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Abstract— We have implemented a technique for nonlinear
compensation in optical transmission based on neural network
optimization applied to digital back-propagation and evaluated
its performance with experimental data from an unrepeatered
link, sweeping the parameters most relevant to computational
complexity. This technique enabled mutual information gains
over 0.1 bit/symbol in all tested scenarios when compared
with the non-optimized counterpart, or 0.15 bit/symbol when
compared with similar complexity linear compensation.
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I. INTRODUCTION

Optical fiber networks constitute the backbone of modern
internet infrastructure. As demand for data traffic continues
to grow exponentially, so must the capacity of the underlying
networks. As such, there is a constant search for innovative
and more efficient transmission systems capable of delivering
increasingly higher data rates. One of the key limiting factors
of achievable data rates in optical fiber communications is the
presence of fiber nonlinearities [1], most notably due to the
Kerr effect. The Kerr effect is a nonlinear distortion that varies
in magnitude with the optical power in the fiber, creating a
correlation between the signals phase and the optical power
density on the fiber core. As a result of this phenomenon,
after a certain threshold, increasing the transmission power
in an optical fiber will only degrade performance, instead of
enhancing it, as would be expected in a linear system impacted
only by additive noise.

There is, therefore, a great interest in developing
methods to mitigate this distortion, as it would allow for
higher transmission power, higher signal-to-noise ratios and
consequently higher data rates and/or link reach. One of
the most well established nonlinear compensation techniques
is the digital back-propagation (DBP) algorithm [2]. It is
based on the nonlinear differential equation that models the
propagation of light through optical fiber, known as the
non-linear Schröedinger equation (NLSE), essentially aiming
to provide a numerical solution to the equation.

Noticing the structural similarity between DBP and artificial
neural networks (ANN), recent works [3, 4] have proposed
combining data-driven optimization techniques developed for
ANN and the structure of DBP, creating an architecture that
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is a hybrid between data-driven and model-driven methods.
Utilizing this approach, it was possible to significantly improve
performance, reduce complexity, and remove requirements
of accurate knowledge of link parameters, when compared
with traditional DBP. This method was named Learned-DBP
(LDBP).

Such method could be specially useful for unrepeatered
systems, whose links employ no in-line active components for
amplification of the optical signal. They are of great interest
to be installed over remote or geographically inaccessible
regions without the need for electricity sources along
the link. They represent a unique challenge for nonlinear
compensation techniques, because since they employ higher
optical powers and complex hybrid amplification schemes to
allow propagation over longer distances, they are more heavily
impacted by nonlinear distortion.

In this work, we describe the LDBP algorithm and evaluate
the performance of a frequency domain implementation
in the particular case of unrepeatered links, sweeping the
metaparameters most relevant for determining complexity.
The method is validated using experimental data acquired
from the unrepeatered transmission of 17 × 200-Gb/s
wavelength-multiplexed channels, with its performance in
terms of mutual information (MI) being compared to the
reference set by traditional DBP.

II. METHODOLOGY

A. The Nonlinear Schröedinger Equation

Most well established methods for compensating the
Kerr-related phenomena are based on the differential equation
that describes the lightwave propagating through the fiber,
known as the nonlinear Schröedinger equation (NLSE). In its
simplified form, the NLSE can be written as:
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where A(z, t) is the complex electric field at position z and
instant t, α is the attenuation of the fiber, β1 and β2 correspond
to group velocity and differential group velocity, respectively,
and γ is the fiber nonlinear parameter.

It should be firstly noted that, if we take γ to be 0, the
resulting equation is linear and admits a closed form solution
in frequency domain:
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where the term e−j(β1ω)z represents a time shift and is
usually irrelevant for communication systems. The e−j

β2
2 ω

2z

term represents what is called chromatic dispersion (CD) and
must be compensated in practically all high-capacity optical
communication systems, either in the optical or digital domain.

A more complete version of Eq. 1 should describe A(z, t)
as a vector with two components, corresponding to two
possible polarizations of light in the fiber. For the purposes of
nonlinear compensation, the polarization components can be
considered independent, save for the modulus operation, which
takes in account both polarizations. Usually, after nonlinear
compensation, a 2x2 MIMO equalization stage is employed
to correct for crosstalk between polarization components.

B. Digital Back-Propagation

In Eq. 1, if we take γ 6= 0, there is no closed form
solution, only numeric approximations of the result. One
possible solution is through the split-step Fourier method
(SSFM), which assumes that over short enough steps, the
linear and nonlinear components of a differential equation
can be considered independent, and therefore separated into
a linear step, followed by a nonlinear step. In the case of the
NLSE, the linear step is a CD compensating filter H(w), and
the nonlinear step is a point-wise phase shift proportional to
instantaneous power:

A(z, t) = A‘(z, t)e−jγ|A‘(z,t)|2Leff

where the effective length Leff is a function of the length of the
step l and the fiber attenuation α. A‘(z, t) is an intermediate
representation between the linear and nonlinear stage of a step.

The SSFM solution to a differential equation is the
interleaved application of linear and nonlinear steps. Digital
back-propagation (DBP) proposes to solve the NLSE
backwards in the spatial direction using SSFM (Fig 1).
It remains one of the most well established methods
for nonlinearity compensation today, although its high
computational cost has hindered its adoption in commercial
systems.

The linear stages are described by H(ω), which is a
function of the dispersion parameter D of the fiber at a given
wavelength, as well as the length of the step. The nonlinear
steps are function of the optical power at a given point P (z),
and also of the nonlinear parameter γ and of Leff, which is
a function of the length of the step and the fiber attenuation
parameter α. Conventional DBP is sensible to uncertainty in
these parameters, as small deviations from the expected values
can incur in severe performance penalties. Furthermore, fixed
step sizes are usually sub-optimal, as steps in regions of low
optical power are less relevant for performance than steps in
regions of high optical power [5].

Although time-domain CD compensation is possible, it has
limited performance for short spans of fiber [6, 7] and is,
therefore, impractical for conventional DBP.

C. Neural Networks and LDBP

Neural networks [8] have been demonstrated as highly
competent in image recognition, speech transcription, natural
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Fig. 1. Block diagram representing one step of DBP. Each step is composed
by the application of a linear filter in the frequency domain, followed by
nonlinear phase rotation. The intensity of the nonlinear phase rotation is a
function of both the x and y components.

language processing and many other tasks. In their most
general form, feed forward neural networks are mappings
between input vector x and a output vector y, represented
by:

y = ρ(N)(B(N)(...ρ(1)(B(1)(x))))

where N is the number of layers, B(1), B(2), ...., B(N) are
linear or affine functions, and ρ(1), ρ(2), ...., ρ(3) are nonlinear
functions. B(k) functions usually correspond to B(k)(x) =
W (k)x + b(k), where the weights W (k) and the vectors b(k)

are the weights and biases of the layer, respectively. The
nonlinear functions ρ(k) are usually differentiable point-wise
functions, like the logistic function, the sigmoidal function or
rectified linear function [9]. The values of the weights W (k)

and the biases b(k) are normally adjusted using an optimization
algorithm to minimize some cost function, in what is referred
to as “training” of the neural network.

As it is possible to notice, neural networks and DBP share
the same fundamental structure, which is a sequence of linear
steps interleaved with nonlinear steps. The coefficients in the
linear filters H(ω), as well as the parameters related to the
nonlinear steps P (z), Leff, γ, can be left as free weights and
trained to minimize some cost function using optimization
algorithms developed for neural networks, characterizing the
previously discussed LDBP. [3].

Although [4] has demonstrated that joint optimization
of the filters can make time-domain filtering effective for
LDBP, with a desirable complexity reduction for hardware
implementations, we have chosen to restrict the analysis of
this work to frequency-domain implementation of LDBP, so
its performance can be directly compared with the equivalent
untrained conventional DBP, with no discussion on the
complexity of the different architectures. This choice of
implementation also allows us to use unsupervised learning,
which greatly simplifies the training procedure and improves
robustness of possible real-time implementations.

D. Unrepeatered Optical Systems

Unrepeatered systems are a subclass of optical transmission
systems that employ no active components for amplification
of the optical signal between along the link. They



XXXVIII SIMPÓSIO BRASILEIRO DE TELECOMUNICAÇÕES E PROCESSAMENTO DE SINAIS - SBrT 2020, 22–25 DE NOVEMBRO DE 2020, FLORIANÓPOLIS, SC

are particularly interesting for application of nonlinear
compensation techniques because they typically employ higher
optical powers to enable longer reach, which makes nonlinear
distortion more relevant as an impairment. Moreover, the
power is usually concentrated in a certain region at the
beginning of the link, which makes the task of nonlinear
compensation much easier.

Whereas for repeatered systems the number of steps in DBP
is often discussed in terms of steps per span [2], making
DBP tens of times more computationally expensive than purely
linear compensation for links with a large number of spans,
unrepeatered systems can have very substantial gains with
only a few steps concentrated in the high propagation power
regions, implying in computational complexity within the
same order of magnitude of linear compensation.

However, while for repeatered systems the optimal
step locations can be easily calculated [5], in the
unrepeatered case it must be carefully optimized depending
on the link characteristics. Usually this kind of link
employs hybrid amplification schemes based on distributed
Raman amplification (DRA) and/or remote optically pumped
amplifiers (ROPA), resulting in irregular or uncertain power
profiles. As the use of analytical approaches to optimize step
locations are harder and less effective, data-driven optimization
techniques are even more attractive as an alternative.

III. EXPERIMENTAL SETUP AND RESULTS

An unrepeatered link was employed to experimentally
evaluate the performance of the nonlinear compensation
technique, in which 17 channels (spaced by 50 GHz) were
interleaved in two independent modulators resulting in 32-GBd
16-symbols quadrature amplitude modulated (16QAM) optical
carriers. The 350-km link was composed by 100km of
large effective area fibers (EX2000) followed by 250km
of low-loss single mode fibers (LL-SMF), supported by
hybrid amplification schemes compounded by erbium-doped
fiber amplifiers (EDFA), distributed Raman amplifiers (DRA),
and remote optically pumped amplifiers (ROPA), placed at
50km and 250km away from the transmitter. Finally, on the
reception, the channel under test is filtered and coherently
received being acquired by a real-time scope and processed
offline.

The conventional DBP processing was carried out
considering the nominal values of the fiber dispersion and
nonlinear parameters, as well as the power profile estimated
from nominal values of parameters from the amplifiers and
fibers, as shown in Fig. 2. DBP was applied to the first 100 km
of fiber, with the remaining 250 km being compensated
linearly, with frequency domain equalization. We chose to
apply DBP and LDBP only to the first 100 km of fiber because
it is the region were most of nonlinear distortion occurs, due
to higher optical powers, but also because it allows a fairer
comparison between LDBP and constant step size DBP, since
the power profile stays relatively flat.

The frequency domain LDBP tests were conducted using
the Tensorflow [10] framework, which allows automatic
differentiation. In all scenarios, the LDBP was initialized
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Fig. 2. Power profile of the link used in the experiment, estimated from
nominal parameters of the fibers and amplifiers.

with the same weights as the conventional DBP to ensure
initial performance sufficient for self training. Then, the
captures from our unrepeatered system setup were divided
into one training capture and four validation captures, of
equal size. Random windows of 10000 samples were selected
from our training capture, for which equalizer coefficients
could be assumed constant. For each window, timing error
was first estimated and corrected in pre-processing, to avoid
differentiation of timing error correction algorithms, then 2x2
multiple-input multiple-output (MIMO) equalizer coefficients
were estimated for the window and set as constant, to allow
simple gradient propagation. The window is passed through
the DSP chain, encompassing partial CD compensation
(CDC), LDBP, 2x2 MIMO equalization, frequency offset
recovery and phase recovery. Then, the error vector magnitude
(EVM) is calculated from the recovered symbols and used
as cost function. The gradients to the coefficients in the
LDBP are computed and one step of the optimization
algorithm is performed. Adam [11] was chosen for it’s superior
performance compared to SGD and relative simplicity. This
whole cycle is repeated 500 times for each experiment. Finally,
we estimate mutual information (MI) using the average EVM
from the four validation captures.

Figure 3 shows achieved mutual information as a function
of the number of steps and number of taps for LDBP and
conventional DBP. In the cases where the impact of the number
of steps were under test, a relatively large (1024) filter size
was considered and in the cases where the impact of the size
of the filters were under test, a sufficiently large number of
steps (5) was considered. This was done so that the impact
of these two parameters could be studied separately. Both
graphs in Fig. 3 show mutual information achieved with only
linear compensation, performed with a filter of size 1024, as
performance reference.

Computational complexity (in terms of operations per
sample) of the hardware implementation of these nonlinear
compensation algorithms is largely determined by these two
parameters. The number of operations grows in complexity
Θ(n) with the number of steps, and Θ(n log n) with the size
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Fig. 3. Mutual information achieved with DBP and LDBP, varying the number of steps (left) and filter size (right). In the image varying the number of
steps, a constant filter size = 1024 was considered. In the image varying the size of the filters a constant number of steps = 5 was considered.

of the filters [12].
Note that, in all cases, LDBP outperforms DBP by at

least 0.1 bit/symbol. For one step, conventional DBP does
not perform better than purely linear compensation, indicating
the need for optimization of the nonlinear step. It is also
noteworthy that it only takes two steps of LDBP to outperform
10 steps of conventional DBP. Both algorithms approximate
maximum performance at around 5 steps, indicating that
no more than five steps are needed for this particular link.
This indicates that at most, nonlinear compensation would
be only 5 times more computationally expensive than linear
compensation, while delivering additional 0.2 bits/symbol for
LDBP and 0.1 bit/symbol for DBP.

Complexity can be reduced even further by reducing the
size of the filters at each step. Figure 3 also shows that
filter sizes can be reduced down to 128 taps with mutual
information penalties lower than 0.05 bit/symbol. In this case
the complexity of the nonlinear compensation is comparable
with linear compensation, while delivering 0.15 bit/symbol
mutual information gain with LDBP and 0.05 bit/symbol gain
with conventional DBP.

IV. CONCLUSIONS

We were able to evaluate the performance of learned
digital back-propagation (LDBP) with experimental data
from an unrepeatered optical link, attesting that in all
scenarios the application of optimization to the linear and
nonlinear coefficients can improve performance or, conversely,
reduce required complexity in all cases, making digital
back-propagation nonlinear compensation more attractive and
viable. In all tested scenarios performance was increased by
at least 0.1 bit/symbol when compared with the equivalent
untrained DBP. We have shown that for this particular
unrepeatered link, LDBP was capable of delivering 0.15

bit/symbol mutual information gain at similar complexity
when compared with purely linear compensation.
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