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Abstract—
We propose a robust Time of Arrival (ToA) and Pulse Width

(PW) estimator for Electronic Intelligence and Electronic Support
Measures systems in Electronic Warfare applications. Robust
ToA and PW measurements of the intercepted radar pulse are
assets in EW algorithms and are worthy to be pursued. The
proposed estimation method is based on Autoconvolution and
Model Change Detection theory. Computer simulations show the
superior performance of the proposed method in the presence of
AWGN and spurious signals when compared to two different
Threshold methods and to an Autoconvolutional method. A
comparison of the methods with a recorded radar pulse confirms
the robustness of the proposed method in a real scenario.

Keywords— Radar pulse width estimation, pulse parameters
estimation, Time of arrival estimation, model change detection,
autoconvolution, ELINT, Electronic Warfare, Electronic Support
Measures (ESM).

I. INTRODUCTION

Blindly estimating intercepted radar pulse’s parameters is
one of the most important tasks of Electronic Warfare (EW)
systems [1], particularly for Electronic Intelligence (ELINT)
[2] and Electronic Support Measures (ESM) systems. It allows
correct identification of the received radar waveform, that in
turn, yields crucial information for predicting the mode of the
enemy’s operation and correctly performing pulse deinterlea-
ving and threat sorting [3], [4].

However, this can only be properly executed if the pulses’
Time of Arrival (ToA) and Pulse Width (PW) are well estima-
ted. From the EW prospect, the best ToA and PW estimation
method provides the correct time frame in which frequency
measurements can be accurately made, regardless SNR at
reception or pulse distortion, caused by emitter’s degradation,
multipath or spurious signals as interference, or jammers for
example. The probability of detecting intrapulse modulation
correctly dependes on the analysed time-frame [5]. A system
model for intrapulse analysis is depicted in Fig. 1.

Historically, in analog EW equipments, a threshold is used
to determine the pulse width. Until the present days, heuristics
based on thresholds are used, even in the context of digital data
[6]–[8]. But threshold methods are very susceptible to noise,
multipath and emitter’s degradation, motivating the research of
robust PW estimation methods which convey the EW needs
[9]–[11].
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Fig. 1. System model for intrapulse analysis.

In this paper, we propose a robust method for ToA and
PW estimation based on a combination of Model Change
Detection theory and Autoconvolution, named here the AC-
MCD method. The proposed method uses the autoconvolution
of the received signal to approximately determine the middle
point of the pulse in order to divide the processing interval
into two segments. Then we apply MCD theory to determine
the instant at which a DC level change occurs in each segment.
The first jump instant is the estimated ToA and the interval
from the first jump to the second jump is the estimated PW.

We compare the proposed method with two threshold-
based methods [6], [11] and a convolution-based method [9],
[10]. Computer simulations show the superior performance
of the proposed method in the presence of AWG noise and
distortion caused by a spurious signal. This latter feature is
illustrated with a real pulse case. The term robust is loosely
employed throughout this paper meaning the methods capacity
of maintaining their PW estimates of corrupted or distorted
pulses similar to the non-corrupted case.

This paper is organized as follow: the system model is
explained in Section II, the proposed method is described in
Section III; an overview of the other PW estimation methods
is reviewed in Section IV, computer simulations are presented
in Section V and, finally, conclusions are given in Section VI.

II. SYSTEM MODEL

Assume that the signals received from a wideband receiver
of bandwidth W after downconversion go through a high speed
analog to digital converter (ADC), with sampling frequency,
fs, larger than 2W in order to avoid aliasing. The digital
sequence is divided into Data Processing Interval (DPI) frames
of L samples each. Length L is chosen accordingly, depending
on the minimum and maximum expected radar pulse width
and maximum Pulse Repetition Frequency (PRF), in order to
accommodate only one radar pulse per DPI.

The DPI signal, r(i), is described as

r(i) = r(t)|t=(i−1)ts , i = 1, . . . , L, (1)

where ts = 1/fs and r(t) given hypothesis H1 (presence of
radar pulse), is

r(t) = s(t− T ) + n(t), (2)
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where n(t) is the receiver thermal noise random process with
autocorrelation function R(τ) = σ2

nδ(τ) and s(t) is the radar
pulse, which starts at instant t = T , given by

s(t) = Ag(t) cos(2πfct+ ρ(t) + ψ), (3)

where A is a constant that accounts for the signal amplitude, fc
is the downconverted radar carrier frequency, g(t) is the low-
pass transmitted pulse envelope of duration τ , ρ(t) represents
the phase or frequency modulation and ψ is the initial phase.

The analytical signal, ra(i), is given by

ra(i) = r(i) + jH{r(i)} , i = 1, . . . , L (4)

where H{x} denotes the Hilbert transform of x. The magni-
tude z(i), of ra(i), which is the envelope of the DPI, is given
by

z(i) = |ra(i)|. (5)

The definition of intrapulse signal-to-noise ratio (SNR)
adopted in this paper is

SNR = 10 log10

(
A2

2σ2
n

)
. (6)

The DPIs go through a detection block which indicates the
presence or absence of a radar pulse within it. DPIs with
affirmative indication of pulse go through the pulse parameters
estimation block, in which is located the proposed ToA and
PW estimation method. These parameters are used to select
the frame which enters the intrapulse analysis block, where the
modulation and other parameters are estimated. This process
is depicted in Fig. 1.

III. PROPOSED AC-MCD TOA AND PULSE WIDTH
ESTIMATION METHOD

The PW estimation problem can be modelled as the problem
of determining two unknown jump instants of DC levels,
which are also unknown. Fig. 2 illustrates this idea. Detecting
the change time of a DC level is a well established branch in
Model Change Detection (MCD) theory.

The drawback of the MCD applied to three DC levels is
its high computational complexity, in the order of O(L3),
where L is the length of the data processing interval (DPI)
[12]. A way of reducing its computational complexity is by
implementing it with dynamic programming, which involves
some contour conditions and may get tricky. The computa-
tional complexity of the proposed method is O(L2) and its
implementation is very simple.

The proposed method combines an autoconvolution of the
DPI MCD theory. The k-th element of y(i), which is the result
of the autoconvolution of the signal envelope within the DPI,
z(i), i = 1, . . . , L, is given by

y(k) =

L∑
j=1

z(j)z(k − j + 1), (7)

k = 1, . . . , 2L− 1,

j = 1, . . . , k.

Fig. 2. Example of applying MCD for PW estimation.

The time index, i∗, at which we divide z(i) into two
segments is

i∗ =

⌊
k∗

2

⌋
, (8)

where k∗ is the time index for which y(k) is maximum. For
monotonic rising and falling pulse edge functions and no noise,
i∗ in (8) is exactly the middle point of the pulse [10]. In the
presence of noise, for positive signal to noise ratio (SNR), i∗

is a good approximation of the middle point.
Once we have obtained i∗, we divide z(i) into two seg-

ments, zL(i) and zR(i), given by

zL(i) = z(i), i = 1, . . . , i∗ (9)
zR(i) = z(i∗ + i), i = 1, . . . , L− i∗. (10)

This process is depicted in Figs. 3, 4 and 5. Fig. 3 depicts
a decentralized pulse envelope. Fig. 4 depicts the autococon-
volution of the pulse envelope depicted in 3 and its point of
maximum. Fig. 5 depicts the pulse envelope again and the
position of the point given by (8). One can see from Fig.
5, that the autoconvolution procedure works for finding the
middle point even when the pulse is decentralized. The curve
from the beginning of the pulse until point P in Fig. 5 is zL(i)
and from P + 1 to the end is zR(i).

In a second step, we want to detect the jump time of the
DC level for the two segments, zL(i) and zR(i). If A0 and
A1 were known we would select n0 as the instant n which
minimizes the average deviation of the data from: A0, over the
interval before the jump, and A1, over the interval after the
jump. Since they are not known, we substitute them by their
estimate and, therefore, minimize the cost function, J(n0),

J(n0) =

n0−1∑
n=1

(
z(n)− Â0

)2
+

L∑
n=n0

(
z(n)− Â1

)2
, (11)

where
Â0 =

1

n0 − 1

n0−1∑
i=1

z(i), (12)

Â1 =
1

L− n0 + 1

L∑
in0

z(i). (13)
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Fig. 3. Pulse envelope without noise.

Fig. 4. Result of the autoconvolution of the pulse envelope.

Fig. 5. Pulse envelope divided into two segments.

The estimated PW, ˆPW, in sample units, is, thus, computed
as

ˆPW = i∗ − nL + nR, (14)

where i∗ is defined in (8) and nL and nR are the output of
the minimization problem in (11) applied to the left and right
parts of the pulse respectively, zL(n) and zR(n). Note that nL

Fig. 6. MCD applied to the left and right parts of the pulse.

is the ToA sample estimate

ˆToA = nL. (15)

The jump times nL and nR, which are the results of the
minimization problem (11) applied to the left and right parts
of the pulse zL(n) and zR(n) are depicted in Figs. 5 and 6
respectively.

IV. OVERVIEW OF OTHER PULSE WIDTH ESTIMATION
METHODS

This section presents an overview of the methods adopted
in this paper for comparison: the Histogram-Based Threshold
method [6], the Mean-Based Threshold method [11] and the
Autoconvolutional method [10].

A. The Histogram-Based Threshold Method

In this method, two amplitude levels of the received pulse
envelope, z(i), i = 1, . . . , L, are computed by means of
constructing the histogram of z(i) [6]. The histogram peak to
the left is the noise level estimative and the peak to the right
is the signal level estimative. A threshold is computed as the
median of these two levels. The pulse width is then computed
as the total number of samples within the DPI which exceed
the threshold. Note that this method does not provide the ToA.

B. The Mean-Based Threshold Method

In this method proposed in [11], a threshold is computed as
the median value of the maximum and minimum value of z(i),
i = 1, . . . , L. Then, the amplitude level is computed as the
arithmetic mean of all samples within the DPI which exceed
the threshold and the noise level is computed as the arithmetic
mean of all samples within the DPI which do not exceed the
threshold. Then a new threshold is computed as the median
value of the amplitude and noise levels. The pulse width is then
measured as the total number of samples which exceed this
new threshold and also satisfy the continuity criterion, which
is defined in [11] as the samples above the threshold whose
neighbors also exceed the threshold. Note that this method
does not provide the ToA.
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Fig. 7. Mean Normalized Deviation.

C. The Autoconvolutional Method

The Autoconvolutional method presented in [10] is sum-
marized here. First, one determines i∗ as described in (8)
and generates the left and right segments zL(i) as in (9)
and zR(i) as in (10). Then, one performs the autoconvolution
of zL(i) and zR(i), producing yL(i) and yR(i) respectively.
The estimated PW using the autoconvolutional method, ˆPWAC,
may be written as

ˆPWAC = 2i∗ − n∗L + n∗R, (16)

where n∗L is the index for which yL(n) is maximum and n∗R
is the index for which yR(n) is maximum. Note that n∗L is the
ToA sample.

V. SIMULATION

In this section we compare the presented methods in terms
of robustness in the presence of AWG noise. The simulated
pulse has a rectangular envelope with a pulse width of 500
samples (PW0 = 500). The pulse is located in the center of a
Data Processing Frame (DPI) of 2100 samples. The metric
used for assessing the robustness is the mean normalized
deviation, ε, defined as

ε =
1

N

N∑
i=1

| ˆPW− PW0|
|PW0|

, (17)

where ˆPW is the estimate and PW0 is the correct reference
value. The comparison with 500 Monte Carlo trials (N = 500)
for each SNR value (Eq. (6)) is depicted in logscale in Fig. 7.
From Fig. 7 one can see the superior robust performance of
the proposed method. The Autoconvolution (AC) method [9],
[10], except for very low SNRs, is better than the Threshold
Histogram-Based [6] and Mean-Based [11] methods . Fig.8
depicts the estimated combination of ToA and pulse width of
one Monte Carlo trial using the AC and the proposed AC-
MCD methods for 0 dB SNR. From Fig. 8 it is clear that only
the proposed method is able to produce reliable results for all
SNR range.

Fig. 8. Example of the estimated ToA and PW of the AC (left) and proposed
AC-MCD (right) methods for SNR = 0 dB.

Figs. from 9 to 14 illustrate another important desired
feature of PW estimation methods for EW applications: the ca-
pacity of rejecting distortions caused by multipath or spurious
signals. We simulated a pulse envelope based on the ADSR
(Attack-Decay-Sustain-Release) model [13], [14] and added
a shorter spurious pulse at its end and compared the output
of the presented methods, without noise, for different heights
of the spurious signal. When the amplitude of the spurious
signal is not very high, all four methods are able to reject
the spurious signal and behave as depicted in Fig. 9. When
the amplitude of the spurious signal is very high, all four
methods incorporate the spurious width to the correct pulse
width, as depicted in Fig. 10. The results for the proposed AC-
MCD, AC, Histogram and Mean-based threshold methods for
an intermediate amplitude are depicted in Figs. 11, 12, 13 and
14 respectively. Though the threshold based methods do not
estimate the ToA, for illustration purpose we have depicted
their results in Figs. 13 and 14 using the ToA resulted from
the proposed AC-MCD, which happens to be equal to the AC
method for these examples. From Figs. 11 to 14 one can see
that the proposed AC-MCD method has a superior capacity of
rejecting the spurious signal.

Fig. 9. Common behavior for low
height spurious signal.

Fig. 10. Common behavior for high
height spurious signal.

Figs. 15 and 16 depict the application of the AC and
the proposed AC-MCD method to a real pulse with a non-
theoretical amplitude profile. We have recorded this pulse
from a sailing ship using an TEKTRONIX oscilloscope in
association with a cornet antenna near a bay. From Figs. 15
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Fig. 11. AC-MCD method. Fig. 12. AC method. Fig. 13. Histogram-Based Threshold
method.

Fig. 14. Mean-Based Threshold
method.

and 16 one can see that the proposed AC-MCD method rejects
the spurious part of the recorded pulse while the AC method
does not.

Fig. 15. Estimated PW using the proposed method in a real pulse.

Fig. 16. Estimated PW using the AC method in a real pulse.

VI. CONCLUSION

In this paper, we have proposed a robust ToA and pulse
width estimator based on Autoconvolution and Model Change
Detection theory, the AC-MCD method. We have compared
its pulse width estimation performance with three other pulse
width estimators in the presence of AWGN, namely, the
threshold histogram-based [6], the threshold mean-based [11]

and the autoconvolutional (AC) [10]. The proposed method
shows superior performance and robustness with remarkable
results for very low SNRs. The proposed method also filters
out distortions caused by spurious signals, manifesting to
be robust to non-theoretical pulse shapes. This is a very
interesting feature to applications in EW and ELINT.
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