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Noise Reduction in Reverberant Environments witt
a Blind Source Separation Algorithm

Felipe Augusto Pereira de Figueiredo and Carlos Albertogitio

Abstract— In this paper we propose the use of a blind source reverberant environments is shown and then, in Section lll,
separation (BSS) algorithm as a means to enhance convolugly  an algorithm for blind separation of convolutive mixtures i
mixed audio signals by separating the interference signalsuch presented. In Section IV, the experiments carried out fer th

as cars, footsteps, trains, etc., from the desired speechuwsoe. luati f the af Hi d alorithm’ f
Computer simulations confirm that the algorithm adopted in evaluation of the atorementioned algorithm's performaaiee

this work can efficiently extract the desired speech signalrém a Presented- Finally, in the last SeCtion some conclusioms an
convolutive mixture. These results encourage its possiblese as a ideas for further research are given.
speech enhancement front-end for automatic speech recogjoin

ASR) systems for example.
( ) sy P II. MODEL OF BLIND SOURCE SEPARATION IN

Keywords— BSS, speech enhancement, convolutive mixtures. REVERBERANT ENVIRONMENT

The problem of blind source separation is illustrated in
I. INTRODUCTION Figure 1:

In order to deploy automatic speech recognition (ASR)
effectively in real world scenarios it is necessary to hand
hostile environments with multiple speech and noise saurci 2
One classical example is the so-callgatktail party problem
[1], where a number of people are talking simultaneously in
room and the ASR task is to recognize the speech content
one or more target speakers amidst other interfering ssurc
Although the human brain and auditory system can hanc
this everyday problem with ease it is very hard to solve
with computational algorithms. )

The speech recognition technology is still vulnerable whe*”
dealing with signals in the presence of acoustic interfegen bt
[20]. Robust speech recognition in real environments st Mixing System H Demixing System ¥
remains a challenging task.

On the other hand, the objective of Blind Source Separatibi§ure 1. Linear MIMO model for BSS.

(BSS) is to extract one or several source signals from the _ o )

observed multichannel mixture signal. The signals of eger [N this work it is assumed a MIMO (Multiple Inputs Mul-
depend on the application: for instance, in the context §ple Outputs) model, in which the signals are convolugvel
speech enhancement for mobile phones, the only sourcd sigh&®d- Also, the number of source signalgn),q =1, ..., Q

of interest is the user's speech. Undesired sources may ther@Ssumed to be equal to the number of sensor signals
include speech signals from surrounding people and erwirg(n),p =1,.... P.

mental noises produced by cars, wind or rain. Noise can alsd=ach of the outputs of the mixing systeh is described

X

!

Sensor |

X

P

Sensor p

originate from clinking glasses or footsteps. by Mt
In this paper we propose the use of an offline blind signal - -
separation method in the time domain to separate the speech zp(n) = 21 ;} frap (K)sq(n — k) @
q=1 k=

of a target speaker from all the undesired sound sources that
might have been convolutively mixed with the desired souragherehy,(k),k =0,..., M — 1 denote the coefficients of the
signal. The algorithm adopted here was firstly presented]in [filter from the g-th source to thg-th sensor. The constant
The mixture is simulated through the convolution of the sburgives the order of the filters employed to model de mixing
signals (target speaker and undesired sound sources) andsitstem.
room impulse response generated by the image method [3, 4]The problem of BSS consists in finding a corresponding
The structure of this paper is as follows: in the next sectiafemixing system according to Fig. 1, where the output sgnal
the system model used to blindly separate speech signalgyjn),q = 1, ..., P(P = Q) are described by
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where L is the length of the filters of the demixing system. in order to incorporatd. time-lags in the cost function and

It can be shown (see, e.g., [1]) that the MIMO demixinghus the algorithm will be able to exploit the nonwhiteness
system coefficientsu,q(k) can in fact reconstruct [5] the property.
sources up to an unknown permutation and an unknownWith the definitions above, (2) can be rewritten as
filtering of the individual signals, wheré should be chosen P
at least equal ta\/. —

With the intention of estimating thé*?L coefficients of Yo(m) Z;Xp(m)wm (®)
wpq (k) the MIMO demixing filter/V, we consider in this work
an approach using second-order statistics [6], which ésplo
the nonwhiteness and nonstationarity properties of theatsg
The nonwhiteness property is exploited by simultaneous d
gonalization of output correlation matrices over multipiree-
lags, e.g., [7], and the nonstationarity property is expbbby
simultaneous diagonalization of short-time output catieh
matrices at different time intervals, e.g., [8, 9, 10]. Ireth xp(mL) <+ xp(mL—L+1)
sequence, we present an algorithm for convolutive mixthyes zp(mL+1) <+ xp(mL —L+2)
first introducing a general matrix formulation for convahet Xp(m) = .
mixtures following [11] that includes all time lags.

The approach followed here is carried out with overlapping
data blocks to increase the convergence rate and reduad sign
ldc‘elay. Overlapping is introduced by simply replacing thmeeti
indexmL in the equationsn(L/«) by with the overlapping
factor1 < a < L. The matricesX,(m),p = 1,..., P used in
Equation (8) are defined as

zp(mL+N—-1) - xzp(mL— L+ N)
9)
[1l. TIME-DOMAIN ALGORITHM FORBSS Those matrices are Toeplitz with dimensiad¥i%2L), so the
In this section we introduce the matrix formulation thatlwilfirst row contains 2 input samples and each subsequent row
allow us to derive a time-domain algorithm [12] from a codf Shifted to the right by one sample and thus, contains one
function which inherently takes into account the nonstetio N€W input sampleW,, are Z. x L Sylvester matrices, which

rity and nonwhiteness properties. are defined as
Wpq,0 0 . 0 7
A. Matrix notation for Convolutive Mixtures Wpq.1 Wpq.0
From Figure 1, it can be seen that the output signals : .
.. . . Wpq,1 . 0
yq(n),q =1, ..., P of the demixing system at time are given ) _
by Wpq,L—1 : "+ Wpq,0
P .
yq(n) = sz;(n)wpq’ (3) qu(m) = 0 Wpgq,L—1 " Wpgq,1 (10)
p=1 . . . .
where 0 0 wpgL1
. 0 0 0
xp(n) = [zp(n), zp(n —1),...,zp(n — L+ 1)] 4)
is a vector containing the latestsamples of the sensor signal L 0 e 0 0 ]

of the p-th channel and Finally, to allow a convenient notation of the algorithm

Wpq (1) = [Wpg.0, Wpy.1, ,_,,wpq7L_1]T (5) combining all channels, (8) can be compactly rewritten as
contains the current weights of the MIMO filter taps from the Y (m) = X(m)W (11)
p-th sensor channel to theth output channel. where
An algont.hm for BSS pf convolutive sllgnals which exp!o!t_s Y (m) = [Y1(m), Ya(m), .., Y,(m)] (12)
those two signal properties can be obtained from the defimiti
of the following matrix X(m) = [X1(m), Xa(m), ..., X, (m)] (13)
yq(mL) <+ ygmL—-D+1) Wi1 - Wip
¥, (m) yg(mL +1) - yg(mL — D +2) wW=| : - : (14)
m) = . ) . ) : ' :
! : . : Wp; -+ Wpp
Yg(mL+N—1) -+ yg(mL— D+ N) )
6

L ) B, Cost Function and Algorithm Derivation
wherem denotes the time index of the block being processed g

and N is the length of the system output blocks taken into Having defi_ned_ the compa<_:t matrix form_ulation (11 forthe
account for the estimates of short-time correlations uséap P10Ck-MIMO filtering, a following cost function that explity

This matrix captured, subsequent output signal vectors contains correlation matrices including several timeslagder
the assumption of short-time stationarity is defined. Tloistc

yo(m) = [yg(mL), ...,y,(mL + N — 1)]" (7) function is based on a generalization of Shannon’s mutual
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information [11, 13] and simultaneously accounts for those IV. COMPUTERSIMULATIONS
two properties of the signals used here: Speech enhancement in reverberant and noisy environments
M-1 is a very challenging task which has a handful of application
J(m) = 1 Z {log | bdiag YT ()Y (3)| — log |[YT (i)Y (i)|} and it's very useful in the areas of robust speech recognitio
M i—o and telecommunications.

(15) The degree of difficulty in enhancing speech signals styong|

This cost function was firstly derived in [14] as a generalidepends on the environment conditions in which the speaker
zation of [15]. Since the matrix formulation (11) is used fofs located. In the case where the speaker is located near to a
calculating the short-time correlation matric¥s (m)Y (m), microphone, reverberating effects are minimum and stahdar
the cost function inherently includes dllitime-lags of all auto- methods are able to deal with moderate noise levels. However
correlations and cross-correlations of the BSS outputasgn when the speaker is far from the sensors (microphonesk ther
By Oppenheim's inequality)", log |Y[Y,| > log[Y"Y| will be severe distortions which include lots of noise and
[16], it is ensured that the first term in the braces of (14joticeable reverberation. Denoising and de-reverberatid
is always greater than or equal to the second term, where #jeech signals in such conditions have proven to be a very
equality holds if all block-diagonal elements ¥t (m)Y (m), challenging task.
i.e., the output cross-correlation over all time-lags, ishn In this section we present the results of experiments which
The algorithm is based on the first-order gradient and #how the usefulness of the algorithm adopted in this work in
order to express the update equations of the filter coefticienlenoising and de-reverberating speech signals convelutiv
exclusively by Sylvester matricé®’, we take the gradient with mixed with noise signals provided by the ETSI/Aurora da-
respect tol} and ensure the Sylvester structure of the resufibase [18]. It includes recordings of five different kinds o
by selecting the non redundant values using a constraint. noise which were captured in the following places: airport,

23 (m) restaurant, meeting room, street and train station. These n
wdJ(m) = W (16) signals are convolutively mixed with the speech signal of a
speaker specifically recorded for this work.
And as result, The experiments carried out for our research were focused
_ 2 M-l N —1/ . on assessing the quality of the signal separation achieyed b
wI(m) = 57 2ico Ry (DR, (){Ryy (i) (17) the BSS algorithm adopted here in the case where a speaker’s

. . .1 . signal is corrupted by background noise in a reverberant
— bdiag Ry (i)} bdiag™" Ry (1) simulated environment. Filters with 447 tap¥ (= 447) were
With an iterative optimization procedure, the current demg@enerated by the image method with the purpose of simulating

xing matrix is obtained by the recursive update equation the acoustical behavior of a real room.
Both recordings, speaker’s and background noise signals,

W(m) =W (m —1) — p(m)AW (m) (18) have 4 second length. They were convolved with the synthetic

impulse response of a room generated by the image method
The u(m) parameter gives the length of the step in th p4] P g y g

negative gradient direction and it is often called the siep s ,The recordings were taken in a low noise environment with

or learning rate. As is known, non quadratic cost functiongygg 1, sampling frequency and 16 bits of resolution. The
may have many local maxima and minima and therefore, gogghyhique used to adapt the step size of the BSS method is

choices for initial values are important. known as fixed step size [19], and it is made equal to 0.04. The
length L of the demixing filters is made equal to the lengdth
C. Natural Gradient of the mixing filters, so we havé = M = 447. The demixing

filters W,,, were initialized with an unit impulse at the first

The gradient of a functiod(m) points in the steepest dlrec—tap and all the taps of the filtef&,,, p # ¢ are made equal

tion in the Euclidean orthogonal coordinate system. Howev 0 zero

th_e parameter space is not always I_Euclidean; in fact iF has %he Signal-to-Interference Ratio (SIR), which is defined
Riemannian metric structure, as _pom_ted _OUt _by Amari [1@3 the ratio of the signal power of the target signal to the
In such a case, the s_teepest direction IS given by the %‘?gnal power from the jammer signal, was used to evaluate the
called natura}l gradient instead. Therefore, in order to'Fbee performance of the algorithm. For this work the SIR measure
natu_rql g.radlent as the update tethW (m) the f0”9W|n9 can be interpreted as being the Signal-to-Noise Ratio (SNR)
modification should be applied to the descent gradient: measure, once the interfering signal is noise. Therefooen f

dJ(m) now on we adopt the SNR term. Figure 2 depicts the SNR

NG _ T _ T . . .

Vw I(m) = WW* gw J(m) = WW OW (19)  achieved by the BSS algorithm for each one of the mixtures
between the speaker’s signal and the 5 noise signals from
the Aurora data base. The SNR is averaged over both output
UNCI(m) = & S W(m){Ry, (i) - bdiag Ry, (i)} channels. The desired separated signal, i.e., the spsaker

signal is chosen listening to both output signals.
bdiag ™! Ry, (i) Analyzing Figure 2 and the table above, it can be noticed
(20) that the BSS method adopted here performs pretty well the

And then we have
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Figure 2. Results of the separation between speech and sigisals.

[
TABLE |

INITIAL AND FINAL SNRFOR THE EXPERIMENTS WITH NOISE

[10]
Noi se Initial Fi nal SNR
SNR (dB) | SNR (dB) | Gai n(dB)
Al rport 6, 13 26, 59 20, 46 [11]
Babbl e 6, 38 24,73 18,34
Rest aur ant 7,42 24, 83 17, 41 [12]
Street 5,27 25, 34 20, 07
Train station 5,73 26, 13 20, 41
[13]
[14]

task of separating speech signal from background noise. The
SNR gain is greater than 17 dB for the worst case and greater
than 20 dB for the best one. [15]

V. CONCLUSIONS ANDFUTURE WORK [16]

The use of a method for blind source separation with the
purpose of separating a target speech signal from backgrOL[H ]
noise such as foot steps, cars, surrounding people, etciiig
studied. [19]

The SNR improvement presented by the use of the offline
BSS algorithm firstly proposed by R. Aichner et al. [12] for
the task of separating speech signals from background nd&g
indicates that it could be used to improve the performance of
speech recognition systems in reverberant and noisy envirg)
ments in an offline fashion.

As for further research, the implementation of an online
version of the algorithm adopted here is to be studied. Tims o
line version can be achieved through the addition of a ptgper
chosen weighting functiofi(¢, m) to Equation (15), as showed
in [21]. Additionally, the use of this online BSS method as a
preprocessing tool for ASR systems in reverberating ansynoi
environments is to be evaluated. The method seems to be able
to improve the performance of such systems.
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