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Blind Source Separation based on Semblance
Beamforming

Alexandre Miccheleti Lucena, Kenji Nose-Filho, Ricardo Suyama

Abstract— The source separation task has been tackled from
different approaches, including beamforming. The idea of ex-
ploiting geometric information of the sensors may contribute
in convolutive mixture separation context, usually assumed in
real scenario. This work proposes a beamformer algorithm for
source separation based on the semblance coherence function.
The performance of the algorithm for artificially mixed signals
is evaluated using a objective intelligibility metric throughout
Monte Carlo simulations in two scenarios and different SNR
levels. Results are compared with classic techniques: GSS and
Delay and Sum, where the proposed algorithm achieves the best
performance under no influence of additive noise.
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I. INTRODUCTION

The signal separation or source separation task can be a
common necessity in different practical applications. There
is an increasing interest of achieving this goal in the speech
recognition context (e.g. hands-free communication, rescue
scenarios, etc.) as the acquired signals are often corrupted by
noise from the environment or other unwanted sources.

We can cite two main categories of signal processing
techniques that focus on solving the source separation problem:
blind source separation (BSS) and beamforming. As discussed
in [1], both techniques may sometimes have similar objectives
but different approaches. While BSS usually takes advantage of
a prior knowledge of sources characteristics (e.g. second-order
statistics), beamforming techniques exploit sensors geometry
information, but both approaches proved their capability
in achieving satisfactory separation, or even shown to be
equivalent in some convolutive mixture separation context
[2]. As a way of improving the BSS performance, there are
initiatives as the Geometric Source Separation (GSS) in [3]
that combines both methods in order to achieve separation.

For speech and audio signal separation, the acoustic mod-
elling involved on the acquisition process is a important
practical consideration. Many beamforming techniques [4]-
[5] rely on time difference of arrival (TDOA) as a way to
estimate the direction of arrival (DOA) of a sound source.
Recent works have presented a new semblance based TDOA
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algorithm that showed its potential in source localization and
speech enhancement contexts [6]-[7].

The objective of this paper is the development of a beam-
former for source separation based on the semblance TDOA
algorithm. Our approach consists in finding the direction of
arrival of a given source and then subtracting it from the mixture
by using a least squares filter or a least absolute deviation
filter. The algorithm is tested in a simulation environment,
with artificially convolved mixed sound sources, and has its
performance evaluated in comparison to classic approaches,
the Delay and Sum beamformer and the GSS algorithm.

II. PROBLEM DEFINITION AND METHODS

In a real scenario, the observed signal x;(n), for NV sources
and M microphone recordings, can be written in terms of a
convolutive mixture discrete model as

N P
z; (n) = Zzaij(p)sj (n_Tipj)7(i =1,---, M), (1)
Jj=1p=1
where s; is the source signal from source j, a;; are the
filter coefficients, and P the number of paths from sources to
microphone, causing its respective 7;,; delay. For an anechoic
environment, i.e., without multipath propagation, (1) becomes

N
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being 7;; the delay caused by line of sight propagation distance.

One way to accomplish separation in such scenario (anechoic
mixtures) is to obtain the unmixing filter weights, which
are applied to each microphone signal. The resulting filtered
signals are the estimated sources. The described process can
be modeled as

M
yk (n) = > wiiwi (n— i), (k=1,--- ,N),  (3)
i=1

where wy; are the unmixing filter weights, 7x; the unmixing
delays, and y; the estimated source.

A. Delay and Sum beamformer

One of the simplest ways to perform source separation is
given by the Delay and Sum beamformer. From the source
direction, it is possible to estimate the delays 7j; such that
Tij + Tki = T3 are the same for j = k, so that equation (3),
for unitary weigths wy; = 1, becomes
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Intuitively, the Delay and Sum beamformer tries to promote
a constructive interference of the aligned wavefronts (first
term on the right-hand side of equation (4)) and a destructive
interference from the non aligned wavefronts (second term on
the right-hand side of equation (4)).

B. Geometric Source Separation

The Geometric Source Separation method proposed in [3] is
based on the context of blind source separation of convolutive
mixtures with geometric constraints. Considering the Short
Time Fourier Transform (STFT), the separated signals for
discrete frequency w at the time frame [ are given by

Y (w,1) = W(w, )X(w,1), (5)
where X(w, ) is the STFT of the mixtures and W (w, () is the

unmixing matrix for each frequency bin w and time frame [.

For simplicity, w and [ will be supressed from notation. The
GSS algorithm aims to minimize the following cost functions:

Ji(W) = |Ryy — diag[Ryv]|”, (©)
J2o(W) = [WA -1, (M
where ||-|| stands for the matrix norm, given by ||X| =

trace[XX "], and Ry is the correlation matrix of Y (w,1).

Each element of matrix A is given by A;;(w) = e~ 7“7ii. (6)
promotes the decorrelation of the estimated signals and (7) is
a geometric constraint imposed by the direction of arrival of
each source. It is interesting to notice that, for W = A the
GSS is equivalent to the Delay and Sum beamformer [3].

III. SEMBLANCE BASED BEAMFORMER (SBB)

In this paper, we propose a new way to perform source
separation following the same idea explored by the DS
beamformer. However, instead of promoting a constructive
interference of the aligned wavefronts we are going in the
opposite direction, trying to promote a destructive interference
of the aligned wavefronts, being able to remove or attenuate the
influence of the source of a given direction. This is a similar
technique applied in seismic reflection for the attenuation of
the surface-related multiple reflections [8], [9].

First, let us consider a linear array with two microphones
(M = 2), spaced with a distance equal to d. Then, if we
consider a plane wavefront, with an angle of incidence equal
to 0, the time difference between the signals received by the
microphones is equal to 75 = dsmf(e’“), where c is the speed
of sound in air. By applying this delay to the signals received
by the microphones, we have

k1 (n) =1 (n),
N _ . (8)
Tgo (n) =22 (n —71),
as being the signals with the aligned wavefronts from the k-th
source, considering z (n) the recording of the microphone
to the left and x5 (n) the recording of the microphone to the
right.
To remove or attenuate the influence of the k-th source, we
propose a simple filtering scheme

Yk (n) = &1 (n) — w2 (n) . &)

Substituting equation (2) into (9) yields (10) (located at the
top of the next page). By finding wy = %, equation (10)
becomes

N
yk (n) = Z aijsj (n — T15) — wrazis; (n — o5 — 1) .

J#k
(1)
By assuming that there is no destructive interference from the
other wavefronts, the signal y; (n) can be seen as the sum of
filtered versions of all the other sources, except for s (n).
For the simple case with only two active sources, i.e., N = 2,

with different angles of incidence, we have, for w; = Z—; and

— Q12
wo =
a22

Y1 (n) = azs2 (n — 112) — %1@282 (n— 7122 —71),
Y2 (Tl) = a1151 (TL - 7’11) - %a2151 (Tl — T21 — 722) .
(12)
So y1(n) can be seen as a filtered version of sz(n) and ys(n)
can be seen as a filtered version of sq(n). To avoid confusion,
in the Section Results we will call y;(n) as being the estimate
for s1(n) and y2(n) as being the estimate for so(n).

To estimate the direction of arrival and, consequently, the
value of 7;, we use the same algorithm as in [6] but in the
frequency domain, which enables us to work at low sampling
rates. In [6] the authors propose a semblance coherence function
based TDOA algorithm, that is a widely used measurement in
multichannel data in seismic signal processing, to measure the
level of similarity of signals [10]. In the frequency domain,
due to the Parseval’s Theorem, the semblance cost function

becomes A
_ SEKW)P
MY, 2 Xiw)l?

For N > 2, by direct applying the proposed method we can
remove one of the sources from the recordings, by knowing
its direction.

In the following, to estimate wy, we propose two methods:
A filter based on the least squares, and another one on the
least absolute deviations.

13)

A. Least Squares Filter

The first proposed method to estimate wg, based on a
minimum energy assumption, is to minimize the least squares
error criterion (or Lo norm) as in

[Zr1 (n) — widk2 (n)||§ ;

wg = argmin (14)
wp — 2 B (1) Tr2 (n) (15)

B. Least Absolute Deviation Filter

The second method to estimate wy, based on a sparsity
assumption, is to minimize the least absolute deviation (or L,
norm) as in

Wy, = argmin
W

| Zk1 (n) — WEEko (n)”l ) (16)
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y (n) = z1 (n) — wews (n = 7)

Yk (n) = Y0, arjs; (n— 11) — we Yooy ag;s; (n — 725 — 7)),

(10)

N A
Yk (n) = (arr — wrazk) sk(n = Tik) + X254 01585 (0 — T15) — wrag;s; (n — 725 — 7x) -

where wy, can be searched by an iterative gradient descent
procedure. With a random initialization of wY, its update for
each iteration m is given by

T Z sgn (&1 (n) — wi'Txe (n)) Tra(n).

a7

IV. SIMULATION SETUP

The audio files of two different speakers with 5 seconds
duration used in simulations as sources, were extracted from
the [BRSpeechCorpus]' dataset. In order to compare the
performance of the proposed methods, the GSS and Delay
and Sum algorithms were also implemented in the same
conditions for posterior evaluation. The source signals were
mixed artificially assuming an anechoic environment and far-
field positioning. Before the mixing process both sources were
normalized by its standard deviation. The sources amplitudes
were multiplied by a value obtained through normalization of
the radius (distance between source and sensor) by the larger
radius. This value was multiplied by a random variable with
distribution NV'(1,0.25), to attribute different random amplitude
to the sources. The proposed method was tested in a simulation
environment in two different scenarios, both simulating two
sources (N=2) and two microphones (M=2).

1) Distant Sources: The position x and y of source s; was
generated by sampling two independent random variables with
gaussian distribution of mean 1500cm with a standard deviation
of 150cm. Source so position coordinates z and y were
generated by two independent random variables with gaussian
distribution of mean -1200cm and 1800cm respectively, with
standard deviation of 150cm.

2) Near Sources: The position x and y of source s; was
generated by sampling two independent random variables with
gaussian distribution of mean Ocm and 1500cm respectively,
with a standard deviation of 150cm. Source so position
coordinates x and y were generated by two independent
random variables with gaussian distribution of mean -900cm
and 1800cm respectively, with standard deviation of 150cm.

In each scenario, the algorithm was also tested for different
levels of interfering noise on the sensors. For this purpose,
artificially generated white Gaussian noise was added to the
mixed signals to match the desired level of signal-to-noise ratio
(SNR).

V. RESULTS AND DISCUSSION

As described in simulation setup, the mixed signals were
obtained through an artificial mixing process and different SNR
levels. The algorithms for the proposed methods, Delay and
Sum, and GSS were implemented for scenarios 1 and 2 under
the same conditions.

Dataset available at: http://lasp.ime.eb.br/index.php?vPage=downloads

The performance evaluation was made by calculating the
short-time objective intelligibility measure (STOI) [11], of the
estimated signals for each algorithm. The STOI is an objective
measure specifically developed for speech signal evaluation,
and it is a function of the clean and degraded speech, measuring
an intelligibility score between 0 and 1. It can be interpreted as
the percentage of the original signal that can be comprehended
in the estimated signal. For the STOI calculation step, all the
estimated signals had their delay corrected, correlating it to its
respective original source.

The STOI was calculated for every estimated signal yy(n)
with respect to all source signals sx(n). When the index k in
yr(n) and sk(n) is equal, ideally it is wanted a STOI score
closer to 1. However, when the index k is different, a score
closer to O is desired, meaning that the original signal is not
present in the estimated signal. This is an important metric not
only to estimate the quality of the estimated source signal, but
to determine how well it was subtracted from other estimates.

The algorithms were tested in a noiseless scenario and 4
different SNR conditions: 30dB, 25dB, 20dB, 15dB. In order to
provide more consistent results, each experiment was repeated
100 times (Monte Carlo method), for each one of the SNR
conditions the mean STOI was calculated. Also, the STOI
values for each SNR condition provide a way to understand
how well the algorithms perform over noisy sensors.

A. Scenario 1: Distant Sources

Figure 1 presents the simulation results obtained for scenario
1 (Distant Sources). Figures from 1.(a) to 1.(d) show the mean
STOI values for each algorithm and SNR levels. The STOI
was calculated over the delay corrected mixed signals xy(n)
with no further treatment, as a way to compare each algorithm
improvement over it.

In Fig. 1.(a) it can be seen that the proposed method
outperforms the GSS and Delay and Sum algorithms when
noise is absent, with a slightly better result for the Lo norm
based method, with a STOI of 0.92. For noisy conditions, the
proposed method outperforms the Delay and Sum algorithm,
almost reaching GSS, presenting lower STOI values but similar
performance. Figures 1.(b) and 1.(c) show that the proposed
method significantly reduced the influence of the undesired
sources. Figures 1.(b) indicates a similar performance to the
GSS, with better results for a SNR of 20dB and 15dB. Fig.
1.(d) shows that the proposed method has the best performance
without the addition of noise, with a STOI of 0.96 for the
L; norm based method. For noisy conditions, the proposed
method outperforms the Delay and Sum algorithm for SNR of
20dB, 25dB and 30dB, and improves the STOI considerably.

Figures 1.(e) and 1.(f), show the average error associated
with the angle estimation in scenario 1 of the semblance based
TDOA algorithm for the angle of incidence of source 1 and
source 2, respectively. For both sources, it can be seen that the
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Comparison of STOI values of (a) y1(n) with respect to s1(n), (b) y1(n) with respect to s2(n), (¢) y2(n) with respect to s1(n) and (d) y2(n)

with respect to s2(n) for different SNR for Scenario 1. (e) and (f) illustrates the mean and standard deviation of the errors (in degrees) of the semblance based
TDOA algorithm, for source 1 and 2, respectively. It is important to note that the Delay and Sum and the GSS algorithms for the separation of source 1 depend
on the estimation of the DOA of source 1, while the proposed algorithm depends on the estimation of the DOA of source 2 to enhance the Source 1 Signal.

angle estimation error increases as the SNR level decreases,
especially for angle 1. Since all algorithms depends on the
angle estimation, their overall performance reduction can be

associated with the increase in the angle estimation error.

However, for the SBB algorithm, the enhancement of the signal
source 1 depends on the estimation of the DOA of source 2,
and vice versa. For this reason, the increase in the estimation
error of angle 1 in Fig. 1.(e) impacts the proposed algorithm
performance observed in Fig. 1.(d).

B. Scenario 2: Near Sources

Fig. 2 presents the simulation results obtained for scenario
2 (Near Sources). Figures from 2.(a) to 2.(d) shows the mean
STOI values for each algorithm and SNR levels. As for scenario
1, the STOI was calculated over the delay corrected mixed
signals xy(n), for comparison purposes.

Without noise addition, the proposed method surpass the
performance of the other algorithms as seen in Fig. 2(a), with
a score of 0.94 for the Lo norm based method. In the presence
of noise, the proposed method has an equivalent performance
to the GSS algorithm for SNR levels of 30dB and 25dB. In
Figures 2(b) and 2(c) the best subtraction results are from the
L5 norm based SBB for both sources, while L; norm based
method equate it’s performance as the noise level increases.

In Fig. 2(d), with a STOI of 0.93 the L, norm based SBB
presents the best result in the absence of noise, and GSS has
the best performance in noisy conditions.

Figures 2.(e) and 2.(f), show the average error associated
with the angle estimation in scenario 2 of the semblance based
TDOA algorithm for the angle of incidence of source 1 and
source 2, respectively. For near sources (scenario 2), the angles
of incidence of the sources over the sensors have closer values,
and the overall angle estimation error increases in relation to
scenario 1. As seen in scenario 1, once again in scenario 2,
there is an impact on overall performance of the algorithms
with the increase of the noise, and consequently there is an
increase in the angle estimation error. Since SBB algorithm
estimation of a source depends on the DOA of the opposite
source, the decrease of performance of proposed algorithm in
Fig. 2.(d) can be justified by the increase of the angle estimation
error in 2.(e).

VI. CONCLUSION

In this work, we proposed a new beamformer algorithm based
on the semblance coherence function for source separation, by
exploring its capability of estimating the DOA of the sources
followed by a filtering step. In the case of absence of additive
noise on the mixed signals, the proposed method based on



XXXVIII SIMPOSIO BRASILEIRO DE TELECOMUNICACOES E PROCESSAMENTO DE SINAIS - SBrT 2020, 22-25 DE NOVEMBRO DE 2020, FLORIANOPOLIS, SC

Fig. 2.

—© - Mixture
—-D&S
GSS
—©—-SBB L2
—©—-SBBLI

09

STOI
I
Q

()

0.6

05¢ " _--=~

—© - Mixture
= 04} —o—D&S
8 GSS
» —-sBBL2|| (C)
—o—SBBLI
03F 1
0.2 \\é
15 20 25 30 00
SNR (dB)
20 T T T
SR S
I )
M a0f 1 (e)
-40 ‘ ‘ ‘
15 20 25 30 00
SNR (dB)

0.7 . g
066--"""
05r
—© -Mixture
— ——D&S
€ 04f[-ocss
©» —6—SBB L2 (b)
—o—SBBLI
0.3
02r
0.1 | | |
15 20 25 30 00
SNR (dB)
1 r
—© -Mixture
0.9 | |~©—D&S
GSS
—o—SBB L2
[ |[-©—SBBLI1
03 | | |
15 20 25 30 00
SNR (dB)
20 T T T
. 04E [ ] [ ] ° °
=}
=1
= o KO
40 ‘ s ‘
15 20 25 30 00
SNR (dB)

Comparison of STOI values of (a) y1(n) with respect to s1(n), (b) y1(n) with respect to s2(n), (¢) y2(n) with respect to s1(n) and (d) y2(n)

with respect to s2(n) for different SNR for Scenario 2. (e) and (f) illustrates the mean and standard deviation of the errors (in degrees) of the semblance based
TDOA algorithm, for source 1 and 2, respectively. It is important to note that the Delay and Sum and the GSS algorithms for the separation of source 1 depend
on the estimation of the DOA of source 1, while the proposed algorithm depends on the estimation of the DOA of source 2 to enhance the Source 1 Signal.

Lo norm had better overall average performance in recovering
sources than other algorithms in both scenarios. In Scenario
1, the L; norm based method presented a superior capability
in cancelling sources than the Ly based method, whereas for
Scenario 2 the Lo based filtering had the lowest average STOI
for all SNR levels in the source cancelling task. The advantage
of the proposed method showed to be its lower complexity and
fast execution time. It was capable of achieving better results
than other methods for mixtures without noise, or even similar
results and fastest execution time than GSS for different SNR
levels. As future work, the perspective is to test the algorithm
for real mixture recordings, and also evaluate its performance
in estimating N > 2 sources.
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