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Underwater target classification with optimized
feature selection based on Genetic Algorithms

Rigel P. Fernandes and José A. Apolinário Jr.

Abstract— This paper presents an approach to target-
classification optimization based on acoustic signals collected
using a hydrophone, an underwater electroacoustic transducer.
This study has applications to sonars or any sound-classification
application. We divide the problem into three parts, namely
feature extraction, feature selection, and target classification
with an optimization step. Experiments were conducted using
ShipsEar, a public database of raw ship noises collected using a
single hydrophone located in a harbor. This dataset comprises
five classes and is used to verify the performance of the approach
described in this work. From raw signals, we extracted the
following features: Mel-Frequency Cepstral Coefficients, Linear
Predictive Coding, and Gammatone Cepstral Coefficients. All
these features were evaluated using the Neighborhood Com-
ponent Analysis to reduce dimensionality. We used K-Nearest
Neighbors as the classifier. We adopted the leave-one-out cross-
validation strategy to evaluate the classifier. Finally, we used
Genetic Algorithms to optimize the features selected. We set the
classifier performance as the genetic algorithm cost function and
used the features selected as one individual of the first generation.
This scheme optimized the performance of the classifier by 13
percentage points. In our case, the optimized feature selection
algorithms reduced the dimensionality and improved classifier
accuracy when compared with the same scheme using all features
or a subset of features selected by Neighborhood Component
Analysis. These techniques can select the most useful information
from features of different ship classes.

Keywords— Classification, feature selection, feature extraction,
KNN, underwater acoustic signals.

I. INTRODUCTION

Acoustic event classification is a subject of great interest in
defense and law-enforcement for its capability of improving
situational awareness. To recognize the environment based
on audio waveforms is also a subject of great interest for
civilian applications [1]. For instance, voice-controlled houses
and speaker identification are some examples of civilian appli-
cations that depend on audio signal processing techniques [2].
In the healthcare industry, there are new approaches to make
a diagnosis of lung diseases [3], [4], heart diseases [5],
and COVID-19 [6] that use acoustics and machine learning
algorithms. In both cases, the research area is the same,
acoustic event classification, and the methods used are very
similar: extraction of useful information from the data to make
the automatic diagnosis (classification).
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Detection and classification of acoustic events are broadly
used in defense, including underwater acoustic warfare or
Anti-Submarine Warfare (ASW). Sonar technicians using so-
phisticated methods to detect and classify ships motivates
efforts to produce more silent ships [7]. Target classifica-
tion depends on devices that allow environmental sensing,
including the hydrophone, a passive acoustic sensor with many
applications [7]. This military capability also depends on the
following research areas: development of acoustic sensors
with higher sensitivity [8], signal enhancement techniques [9],
pre-processing [10], and machine learning methods to clas-
sify [11], [12], estimate and identify [13] the signal of interest
(SoI). Another application of transducers is surveillance of
ports and coastal areas [14]. A preliminary and automatic
classification performed for every vessel inside the sensors
range is important to provide an initial indication of possible
threats [15].

Hydrophones can be installed near harbors, or in patrol
ships, and used in mono or multichannel systems. The uti-
lization of sensor arrays makes it possible to use multichannel
signal processing techniques, for example, spatial filtering [9].
Vessel monitoring has great significance on the military field.
The noise spectrum of a remote vessel (at a distance of 1000
nautical miles, or more, from the measuring transducer) mainly
distributes from 20 Hz to 500 Hz, and the peak of the power
spectrum of a vessel is in the range of 100Hz to 1kHz. Thus,
the upper band limit of a hydrophone should be at least 1 kHz.

Recently, some projects aim at using autonomous surface
vehicles to perform the surveillance of coastal areas and other
tasks [16], [14]. There is also a myriad of applications for
underwater autonomous vessels, some of them can be found
in [17]. Besides, warships have always depended highly on
acoustic sensors [18]. Autonomous vessels are expected to
continue depending on acoustic sensing and on new technolo-
gies to detect, classify, and estimate the position of targets.

For military applications, the use of active devices is avoided
to maintain the low probability of interception in the field of
Electronic Warfare [15] and Anti-Submarine Warfare. Thus,
passive acoustic sensors are commonly used in warships.

In this work, the classification task will be done using sig-
nals from passive acoustic sensors, followed by feature extrac-
tion, feature selection, and machine learning algorithms [12].
More specifically, we improve the accuracy of an AI-based
classifier and reduce feature vector dimensionality using ge-
netic algorithms as an additional step of the feature selection
algorithm. It is meant to be a contribution to the underwater
target classification scenario using a single sensor collecting
ship signals buried on strong background noise.
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The paper is organized as follows: Section II describes
techniques employed to extract and select features from
acoustic signals, machine learning algorithms to classify the
target, genetic algorithms to optimize the classification, and the
proposed method. Section III explains the database, and shows
and discusses experimental results. Section IV concludes the
paper.

II. THE TARGET CLASSIFICATION PROBLEM

A. Problem statement and assumptions

The problem we try to solve is the classification of targets
using signals collected by a single hydrophone. The targets
in this work are classes of ships in a harbor. For the target
classification problem, we assume that, during the recordings,
the target was in the range of the sensor, i.e., the signals
produced by the target (broadband and narrowband signals)
were collected by the transducer. The signal obtained with
the hydrophone, x[k] = s[k] + n[k], is the noisy machinery
sounds produced by the vessels. It is composed of the signal
of interest, the narrowband signal, s[k], emitted by the target
machinery, and the background noise, n[k], which corresponds
to signals from other sources that are summed to the SoI, e.g.,
cavitational, biological, and anthropogenic noises.

B. Feature extraction

The features used in this work are Mel-Frequency Cepstral
Coefficients (MFCC), Linear Prediction Coding (LPC), and
Gammatone Cepstral Coefficients (GTCC) [19]. The vessel
classification task depends on pieces of information that are
unique to some ship or a class of ships. We depicted in
Figure 1 the process used to extract features from audio
signals.

Depicted in Figure 1 (a), is one audio signal collected from
MSC Opera in the time domain, signal x[k]. Figure 1 (b)
depicts the following stage, which is to select an interval
of the signal with a specific size (in this example we used
1024 samples with 50% of overlap). In Figure 1 (c), it is
possible to note the Hamming window that we use to reduce
the amplitude of discontinuities at the boundaries for each
finite sequence. In Figure 1 (d), the signal depicted is the result
of the Hamming window applied to the signal previously cut.
We use this process in all feature extraction methods used in
this paper.

The next stages are used by the MFCC and GTCC. In
Figure 1 (e), it is depicted the signal in the frequency domain;
it is possible to see some peaks near 1600, 3200, 4800, and
6400 Hz. This is important information about the ship: the
machinery main frequencies and its harmonics. The energy
for each frequency is the first feature that could be used to
train a machine-learning algorithm, the Short Time Fourier
Transform (STFT). In Figure 1 (f), the same signal after the
values being squared. The lower frequencies, still strong, are
related to the cavitation noise.

Figure 1 (g) presents a Mel filter bank composed of 40
triangle filters, covering the first 8kHz. In Figure 1 (h), the
STFT is compressed in this stage using the triangle filters.
In Figure 1 (i), the iDCT is used to transform the resulting

signal back into time domain which corresponds to the MFCC
vector. We also use the first and second derivatives appended
to the MFCC features. The first derivative is computed as the
difference of the current MFCC vector and the previous MFCC
vector, which is known as delta vector. The second derivative
is the difference between the current delta and the previous
delta vector already computed.
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Fig. 1. MFCC and GTCC feature extraction process. (a) Signal x[k] in time
domain; (b) a frame with 1024 samples of this signal; (c) Hanning window; (d)
windowed signal; (e) absolute values of the frame in the frequency domain; (f)
squared values of the frequency domain signal; (g) Mel filter bank composed
of 40 triangle filters; (h) Spectrum compressed by the Mel filter bank; and (i)
features obtained after applying iDCT.

The computation scheme represented in Figure 1 is the basis
for many feature extraction method. The Gammatone cepstral
coefficients (GTCCs) are a biologically inspired modification
of MFCC that uses this scheme. GTCC uses filters with
rectangular bandwidth bands instead of Mel filter bank [20].

The Linear Predictive Coding (LPC) with order s is obtained
through the following closed form solution:

LPC = R−1p, (1)

where the Toeplitz matrix R is defined as

R =

 rx(0) . . . rx(s− 1)
...

. . .
...

rx(s− 1) . . . rx(0)

 , (2)

with vector p being given by

p =
[
rx(1) rx(2) · · · rx(s)

]T
, (3)

while rx(τ) corresponds to

rx(τ) = E
[
x(k) x(k − τ)

]
. (4)
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C. The optimized feature selection

Feature selection algorithms are useful to reduce features
dimensionality. In this paper we chose to use the Neigh-
borhood Component Analysis (NCA) [21]. This method can
be used to transform high-dimensional feature vectors into
lower dimensional vectors for classification problems given
the nearest neighbor criterion. This method takes as input
a data matrix XN×m = {x1,x2, . . . ,xN}, comprised of a
set of training vectors where xi ∈ Rm and an associated set
of labels {y1, y2, . . . , yN}. In our experiments, xi consists of
concatenated vectors of MFCC, first and second derivatives,
LPC and GTCC features and yi indicates the ship class
described by the vector. The method then learns a projection
matrix Ap×m that projects the training vectors xi into a
p dimensional representation, zi = Axi, where a nearest
neighbor classifier is effective at discriminating amongst the
classes. Projection matrix A defines a distance metric that
can be used by the nearest neighbor classifier in the projected
space.

The output of the NCA method is a vector with the weighted
m features. One threshold must be used to select the most
important features (the larger feature weights) from all m
possible choices. This threshold was selected experimentally
to maximize the classifier accuracy. We represent the features
selected as a binary vector bNCA of size m × 1 of 1’s and
0’s, the ones represent that the features will be used and zeros
that they will not be used. The size of the vector bNCA is m
the same size of the feature vector xi, however the number of
features selected (the ones in bNCA) is p < m.

However, NCA has one drawback: the non-convex opti-
mization function, i.e., this function potentially has many local
minima. Thus, a global search method can be used as a new
attempt to optimize the results. In this paper, we have chosen a
method from evolutionary computing, the Genetic Algorithms
(GA) [22]. This evolutionary algorithm was reported [23] to
improve Turkish vowels classification. GA is used to generate
chromosomes of 1s and 0s, in this work the size of each
chromosome bGA is m × 1. This is the same representation
of the features selected previously in the NCA method (vector
bNCA). This is important to allow the features selected with
NCA to be used as one individual in the GA. The first
generation is created randomly or known chromosomes can
also be used as the first population, e.g., we can use the NCA
vector of 1’s and 0’s. Each chromosome is evaluated according
to a cost function. In this case, the cost function of the genetic
algorithms is the classification accuracy obtained through one
validation strategy. After we have each chromosome cost
function, we run the roulette wheel selection, crossover, and
mutation steps for every individual.

D. Target classification

The works that used the same dataset [24] employed differ-
ent classifiers. For instance, in [25], it was proposed a method
based on 1D and 2D frequency domain representation of audio
signals to classify the five ship types. In [26], a novel feature
extraction method for ship-radiated noise based on hierarchical
entropy was evaluated using this database. In [27], a method

that aims at improving the accuracy of underwater acoustic
target recognition is proposed with only a small number of
labeled data. This work comprises four steps, namely pre-
processing, pre-trainning, fine-tuning with supervised feature
separation, and recognition.

The dataset was also used to run simulations to perform
localization of autonomous underwater vehicles using noise
emitted by the support ship and their own noise [28]. The
work presented in [29], proposes a method to classify the ship
radiated noise using audio segmentation method.

In this work, we use the k-Nearest Neighbors (KNN)
classifier [30]. KNN is a simple algorithm based on feature
similarity that assigns, to an xi vector, the class of the
nearest set of previously labeled vectors, ŷi. KNN performance
depends on the number of neighbors K, the voting criterion
(for K > 1), and the training data size. The training step
produces a very simple model, but the inference phase requires
exploring the whole training set [31].

In the pre-processing step, we used a pre-emphasis filter,
h(z) = 1− 0.97z−1, to enhance lower frequencies, extracted
features using MFCC, LPC, and GTCC techniques, and se-
lected features using NCA. We used KNN algorithm to classify
each audio file, and the leave-one-out validation strategy to
estimate the classifier accuracy. Finally, we applied GA to
improve the classifier accuracy by selecting the most important
features, we speed up the optimization step by using the
features selected by NCA (vector f ) as one of the individuals
of the first population.

III. EXPERIMENTS AND RESULTS

A. Database

We conducted experiments using the ShipsEar
database [24]. This database is available for the scientific
community interested in investigating vessel classification
using hydrophones; it consists of 81 recordings from 11 types
of vessel. In [24], these vessels were grouped into 4 classes
and 1 background noise class. In this paper we followed this
approach. This database was chosen due to its availability
and large number of recordings. As mentioned in [24], 12
database files were not used in order to balance the number
of frames of each class. The same subset is also used in this
paper (69 files).

B. Results

In this work, we compare the classification of all features
extracted from each class, the features extracted using the
NCA algorithm, and the features obtained through genetic
algorithms.

The results obtained with all features are presented in
Table I. It should be noted that, even with all information
presented in the feature vectors, class 1 presented only 25%
of accuracy.

It is not always that a great number of features increase
the performance of a classifier. The use of NCA increased
the performance of all classes by selecting the most important
features. According to Table II, class 1 increased 12.5% points,
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class 3 and 5 also improved their accuracy by 5.9% and 8.3%,
respectively, if compared with Table I.

The best results can be seen in Table III. Except for class
3, we improved the classification accuracy by reducing the
dimensionality. 27 features were collected out of 63 features
available. This result was achieved after 28 generations, with
10 individuals each.

It should be mentioned that the 27 features selected after
the GA stage are composed of: 6/13 features from MFCC,
7/13 MFCC first derivative, 4/13 MFCC second derivative,
5/10 LPC, and 5/14 GTCC features; which corresponds to
46% 53% 30% 50% 35% respectively. Therefore, the most
discriminatory features for this classification problem was the
MFCC first derivative and the second derivative was the less
discriminatory one.

We calculated the overall classification accuracy by sum-
ming all the correct classifications dividing by the total number
of recordings. We achieved 58.0% for all features, 60.9%
for the 26 features selected by NCA algorithm, and 71.1%
accuracy for the GA improved feature vector.

TABLE I
CONFUSION MATRIX WITH ALL FEATURES (63 FEATURES)

Class 1 2 3 4 5
1 4(25.0%) 1 7 4 0
2 3 9(60.0%) 3 0 0
3 3 1 12(70.6%) 1 0
4 3 0 0 6(66.6%) 0
5 0 3 0 0 9(75.0%)

TABLE II
CONFUSION MATRIX USING NCA (26 FEATURES)

Class 1 2 3 4 5
1 6(37.5%) 1 5 4 0
2 2 7(46.7%) 3 2 1
3 3 0 13(76.5%) 1 0
4 3 0 0 6(66.6%) 0
5 0 2 0 0 10(83.3%)

TABLE III
CONFUSION MATRIX USING GENETIC ALGORITHMS FEATURE VECTOR

OPTIMIZATION (27 FEATURES)

Class 1 2 3 4 5
1 9(56.3%) 0 4 3 0
2 2 11(73.3%) 2 0 0
3 3 1 12(70.6%) 1 0
4 2 0 0 7(77.8%) 0
5 0 1 1 0 10(83.3%)

C. Discussion

In order to a better understanding of the misclassifications in
the validation process, we depict in Figure 2 two spectrograms
of classes 1 and 4. In these figures, we can easily see
similarities between the two ship classes. From both signals, it
is possible to note that after 80 seconds the most predominant

energy of class 4 vessel is around 1600Hz. This information
is very similar to the one presented in Figures 2 (a) and (b),
class 1 vessel.

The data compression is very useful to reduce the bandwidth
used when the features must be sent to another station. For
instance, commercial applications that classify songs, they
use massively cloud computing and dimensionality is a great
problem when dealing with millions of users sending features
through the internet. Another example is military exercises: if
a new target is detected, probably the features should be sent
to other ships and this should occur very fast.

Moreover, in military applications when unknown targets
are detected, the classifier should be passed through another
quick training phase to include new targets in its model. This
can happen because during peace time, for example, many
equipments and machinery can be used in a different mode
or even new targets (unknown targets so far) could appear.
Therefore, the solution of the feature selection algorithms
presented in this paper when combined can be used as a
tool to select the most important information and provide
quicker training, reducing the amount of data to be processed
or transmitted.

The method proposed herein can also benefit the assessment
of new feature extraction methods. As we saw, the optimal
results in the classification stage is not always achieved when
all features are used to fit the classifier model. Thus, the use
of this method can help researchers unleash the potential of
new feature extraction methods.

IV. CONCLUSIONS

The results obtained with the feature selection scheme
outperform the classification performance with the whole set
of features, the combination of MFCC, LPC, and GTCC.
Although a simple algorithm, when the KNN is combined
with a good pre-processing scheme it works well with the
multiclass classification problem using 4 nearest neighbors.
Methods to deal with signal and feature enhancement could
be considered as a future work to improve the results. The
misclassification problem could be solved by analysing each
signal and proposing signal enhancement for these specific set
of ship classes. One example would be to enhance the higher
frequencies in order to pronounce the harmonics of the class
4 vessel.
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