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Improved CFO Synchronization of Dual-Polarized
OFDM Systems using Training Symbols
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Abstract—In 5G and next-generation communications systems,
as well as at wireless transmission using millimeter waves,
dual polarization systems have gained recent interest. This
paper presents carrier frequency offset (CFO) synchronization
technique for Dual-Polarized Orthogonal Frequency Division
Multiplexing (DP-OFDM) based on the transmission of training
symbols. The derived techniques lead to enhancing in perfor-
mance in terms of variance of estimator against classic single-
polarized (SP) complex version by using the same radiated power
for fair comparisons. The synchronization technique and the
Cramér-Rao lower bound are derived using quaternion algebra,
which prove and corroborate along with simulations to the
observed improvement in performance.

Keywords— OFDM CFO synchronization, quaternion OFDM,
CRLB, training symbol.

I. INTRODUCTION

Over the past decades, Orthogonal Frequency Division
Multiplexing (OFDM) has been widely adopted in a num-
ber of standard physical layers at variate applications, e.g.
WLAN, digital television, Internet of Things, among many
others. OFDM main advantages are high spectral efficiency
and immunity to frequency selective fading. However, as it
has been shown at the technical literature, OFDM is highly
susceptible to carrier frequency offsets (CFO); as a matter of
fact, in order to keep Signal-to-Interference Ratio (SIR) lower
than 20 dB, frequency offset must be below 4% of inter-carrier
separation [1], [2]. The use of training sequences (TS) for
frame timing and carrier frequency synchronization in OFDM
was proposed by Schmidl and Cox in [3]. The following works
proposed solutions to deal with a drawback caused by a plateau
in the time metric of Schmidl and Cox algorithm [4] aiming
to improve performance. On the other hand, dual-polarized
antennas are used in 5G trials and deployments to improve
spectral efficiency in massive MIMO systems using millimeter
wave bands [5], [6].

In recent years, the use of hyper-complex algebras, and
particularly quaternions, has paved the way for new ap-
proaches with performance gains over the classical ones for
designing orthogonal space-time block codes [7], as well as for
modeling both OFDM dual-polarized schemes [8] and MIMO
systems with flexible combination of time, space, frequency
and polarization diversities [9]. In that sense, the use of quater-
nion algebra in frequency synchronization techniques based
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on training sequences for dual-polarized OFDM schemes is
explored in the present work.

The paper is organized as follows. In section II, a brief
review of quaternion algebra is presented. In next section,
a description of dual-polarized systems using quaternions
is outlined. Section IV presents the modified algorithm for
CFO estimation, which performance is demonstrated through
simulations in Section V. The paper is concluded in followed
section and the CRLB demonstration for the proposed algo-
rithm is derived in Appendix I.

II. QUATERNION PRELIMINARIES

Quaternion algebra, usually denoted as IH, is an hyper-
complex number system conceived by William R. Hamilton in
1843 [10], in an attempt to extend division algebras to orders
higher than two. Quaternion ¢ is represented in the form:

qg=a+bi+cj+dk, (D

where a, b, ¢, d € R and {4, j, k} are imaginary units which
squares and products satisfy 15 = —j¢ =k, jk = —kj =1,
ki = —ik = 3, 2 = j2 = k2 = —1. These relationships, in
turn, refer to the non-commutative multiplication operation of
quaternions.

A quaternion can be decomposed into scalar and vector
parts, respectively, R(q) = a, and V(q) = bt + ¢j + dk. If
V(q) = 0, the quaternion g is called scalar, and if R(q) = 0,
q is denoted as pure quaternion. The imaginary parts with
respect to ¢, j, and k are respectively Z;(q) = b, Z;(q) = ¢,
and Zj;(q) = d. In the case of complex numbers, R.(z) and
Jm(2) denote real and imaginary parts of z € C, respectively.

A quaternion conjugate is defined as ¢* = a — bt — cj — dk.
The norm and module are respectively || ¢ ||= ¢¢* = ¢*q
and |q| = /|l ¢l [10]; if | ¢ ||= 1, the quaternion ¢ is
called unitary. Besides, the set of pure unitary quaternions are
the points over the surface of a sphere of unit radius in the
space formed by the axis ¢, 7, and k, and also the solutions
to ¢> = —1.

Another useful representation, denominated Cayley-Dick-
son (CD) decomposition [10], splits a quaternion into two
complex numbers lying in orthogonal Argand 2-D planes.
Namely, ¢ = q1 + ¢27, where ¢; = a+ bt and g2 = c+dz, are
the simplex and perplex parts of ¢, denoted by the operators
S(q) and P(q) respectively.

ITI. DUAL-POLARIZED QUATERNION OFDM

OFDM systems are based on Fourier transform. For quater-
nion algebra, several discrete Fourier transform have been
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defined. Since quaternion algebra is non-commutative, the left-
sided discrete quaternion Fourier transform has been used in
[8], [9] for quaternion OFDM, that is

N—1

X = Z e—iQﬂ'kn/N T, )

n=0
where x,, is a quaternion sequence. The quaternion OFDM
transceiver is illustrated in Fig. 1.

In the transmitter, at the serial-to-parallel conversion block,
N samples are stored for consequential computation by the
left-sided inverse discrete quaternion Fourier transform [8]
N—1
> enIN Xy forn=0,..,N-1. (3
k=0

1

xn:N

In the above equation, X}, is equal to a quaternion vector
@, for symbol m in Fig. 1, constructed by use of the Cayley-
Dickson form

Qm = Qm,l + Qm,2j7 (4)

where ()1, Qm,2 are complex-valued in a space orthogonal
to j, and @), € H. This quaternion representation separates
a quaternion into two Argand planes [11], perpendicular to
each other, intercepting at the 4-D space origin. Incoming bit-
streams are separated into two groups by ; and by ;, for 0 <
i < Ny, each group defines an independent constellation with
4N points, where Ny, is the number of bits for defining one
point in the Argand plane constellation.

Classical fast Fourier transform algorithms can be used to
implement the inverse discrete quaternion Fourier transform,
which is performed in the next block. However, the algorithms
complexity for quaternions transforms is twice of the classical
ones [11, p. 60], [12].

At transmit side, samples are prepared by performing cyclic
extension processing, which copies (M = N + N.) ending
samples into the beginning of the block to facilitate demodu-
lation. It also provides subcarrier orthogonality.

After parallel-to-serial conversion, the symplectic decom-
position is performed in order to enable the signals transmis-
sion by two independent antenna arrays using cross-polarized
waves. The last blocks, consisting of pulse shaper, digital-to-
analog conversion, mixer, and power amplifier blocks are well
known in wireless communications systems.

After the analog-to-digital and down-conversion, at the
receiver end of Fig. 1, the symplectic form in sequence data
is realized by (4). Before direct discrete quaternion Fourier
transform can be performed, data must be parallelized and the
cyclic extension must be removed. Data equalization may be
carried out in Fourier as well as in time domain. Complex
equalizer and demodulator blocks can be used right after the
quaternion equalizer block, since the symplectic decomposi-
tion is performed in the latter.

Regarding the link model of the channel, a simple model
can be represented by

h,“ hlz
Hy, = LLS? h;*;} , )

where each element is a complex channel gain, h), and h2}
are signals received with the same polarization, and h)2 and

h2! gains for cross-polar scatter. More detailed descriptions
for link model can be found in [8], [9].

IV. SYNCHRONIZATION BASED ON TRAINING SYMBOLS

Synchronization based on training sequence is used in
OFDM systems operating at bursty packaged data using a
frame structure. The method presented in this section can
be applied to find the start of the frame, as well as for
CFO estimation by the use of training sequences present in
one or more consecutive OFDM symbols. This technique for
complex OFDM was proposed in [3], which uses a periodic
training sequence known as preamble, consisting of one or two
OFDM symbols transmitted at the beginning of the frame.
These training symbols are constructed so that, apart from
the cyclic extension, they exhibit in time domain two equal
halves. For this purpose, it is possible to conceive these
sequences by a pseudo-noise (PN) generator applied directly
in time domain, as well as in frequency domain, where the
PN sequence is transmitted at even sub-carrier frequencies,
and zeros are placed at odd ones. Therefore, the inverse
Fourier transform exhibits the desired symmetry in time. These
training sequences are used to detect the frame start. It can also
be used for refining CFO estimation, allowing fractional CFO,
denoted by €, where € < 1. The carrier frequency integer offset
may be determined by using the second OFDM symbol. These
training sequences have also an important role in fast channel
response estimation, as it is for example in the case of IEEE
802.15.4, [13], where a Long Term Field (LTF), is used for
fast equalization and synchronization.

The proposed method is based on estimation of partial auto-
correlation function of received sequence y,,. For that, let L =
N/2, and T is the cyclic prefix range as illustrated in Fig. 2. If
the conjugate of a sample from the first half is multiplied by
a sample at L samples apart, and considering that the channel
response remains the same during a OFDM symbol, the effect
of the channel should cancel, and the result will have phase
TE.

By placing the training sequence quaternion samples Xj,

Xi,..., X1 at even subcarriers of quaternion OFDM sym-
bol, the transmit symbols in time domain are
] L=t
Ty = Tn1 + xn,Qj B N ; e'L%rn(Ql)/NXl (6)

forn=0,1, ..., N — 1.
Consider initially an estimator, which is justified in the
sequence, computed for instant d sample-by-sample

L—1
P(d) = Z:OS{rderr;erH},

=1 (7
R(d) = Z_Olrd+m+L|2,

where R(d) is used for normalization of P(d). These equations
may be computed recursively as

P(d+1) P(d) + S{rarrrgiant — S{rarg o},
R(d+1) R(d) + [ratarl® = [rarcl?

®)
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Fig. 1: Dual-polarization OFDM transceiver, the shadowed blocks are computed using quaternion algebra.
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Fig. 2: Preamble sequence at frame beginning for synchro-
nization based on training preamble, where middle samples

T, are identical to those of cyclic prefix Z.
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Fig. 3: Example of timing metric for synchronization based
on training sequence (SNR = 10 dB).

Therefore, a time metric is defined as

| P(d)]®
(R(d))*

This metric exhibits a plateau for values of index d € Z, and
a rising and falling time equal to N/2 as shown in Fig. 3 for
N./N = 0.125, where z-axis represents STO normalized to
the OFDM symbol duration. This results are similar to the
complex technique [3].

M(d) = )

A peak detector may be used for the STO estimation.
Therefore, considering the quaternion OFDM symbol already
synchronized in time, the received signal for each polarization
after removing the cyclic prefix are

(10)
(1)

Tn,l1 = Yn,1 + 2n,1,
Tn,2 = Yn,2 + Zn,2,
where z, 1 and z, 2 are the AWGN components, so they are
independent complex Gaussian variables with zero mean and

variance o2 /2. The signal components of r,, 1 and r, o are
respectively

_ 1 L-1 z27rn(2l+e)/NX 1]{1;
2

Yna = N =0
+ Z 127'rn 2l+e)/NXl 2}121 (12)
and
L-1 s €
Ynz2 = Jif g €T CHIIN X Hi (13)

4+ ZL 1 127rn 2l+e)/NX H22

The CD compositions of these components give 7, =y, 1 +
Tn2J, Zn = Zn1 + 2n,2J, and Yy, = yn 1 + Yn 2J. Besides, we
observe from (12) and (13) that

Yntr1 =€ Yn 1, (14)
Ynt+L,2 = € Yn2, (15)
and therefore v, = ¢ y,, forn = 0,1, ..., L — 1. As
consequence, it follows
rnr:,+L = (Yn + Zn)(eimyn + Zntr)” (16)
= ‘yn|26_”re + Ynz n+L + Zny:z —ime + ZnZ;+L'
(17)

When considering expected values in above equation, it is
evident that only the first term contains information about
€, and additionally, that the perplex component of this term
is null. Furthermore, the last three terms represent noise
components for estimation and have both simplex and perplex
parts different from zero. Therefore, it is possible to suppress
half of noise components by taking only the simplex part of
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the terms in (17), i.e the modified estimator for quaternion
case results

1
e=——ZLP(d
é=——/P(d),

(18)

where P(d) = Zﬁ;é S{rasnr4nyp ) is evaluated at the
optimum index d inside the CP interval Z, as shown in
Fig. 2. As can be observed from the above equation, the CFO
estimator range is the interval (—1,1) times the frequency
resolution, for P(d) argument in (—m, 7) range.

The Cramér-Rao Lower bound (CRLB) of above estimator
is derived in Appendix I, which shows a gain of 3 dB of
the CFO estimator variance when compared to the complex
counterpart.

As a final remark, one observe that above defined metrics
P(d), R(d), and therefore M (d), can be expressed in terms
of simplex and perplex parts of the observed signal, namely
L-1
> (Td+m,17"§+m+L,1 + Td+m,27"2+m+L,2)v
e
> (Irapmera %),

m=0

=
S
I

2
+ [P dtmtL,2

19)
using only complex algebra. Therefore, we can observe that
the use of quaternion algebra has conducted to the derivation
of a new improved synchronization algorithm that can be
implemented by use of only complex-valued variables.

V. SIMULATION RESULTS

The algorithm presented for carrier frequency offset esti-
mation were simulated for dual-polarized quaternion OFDM
and compared to single polarized complex OFDM, considering
only an ideal dual-polarization link model of the channel
without cross-polarization interference. For all conducted sim-
ulations, N = 256 was used as the size of the FFT, and
cyclic prefix size was N. = 64; a total of 10° iterations
were performed for each case. For fair comparison, the power
transmission used for each element of the orthogonal polarized
antenna of the quaternion case is half the power transmitted
over the unique antenna of the complex case, for setting the
same irradiated power of complex case. A total of 10* frames
were transmitted in each case over the same AWGN channel.
All conducted simulations use quaternion OFDM as in [8].

Simulation results are shown in Fig. 4. In this case, we
used only one preamble symbol for estimating the fractional
part of the CFO. Results show a minimum 3 dB gain when
quaternions are compared to single-polarized OFDM [3].
This performance improvement is attributed to diversity gain
resulted from using dual-polarization transmissions.

VI. CONCLUSIONS

The original Schmidl-Cox algorithm was reformulated to
use quaternion algebra in order to derive a CFO synchroniza-
tion technique for dual-polarized OFDM schemes. Numerical
simulations showed that this reformulation outperforms its
single-polarized OFDM version over the entire SNR range as
expected due to diversity gain, as shown in Fig. 4. Besides,
the CRLB is derived in Appendix I, which corroborates to the
observed simulation results.
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Fig. 4: CFO estimator variance compared to SP case.
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APPENDIX |
CRLB FOR CFO ESTIMATION

In [3], authors showed that a CFO estimator obtained by
partial correlation in time domain, as the one derived in (18),
is the maximum-likelihood estimator (MLE), and consequently
attains the Cramér-Rao Lower Bound (CRLB) at high SNR.
Thus, appealing to the isomorphism between complex and
quaternion estimators, one can conclude that proposed estima-
tor also attains its respective CRLB under the same condition.
In order to obtain the variance of the proposed estimator, the
method in [2] is used. It should be noted that P(cf) e C; is
a complex number with angle —7é, so the rotated complex
P(d)e'™ has arg(P(d)ei™) = —né + me = —m(é — €), from
which the estimation error is derived as

L-1
~ 1 * iTeE
e—e:—;arg[ZOS{rCZ+nrd+n+L}e ]. (20)

As we are interested in the variance of CFO estimation, given
that time synchronization was previously carried out, we can
consider d = 0, without loss of generality. Besides, as complex
factor '™ € C;, it can be placed inside the simplex operator.
Therefore

L1 A
1 jm[ - S{an:;.—‘rLelﬂ-e}]

€ — € = —— arctan n= (21)
p L—1

R[S S{rars o)

L—1 _
V(S e

= —— t — s
— arctan

L—1 (22)

> R[an:-s-Leim]
n=0
which, for SNR high enough to produce small estimation

errors, reduces to

L—1 )
1 Zo Z; [7’71/T:+Leme]
n=

m L=l )
2 Rlrarpe'™]
n=

Besides, by repeating (17) for convenience,

€E—€ExX

(23)

) ) ) )
Tl €7 = [Yn| " FUnzp 1€ F2nyptonzy 17, (24)

leads up to E[r,r}, ;€™ = |y,|?, due to independence
between signal and noise, and to the fact of z,, is WGN.

In (24), it should be noted that last term corresponds to a
product of two i.i.d quaternion Gaussian r.v’s, namely z,, and
2% ;€. At high SNR, the p.d.f of this term becomes more
concentrated around the origin of 4D-space than its individual
factors, which appear in second and third terms weighted by
deterministic signal samples y,, and y;, respectively. In other
words, at high SNR, last term is distributed over a 4-D sphere
of ratio much lower than for the second and third terms. Thus,
in the sake of simplicity, we can henceforth ignore the last
term. Also, notice that first term in the right side of (24) is
deterministic since expected values are taken with respect to
noise components, so let

(25)

_ * 1TTE *
Qn = YnZp 1,6 + Znlp,

the random part of 7,7, ; €™ in (24). Under the assumption
that both z, and z,, are circularly symmetric and indepen-
dent, it follows that «, is also circularly symmetric, i.e. its
real and three imaginary parts are zero-mean i.i.d Gaussian
real r.v’s. Thus, numerator and denominator at right side of
(23) are independent, so that expected value can be distributed,
then it follows that E[é —e] ~ 0, i.e. the estimator is unbiased,
and VAR[¢] = E[(é — €)?] reduces to

()

o B[('S (ke + Rlad) |

n=0

(26)

As aforementioned, real and imaginary parts of «,, are zero
mean Gaussian real r.v’s, each one with variance equal to a
quarter of VAR[a,], i.e

1
VAR[R[an]] = VAR[Zi[an]] = 7 B [ ?] 27)
1
= 1B |l Pl al? + ol P+
(28)
ynZ;J,-LelweynZ:, + Zny;kLe”TEZnJrLy:L]
= P (Bllzues P+ ElaP)) = Tl @)
4 2

This result, along with the independence between a., and o,
for n # m, implies that

L—1 0_2 L—1
2

(30)
n=0 n=0
L—1 L—1 52 Lol
D (gl +Rlan]) ~ N lyal?, > >l 3D
n=0 n=0 n=0
Therefore, (26) reduces to
e
VAR[{] = P ) N (32)
T Sl + (T nl?)
L=l
Zolynl -1
= |r2(14+ 2= )
[ﬂ( e (33)

In above equation, for L high enough, an approximation
of the sum of the numerator is Lai, where 05 is the mean
power of the signal. Using this result, (33) expressed in terms

of SNR = 7 /0? gives

1
VAR|f] = o 34
RE = a2 s\R) (34
which, for high SNR, gives the bound
CRLB = (35)

272 SNR'



