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Noise Reduction in Reverberant Environments with
a Blind Source Separation Algorithm

Felipe Augusto Pereira de Figueiredo and Carlos Alberto Ynoguti

Abstract— In this paper we propose the use of a blind source
separation (BSS) algorithm as a means to enhance convolutively
mixed audio signals by separating the interference signals, such
as cars, footsteps, trains, etc., from the desired speech source.
Computer simulations confirm that the algorithm adopted in
this work can efficiently extract the desired speech signal from a
convolutive mixture. These results encourage its possibleuse as a
speech enhancement front-end for automatic speech recognition
(ASR) systems for example.
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I. I NTRODUCTION

In order to deploy automatic speech recognition (ASR)
effectively in real world scenarios it is necessary to handle
hostile environments with multiple speech and noise sources.
One classical example is the so-calledcocktail party problem
[1], where a number of people are talking simultaneously in a
room and the ASR task is to recognize the speech content of
one or more target speakers amidst other interfering sources.
Although the human brain and auditory system can handle
this everyday problem with ease it is very hard to solve it
with computational algorithms.

The speech recognition technology is still vulnerable when
dealing with signals in the presence of acoustic interference
[20]. Robust speech recognition in real environments still
remains a challenging task.

On the other hand, the objective of Blind Source Separation
(BSS) is to extract one or several source signals from the
observed multichannel mixture signal. The signals of interest
depend on the application: for instance, in the context of
speech enhancement for mobile phones, the only source signal
of interest is the user’s speech. Undesired sources may then
include speech signals from surrounding people and environ-
mental noises produced by cars, wind or rain. Noise can also
originate from clinking glasses or footsteps.

In this paper we propose the use of an offline blind signal
separation method in the time domain to separate the speech
of a target speaker from all the undesired sound sources that
might have been convolutively mixed with the desired source
signal. The algorithm adopted here was firstly presented in [2].
The mixture is simulated through the convolution of the sound
signals (target speaker and undesired sound sources) and the
room impulse response generated by the image method [3, 4].

The structure of this paper is as follows: in the next section
the system model used to blindly separate speech signals in
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reverberant environments is shown and then, in Section III,
an algorithm for blind separation of convolutive mixtures is
presented. In Section IV, the experiments carried out for the
evaluation of the aforementioned algorithm’s performanceare
presented. Finally, in the last section some conclusions and
ideas for further research are given.

II. M ODEL OF BLIND SOURCE SEPARATION IN

REVERBERANT ENVIRONMENT

The problem of blind source separation is illustrated in
Figure 1:

Figure 1. Linear MIMO model for BSS.

In this work it is assumed a MIMO (Multiple Inputs Mul-
tiple Outputs) model, in which the signals are convolutively
mixed. Also, the number of source signalssq(n), q = 1, ..., Q
is assumed to be equal to the number of sensor signals
xp(n), p = 1, ..., P .

Each of the outputs of the mixing systemH is described
by

xp(n) =

P
∑

q=1

M−1
∑

k=0

hqp(k)sq(n− k) (1)

wherehqp(k), k = 0, ...,M − 1 denote the coefficients of the
filter from the q-th source to thep-th sensor. The constantM
gives the order of the filters employed to model de mixing
system.

The problem of BSS consists in finding a corresponding
demixing system according to Fig. 1, where the output signals
yq(n), q = 1, ..., P (P = Q) are described by

yq(n) =

P
∑

p=1

L−1
∑

k=0

wpq(k)xp(n− k) (2)
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whereL is the length of the filters of the demixing system.
It can be shown (see, e.g., [1]) that the MIMO demixing

system coefficientswpq(k) can in fact reconstruct [5] the
sources up to an unknown permutation and an unknown
filtering of the individual signals, whereL should be chosen
at least equal toM .

With the intention of estimating theP 2L coefficients of
wpq(k) the MIMO demixing filterW , we consider in this work
an approach using second-order statistics [6], which exploits
the nonwhiteness and nonstationarity properties of the signals.
The nonwhiteness property is exploited by simultaneous dia-
gonalization of output correlation matrices over multipletime-
lags, e.g., [7], and the nonstationarity property is exploited by
simultaneous diagonalization of short-time output correlation
matrices at different time intervals, e.g., [8, 9, 10]. In the
sequence, we present an algorithm for convolutive mixturesby
first introducing a general matrix formulation for convolutive
mixtures following [11] that includes all time lags.

III. T IME-DOMAIN ALGORITHM FOR BSS

In this section we introduce the matrix formulation that will
allow us to derive a time-domain algorithm [12] from a cost
function which inherently takes into account the nonstationa-
rity and nonwhiteness properties.

A. Matrix notation for Convolutive Mixtures

From Figure 1, it can be seen that the output signals
yq(n), q = 1, ..., P of the demixing system at timen are given
by

yq(n) =

P
∑

p=1

xT
p (n)wpq , (3)

where

xp(n) = [xp(n), xp(n− 1), ..., xp(n− L+ 1)]T (4)

is a vector containing the latestL samples of the sensor signal
of the p-th channel and

wpq(n) = [wpq,0, wpq,1, ..., wpq,L−1]
T (5)

contains the current weights of the MIMO filter taps from the
p-th sensor channel to theq-th output channel.

An algorithm for BSS of convolutive signals which exploits
those two signal properties can be obtained from the definition
of the following matrix

Yq(m) =











yq(mL) · · · yq(mL−D + 1)
yq(mL+ 1) · · · yq(mL−D + 2)

...
. . .

...
yq(mL+N − 1) · · · yq(mL−D +N)











,

(6)
wherem denotes the time index of the block being processed
and N is the length of the system output blocks taken into
account for the estimates of short-time correlations used below.
This matrix capturesL subsequent output signal vectors

yq(m) = [yq(mL), ..., yq(mL+N − 1)]T (7)

in order to incorporateL time-lags in the cost function and
thus the algorithm will be able to exploit the nonwhiteness
property.

With the definitions above, (2) can be rewritten as

Yq(m) =

P
∑

p=1

Xp(m)Wpq (8)

The approach followed here is carried out with overlapping
data blocks to increase the convergence rate and reduce signal
delay. Overlapping is introduced by simply replacing the time
indexmL in the equationsm(L/α) by with the overlapping
factor 1 ≤ α ≤ L. The matricesXp(m), p = 1, ..., P used in
Equation (8) are defined as

Xp(m) =











xp(mL) · · · xp(mL− L+ 1)
xp(mL+ 1) · · · xp(mL− L+ 2)

...
. . .

...
xp(mL+N − 1) · · · xp(mL− L+N)











(9)
Those matrices are Toeplitz with dimension (N×2L), so the

first row contains 2L input samples and each subsequent row
is shifted to the right by one sample and thus, contains one
new input sample.Wpq are 2L×L Sylvester matrices, which
are defined as

Wpq(m) =













































wpq,0 0 · · · 0

wpq,1 wpq,0

. . .
...

... wpq,1

. . . 0

wpq,L−1

...
. . . wpq,0

0 wpq,L−1

. . . wpq,1

...
...

. . .
...

0 · · · 0 wpq,L−1

0 · · · 0 0
... · · ·

...
...

0 · · · 0 0













































(10)

Finally, to allow a convenient notation of the algorithm
combining all channels, (8) can be compactly rewritten as

Y(m) = X(m)W (11)

where
Y(m) = [Y1(m),Y2(m), ...,Yp(m)] (12)

X(m) = [X1(m),X2(m), ...,Xp(m)] (13)

W =







W11 · · · W1P

...
. . .

...
WP1 · · · WPP






(14)

B. Cost Function and Algorithm Derivation

Having defined the compact matrix formulation (11) for the
block-MIMO filtering, a following cost function that explicitly
contains correlation matrices including several time-lags under
the assumption of short-time stationarity is defined. This cost
function is based on a generalization of Shannon’s mutual
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information [11, 13] and simultaneously accounts for those
two properties of the signals used here:

J(m) =
1

M

M−1
∑

i=0

{log | bdiagYT (i)Y(i)| − log |YT (i)Y(i)|}

(15)
This cost function was firstly derived in [14] as a generali-

zation of [15]. Since the matrix formulation (11) is used for
calculating the short-time correlation matricesYT (m)Y(m),
the cost function inherently includes allL time-lags of all auto-
correlations and cross-correlations of the BSS output signals.
By Oppenheim’s inequality

∑

q log |Y
T
q Yq| ≥ log |YTY|

[16], it is ensured that the first term in the braces of (14)
is always greater than or equal to the second term, where the
equality holds if all block-diagonal elements ofYT (m)Y(m),
i.e., the output cross-correlation over all time-lags, vanish.
The algorithm is based on the first-order gradient and in
order to express the update equations of the filter coefficients
exclusively by Sylvester matricesW , we take the gradient with
respect toW and ensure the Sylvester structure of the result
by selecting the non redundant values using a constraint.

▽WJ(m) =
∂J(m)

∂W
(16)

And as result,

▽WJ(m) = 2

M

∑M−1

i=0
Rxy(i)R

−1

yy (i){Ryy(i)

− bdiagRyy(i)} bdiag
−1

Ryy(i)

(17)

With an iterative optimization procedure, the current demi-
xing matrix is obtained by the recursive update equation

W(m) = W(m− 1)− µ(m)∆W(m) (18)

The µ(m) parameter gives the length of the step in the
negative gradient direction and it is often called the step size
or learning rate. As is known, non quadratic cost functions
may have many local maxima and minima and therefore, good
choices for initial values are important.

C. Natural Gradient

The gradient of a functionJ(m) points in the steepest direc-
tion in the Euclidean orthogonal coordinate system. However,
the parameter space is not always Euclidean; in fact it has a
Riemannian metric structure, as pointed out by Amari [17].
In such a case, the steepest direction is given by the so-
called natural gradient instead. Therefore, in order to usethe
natural gradient as the update term∆W(m) the following
modification should be applied to the descent gradient:

▽NG
W J(m) = WWT ▽W J(m) = WWT ∂J(m)

∂W
(19)

And then we have

▽NG
W

J(m) = 2

M

∑M−1

i=0
W(m){Ryy(i)− bdiagRyy(i)}

bdiag−1
Ryy(i)

(20)

IV. COMPUTERSIMULATIONS

Speech enhancement in reverberant and noisy environments
is a very challenging task which has a handful of applications
and it’s very useful in the areas of robust speech recognition
and telecommunications.

The degree of difficulty in enhancing speech signals strongly
depends on the environment conditions in which the speaker
is located. In the case where the speaker is located near to a
microphone, reverberating effects are minimum and standard
methods are able to deal with moderate noise levels. However,
when the speaker is far from the sensors (microphones), there
will be severe distortions which include lots of noise and
noticeable reverberation. Denoising and de-reverberation of
speech signals in such conditions have proven to be a very
challenging task.

In this section we present the results of experiments which
show the usefulness of the algorithm adopted in this work in
denoising and de-reverberating speech signals convolutively
mixed with noise signals provided by the ETSI/Aurora da-
tabase [18]. It includes recordings of five different kinds of
noise which were captured in the following places: airport,
restaurant, meeting room, street and train station. These noise
signals are convolutively mixed with the speech signal of a
speaker specifically recorded for this work.

The experiments carried out for our research were focused
on assessing the quality of the signal separation achieved by
the BSS algorithm adopted here in the case where a speaker’s
signal is corrupted by background noise in a reverberant
simulated environment. Filters with 447 taps (M = 447) were
generated by the image method with the purpose of simulating
the acoustical behavior of a real room.

Both recordings, speaker’s and background noise signals,
have 4 second length. They were convolved with the synthetic
impulse response of a room generated by the image method
[3, 4].

The recordings were taken in a low noise environment with
8000 Hz sampling frequency and 16 bits of resolution. The
technique used to adapt the step size of the BSS method is
known as fixed step size [19], and it is made equal to 0.04. The
lengthL of the demixing filters is made equal to the lengthM
of the mixing filters, so we haveL = M = 447. The demixing
filters Wpp were initialized with an unit impulse at the first
tap and all the taps of the filtersWpq, p 6= q are made equal
to zero.

The Signal-to-Interference Ratio (SIR), which is defined
as the ratio of the signal power of the target signal to the
signal power from the jammer signal, was used to evaluate the
performance of the algorithm. For this work the SIR measure
can be interpreted as being the Signal-to-Noise Ratio (SNR)
measure, once the interfering signal is noise. Therefore, from
now on we adopt the SNR term. Figure 2 depicts the SNR
achieved by the BSS algorithm for each one of the mixtures
between the speaker’s signal and the 5 noise signals from
the Aurora data base. The SNR is averaged over both output
channels. The desired separated signal, i.e., the speaker’s
signal is chosen listening to both output signals.

Analyzing Figure 2 and the table above, it can be noticed
that the BSS method adopted here performs pretty well the
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Figure 2. Results of the separation between speech and noisesignals.

TABLE I

INITIAL AND FINAL SNRFOR THE EXPERIMENTS WITH NOISE.

Noise Initial Final SNR
SNR (dB) SNR (dB) Gain(dB)

Airport 6,13 26,59 20,46
Babble 6,38 24,73 18,34

Restaurant 7,42 24,83 17,41
Street 5,27 25,34 20,07

Train station 5,73 26,13 20,41

task of separating speech signal from background noise. The
SNR gain is greater than 17 dB for the worst case and greater
than 20 dB for the best one.

V. CONCLUSIONS ANDFUTURE WORK

The use of a method for blind source separation with the
purpose of separating a target speech signal from background
noise such as foot steps, cars, surrounding people, etc. is
studied.

The SNR improvement presented by the use of the offline
BSS algorithm firstly proposed by R. Aichner et al. [12] for
the task of separating speech signals from background noise
indicates that it could be used to improve the performance of
speech recognition systems in reverberant and noisy environ-
ments in an offline fashion.

As for further research, the implementation of an online
version of the algorithm adopted here is to be studied. This on-
line version can be achieved through the addition of a properly
chosen weighting functionβ(i,m) to Equation (15), as showed
in [21]. Additionally, the use of this online BSS method as a
preprocessing tool for ASR systems in reverberating and noisy
environments is to be evaluated. The method seems to be able
to improve the performance of such systems.
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