
delivers better results with less variations and much closer to
FastICA and JADE (b). Fig. 10 shows that for SNRdB = 0
(a), not all repetitions converge, which confirms that retrieving
independent estimates of the sources is more difficult for
noisy datasets. Once the SNR is increased to 2.5 dB (b), all
repetitions converged, albeit with some delay, so better results
could be obtained. Finally, for SNR = 20 dB (c), the effect
of noise on convergence is not relevant.

Fig. 9. Average NAE w.r.t SNRdB . From left to right: Anica improves as
noise decreases (a). Anica is more competitive to FastICA and JADE (b).

Fig. 10. Worst and best convergence w.r.t SNRdB . From left to right:
Convergence for SNRdB = 0 (a), for 2.5 (b), for 20 (c).

IV. CONCLUSIONS

Anica has proven to be an effective algorithm for blind
source separation and, as our experiments show, is robust
enough to deal with challenging scenarios. In the cases of
many sources and a noisy dataset, its performance is compa-
rable to that of well-established algorithms, such as FastICA
and JADE.

Feeding more data to Anica proves to be crucial for con-
vergence and the generation of independent estimates. Also,
it helps to mitigate problems related to initialization and the
selection of hyperparameters. However, this can be a limiting
factor when collecting more samples is difficult or infeasible.
Notwithstanding, even when the dataset is relatively small,
training for more epochs and reducing the size of the minibatch
may lead to an adequate separation matrix in the encoder.

The adoption of the shifted mutual information (SMI) not
only proved to be an useful criterion for blindly selecting an
epoch with a corresponding low NAE, but it also confirms the
success of the AE to generate a code consisting of indepen-
dent variables, rather than just learning a trivial solution for
reconstruction.

Finally, it is important to highlight that Anica offers a
flexible architecture that can be straightforwardly modified to
deal with other BSS scenarios, such the underdetermined case
(n < m), as well as those involving convolutive mixtures
and nonlinear models. It is our belief that these cases will
benefit, to a more significant extent, from the generality
of the discussed approach. This is a key topic for future
investigations.
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