
XXXVIII SIMPÓSIO BRASILEIRO DE TELECOMUNICAÇÕES E PROCESSAMENTO DE SINAIS - SBrT 2020, 22–25 DE NOVEMBRO DE 2020, FLORIANÓPOLIS, SC

A Modular Parallel-Processing Link-Level
Simulator on Python Programming Language

Rodrigo A. R. Fischer, João Paulo Leite, Bruno H. C. Faria

Abstract— Most link-level simulators implement a communi-
cation link that can be seen as a particular implementation of a
more generic transmission-reception (TX-RX) chain. These sim-
ulators also share common simulation capabilities among them.
This work presents a technology-independent modular link-level
simulator that may be customized with such a generic TX-
RX chain developed using the Python programming language.
Parallel processing capabilities on its architecture allow the
efficient use of the computer’s hardware. Also, some processing
modules can be further optimized with the use of a specific
Python-to-C++ converter package, producing a lower execution
time when compared to the use of Python-only features.

Keywords— Simulation, communications systems, parallel com-
puting, modular programming.

I. INTRODUCTION

Over time, the complexity of newly developed communi-
cations systems has steadily increased. This comes from the
changes on system requirements such as higher transmission
rates, spectral efficiency and low power restrictions. One clear
example is the oncoming 5G mobile technology, that scales up
in 10 times the user experienced data rate, and incorporates IoT
capabilities, which demand an increased number of devices
accessing the network and operating in fields such as vehicle-
to-road communication, agriculture and smart energy distribu-
tion systems [1]. To cope with such requirements, new systems
must make use of more complex and advanced modulations,
pulse shaping, robust signal processing algorithms and more
efficient error control coding techniques, in the sense of closely
approaching Shannon’s channel capacity limit [2], [3].

In order to obtain insight into those emerging technologies
and to obtain the performance of a given communication
system standard, simulations may be performed. The link-
level simulation is responsible for simulating the data transmis-
sion through the physical layer. Such approach is commonly
adopted for problems and scenarios that are analytically in-
tractable, and it has gained strength thanks to the striving
advances on computation over the last decades. Along with
hardware advances, high-level programming languages have
also emerged, allowing for faster code deployment.

Two major challenges emerge when performing link-level
simulations. The first one is execution time. Monte Carlo
methods are most usually adopted to obtain metrics such
as the bit error rate (BER) and frame error rate (FER) of

Rodrigo A. R. Fischer, Electrical Engineering Department, University of
Brasília, Brasília, Brazil, e-mail: rodrigoarfischer@gmail.com; João Paulo
Leite, Electrical Engineering Department, University of Brasília, Brasília,
Brazil, e-mail: jpauloleite@unb.br; Bruno H. C. Faria, Ektrum Tecnologia,
Brasília, Brazil, e-mail: bruno.faria@ektrum.com.

a physical layer protocol. In doing such, many repetitions
of an experiment must be carried out to obtain an accurate
estimation of the required statistics, given that they will be
estimated by generating draws from a certain probability
distribution [2].

The second challenge is the deployment time. Every new
technique or procedure must be coded when simulating a
different system. High-level programming languages often let
a shorter deployment time due to the higher abstraction level.
As an example of such abstraction, variable types are deduced
in programming languages such as Python. Type deduction
simplifies the code and allows the programmer to focus on
the algorithmic aspects of the system.

Solutions such as MATLABs Communications ToolboxTM

[4] have no built in structure for link simulations. The usage
examples on MATLABsTM help page [4] contain draft scripts
for technology-specific campaigns.

This work presents a simulator that combines four main
features that tackle both issues. The first one is the use of the
Python programming language higher abstraction level along
with the efficient numerical library NumPy [5]. The use of
Python and the comprehensive NumPy package allows fast
deployment time.

The second feature is its modularity. A modular simulator
possesses core features that remain unchanged. This saves
development time, since only new modules and functionalities
need to be coded from scratch. This is done by implementing
a generic TX-RX chain that allows the coding of virtually any
physical layer procedure or communication standard into the
simulator.

The third feature is the capability of performing parallel
computations, in order to make efficient use of the computer’s
hardware. Since Monte Carlo methods consist of random
experiments, they can be performed in parallel, independently
from the technology implemented.

The fourth feature is the possibility of optimizing some
modules using the Pythran [6] static optimization package,
improving further the execution time. Pythran is a Python-
to-C++ static compiler. Pythran doesn’t encompass all of
Python’s built-in functionalities, nor all third party modules,
but, most importantly, Pythran is compatible with NumPy.

This work is organized as follows: Section II presents the
overall structure of the simulator. Section III presents two
examples of the aforementioned features. The performance of
polar codes and the modeling and behavior of a frequency-
locked loop (FLL) are considered. Finally, Section IV presents
the conclusions.



XXXVIII SIMPÓSIO BRASILEIRO DE TELECOMUNICAÇÕES E PROCESSAMENTO DE SINAIS - SBrT 2020, 22–25 DE NOVEMBRO DE 2020, FLORIANÓPOLIS, SC

Fig. 1. Overall simulator structure.

II. SIMULATOR STRUCTURE

The simulator’s structure must be devised so as to embed
and encompass all the proposed features. In addition, it must
also allow it to be easily set up to implement different
communication link configurations.

The architecture that was found to best suit all these basic
requirements is shown in Figure 1. Three main task divisions
are made: communication link, simulation management and
simulation configuration.

This division is inspired by practical considerations: by
doing so, these tasks are isolated from each other and can
both be designed and function separately. By having the com-
munication link implemented as a separate set of classes, one
can design reusable modules of configuration and management
so that different link technologies can be simulated by only
modifying the communication link module, which is operated
by the simulation management classes. Configuration param-
eters and log information are managed by the configuration
classes. Each task subdivision will be discussed next.

A. Communication Link

In order to perform a Monte Carlo link simulation one must
implement in code the desired communication link procedures
such as modulation, pulse shaping, signal processing and error
control coding. These procedures usually involve complex and
computationally expensive algorithms. In contrast, setting up
the simulation, performing its management and computing
statistics require, in comparison to communication link pro-
cedures, much less resources, due to its simpler nature and to
the fact that they must be executed only once.

There are two conflicting features desired for the simulator:
high-level abstraction and fast efficient code. In order to
enjoy both features while using the simulator, one may take
advantage of its modular design. One can find the bottleneck
blocks of the simulation and perform optimizations within
these blocks, leaving the lower resource consumption blocks
unchanged. Therefore, the extra deployment time needed to
optimize the code is efficiently used on the most resource con-
suming blocks. With this in mind, the communication link was

isolated from the configuration and simulation management
blocks.

In order to execute multiple Monte Carlo experiments
simultaneously, the Master/Worker parallel computing pattern
was implemented [7]. This pattern was preferred to optimizing
bottlenecks within the Modem, since this kind of optimization
is technology-dependent and sometimes TX-RX operations
can’t be made in parallel within a single experiment. The
communication link lies within a Worker structure that is
able to function in parallel with other Workers.

1) Modem: All the communication link procedures are
encapsulated on a generic structure called Modem. The Modem
object consists of the methods that define the transmitter (TX),
the communication channel (CH.) and the receiver (RX), all
serially concatenated. These methods are abstract, meaning
that the user chooses how the transmission occurs, how the
channel operates and how the signal is received. One example
is to use QAM modulation and root-raised cosine (RRC)
pulse shaping at the transmitter, additive white Gaussian noise
(AWGN) at the channel and matched filtering reception at
the receiver. As will be seen on Section III, this abstraction
is generic enough to encompass even more complex receiver
models, such as the one shown in Figure 2.

2) Worker : The Worker abstraction allows several Monte
Carlo experiments involving the Modem to be executed simul-
taneously. For each Worker, a Python process is started, using
the built-in multiprocessing Python package.

With the purpose of allowing efficient parallel computing,
the Workers interface with queues only. Two main queues
are required: the job queue and the results queue,
in which the execution instructions and the generated re-
sults are placed, respectively. This feature allows for many
parallel computing configurations. As an example, the user
may instruct all the Workers to simulate a scenario with
the same signal-to-noise ratio (SNR) and then retrieve the
results. The Workers can also be assigned so that each one
simulates a different SNR value from a given range. Further,
each Worker may be assigned to a different set of Modem
parameters, such as code-rate.

B. Simulation Management

The simulation management objects manages the Workers
operation and collects the generated results. The fact that
the Workers only interface with the queues allows the
user to create custom simulation management objects for
different simulation types. One example is the multiple parallel
configurations possible presented on Section II-A.2.

One may already presume that the assignment of the next
SNR to be simulated is an important task that can be done
in multiple ways. In the same manner, the computation of the
desired statistics is a relevant task of the simulator. Another
example would be a variable step SNR range option in which
a greater SNR sampling resolution could be applied where the
metric values such as BER or FER seem to change rapidly.
Therefore, a SNR-Manager and a Statistics objects
were created as a subdivision of the simulation management
task.



XXXVIII SIMPÓSIO BRASILEIRO DE TELECOMUNICAÇÕES E PROCESSAMENTO DE SINAIS - SBrT 2020, 22–25 DE NOVEMBRO DE 2020, FLORIANÓPOLIS, SC

Fig. 2. An example of a digital communication link. The link is composed of three modules: the transmitter (TX), the communication channel (CH.) and
the receiver (RX). Each one of these modules is composed of sub-components that make up the link.

1) Simulation: The Simulation object is responsible
for assigning tasks to the Workers and for managing the
SNR-Manager and Statistics objects.

2) SNR-Manager: The SNR-Manager object determines
the range of SNR values to be simulated. One way of doing
so is by defining starting and ending values along with the
steps between them. This object receives commands from the
Simulation object, such as a command for it to return
the next SNR value. The SNR-Manager can also output
directives, such as to halt the simulation. One possibility is to
halt the simulation only at the end of the SNR range. Another
possibility is to halt the simulation when a frame batch of a
certain minimum size is processed without errors.

3) Statistics: The Statistics object retrieves the results
from the results queue and computes the desired statis-
tics, such as BER and FER. These statistics are available to
the SNR-Manager object.

C. Simulation Configuration
A link-level simulation has many parameters to be set up,

such as the number of transmitted bits or the SNR range to
simulate.

Due to the simulator’s modularity, the setup operation is
best done by a centralized parameters manager. This allows the
simulator to be fully configured using only one interface and
the parameters to be distributed to every simulation module.

The simulator’s configuration structure was also designed
so that the simulator can be executed in a campaign-like
fashion, where its basic setup remains unchanged while some
parameters vary from campaign to campaign.

1) Parameter Handler: The Parameter Handler ob-
ject parses the parameters and distributes them across the sim-
ulation. The provided .json file defines all the parameter’s
names, types, default values, options and descriptions. This file
is fully customizable and is provided by the user. The .ini
file contains the campaign specific parameter values, which are
parsed and checked against the data provided by the .json
file.

2) Logger: Logging capabilities are essential on any simu-
lator. As an example, the Logger object can be used to track
error events, warnings or the simulation progress. The modular
structure of the simulator also requires that the Logger is
centralized, being able to log any event generated by all the
other modules into a file or into the console.

III. PROOF OF CONCEPT

On this section two examples are used to illustrate the
aforementioned features. On Subsection III-A the simulator

TABLE I
COMMUNICATION LINK CONFIGURATION FOR PROOF OF CONCEPT

SCENARIOS

Parameters Configuration

Polar Coding Scenario FLL Scenario

Channel Coding Rate 1/2 Polar Coding
Bhattacharyya Constr. -

Framing Structure - DVB-S2
Symbol Mapping BPSK QPSK
TX Filter - RRC
Samples per Symbol 1 8
Payload Size (bits) 2048 64800
Frame Size (symbols) 2048 33282

Communication
Channel AWGN AWGN &

Frequency Offset

RX Filter - RRC
Synchronization Ideal FLL

communication link is implemented with polar channel coding
and this scenario is used to illustrate the parallel computing
gain that can be obtained by using the proposed architecture
and the static optimization gain provided by Pythran. On
Subsection III-B the DVB-S2 framing structure is used with
a frequency-locked loop implemented on the communication
link receiver so as to illustrate the flexibility of the simulator
modular architecture.

Both configurations can be simulated by modifying the
Modem object and the corresponding .json and .ini files.
Figure 2 shows a generic communication link that encom-
passes both proposed communication link scenarios. To obtain
the specific communication link for each scenario, the setup
presented on Table I was considered.

A. Polar Coding

Polar codes are a family of block codes proposed by Arikan
[8]. Given a certain construction method [9], the code is
completely specified by the block length and code rate. The
polar coding configuration is as present on Table I using the
Bhattacharyya construction method [9].

Two different computing machines were used in order to
compare the simulator performance on different computer
architectures. The test machines’ setup is shown on Table II,
where HW/SW identifies the Hardware and Software items,
whereas OS identifies the operational system. Machine 1 refers
to a personal computer, while Machine 2 refers to a Google
Cloud Platform virtual machine with 16 virtual CPUs.

1) Static Optimization Gain: A profiling campaign was
designed to asses the gain provided by the use of Pythran. The



XXXVIII SIMPÓSIO BRASILEIRO DE TELECOMUNICAÇÕES E PROCESSAMENTO DE SINAIS - SBrT 2020, 22–25 DE NOVEMBRO DE 2020, FLORIANÓPOLIS, SC

TABLE II
MACHINE CONFIGURATION

HW/SW Specification

Machine 1 Machine 2

OS Windows 10 Pro Debian GNU/Linux 9.12
Processor AMD FX(tm)-8350 Eight-Core Processor 4.00 GHz 16 Intel(R) Xeon(R) Virtual CPUs @ 2.00GHz
RAM 16.0 GB 60.0 GB
Python 3.7.4 3.7.4
Compiler Microsoft (R) C/C++ Optimizing Compiler Version 19.00.24245 for x86 gcc version 6.3.0 20170516 (Debian 6.3.0-18+deb9u1)

TABLE III
SIMULATION CONFIGURATION FOR PROOF OF CONCEPT SCENARIOS

Parameters Configuration

Campaign 1 Campaign 2 Campaign 3

SNR Range Noiseless -3 to 0 dB with a
0.5 dB step 0 dB

Frequency Offset 0% 0% 10%
Number of TX Frames 104 105 for each SNR 1200
Number of Workers 1 1 to 512 1

TABLE IV
PROFILING RESULTS WITH 104 POLAR CODED FRAMES

Executed Code Execution Time (s)

Machine 1 Machine 2

Pure Python 3899.2 2605.9
Pythran Generated 129.2 63.2

Speedup 30.2 41.26

campaign configuration can be seen identified as Campaign 1
on Table III. This campaign consisted of a single Worker
initialized on a script that was responsible for creating a loop
to iterate though the frame count and to assign the Worker
jobs. This is an example of how the simulator modularity
allows it to operate with different simulation designs. In this
case, the simulation management modules were substituted by
a instruction script.

Using this campaigns, two different scenarios were simu-
lated: one using the polar encoder and decoder pure Python
implementation, and another using the static optimization of
both provided by Pythran.

The profiling results are shown on Table IV. These results
account only for the time elapsed during the encoding and
decoding operations. The substitution of the pure Python
implementation with the compiled module module led to a 30-
fold speedup for Machine 1 and a 40-fold speedup for Machine
2.

2) Parallel Computing Gain: A campaign designed to asses
the gain provided by the proposed parallel computing archi-
tecture was set up. Identified as Campaign 2, the simulator
configuration can be seen on Table III. The polar encoding and
decoding operations are optimized using the Pythran module.
This campaign was then performed multiple times on both
machines with the same base setup, varying only the number of
Workers in a exponential manner. The simulation execution
times were used to compute the parallel computing speedup,
where the reference execution time is the time corresponding

Fig. 3. Logarithmic scale plot of the speedup for both test machines compared
to the base scenario of only one worker for each machine.

to only one worker for each machine.
A logarithmic scale plot of the obtained speedups is shown

on Figure 3. The curves for both machines exhibit the same
behavior; a linear start with later saturation. The linear start
corresponds to the range on which if the Workers are
doubled, the execution time is halved, and thus the speedup
is also doubled. Due to other OS concurrent processes, the
curve deviates from the linear behavior before reaching the
number of Workers equivalent to the machine’s CPU count.
It is worth pointing that even after the behavior turns nonlinear
there are still parallel computing gains. In order to obtain the
best performance for a given machine, a reasonable procedure
would be to perform a profiling campaign that gradually in-
creases the number of workers until the machine’s processing
capacity is attained. This value is capable of providing the
best parallel computing gain. For Machine 2, an almost 20-
fold gain was obtained by massively assigning Workers to
the campaign.

All campaigns, regardless of the number of Workers, led
to the same statistical results, as can be seen on Figure 4. These
results also match the expected performance for polar coding
simulations with the Bhattacharyya construction parameter [9],
thus validating the simulator implementation. The deviation
among the curves on the last SNR value illustrates the Monte
Carlo variance behavior when not enough events are simulated.

B. Frequency-Locked Loop (FLL)

The simulator architecture is versatile enough to incorporate
more complex elements inside the Modem abstraction, which
opens up the possibility to asses the performance of signal



XXXVIII SIMPÓSIO BRASILEIRO DE TELECOMUNICAÇÕES E PROCESSAMENTO DE SINAIS - SBrT 2020, 22–25 DE NOVEMBRO DE 2020, FLORIANÓPOLIS, SC

Fig. 4. Performance in BER for Bhattacharyya-constructed rate-1/2 polar
codes with block size 4096 obtained by different campaigns with different
number of workers.

Fig. 5. Pilot-aided FLL estimated normailzed frequency error for the DVB-S2
frame structure.

processing algorithms and receiver architectures as well. The
CH. method can also be changed to model other impairments
such as frequency offset error, among other RF imperfections.
Correspondingly, on the RX method, a frequency locked loop
can be implemented in order to recover the frequency and
phase of the transmitted signal. Three blocks compose the
FLL: the pilot extraction block, the forward error detection
(FED) and the FED filter, and the numerically controlled
oscillator (NCO). The feedback loop is formed when the
frequency offset estimation obtained by the received pilots is
used to drive the NCO, which in turn has its output multiplied
by the incoming signal in order to correct the frequency offset.

The FLL implementation is exemplified using the Digital
Video Broadcasting - Satellite - Second Generation (DVB-
S2) framing structure using pilots [10]. The pilot blocks are
repeated every 1440 data symbols, which yields a maximum
residual frequency offset of ±3.5 × 10−4 that can be later
corrected by a phase correction algorithm [11]. The FED and
the FLL filter used are as in [11].

The simulator is also equipped with probing capabilities that
allow the extraction of data from any block. This functionality
was used to retrieve the estimated frequency offset generated
by the FLL. A campaign was set up, as identified by Campaign

3 in Table III. The frequency offset output by the FED &
Filtering block is shown on Figure 5. The frequency estimation
converges to the value present at the channel, as expected. A
zoomed in portion of the curve is shown depicting also the
frequency correction algorithm targets.

IV. CONCLUSION

This work presents a flexible modular link-level simulator
that explores parallel computing and static optimization fea-
tures available in Python in order to perform time efficient
Monte Carlo simulations.

The simulator’s performance was tested using a robust cloud
computing platform and a personal computer. Considerable
parallel computing gains were observed for both architectures,
yielding a 20-fold speedup for the cloud computing platform.
However, this simulator is suitable even for small scale simula-
tions on a personal computer, with an observed 6-fold parallel
computing speedup. Also, the static optimization allowed a 40-
fold speedup on the cloud computing platform. This improves
even further the overall gains when combined with the use of
parallel computing.

The modular and expansible framework of the link-level
simulator was demonstrated by analyzing two different com-
munication link scenarios: the BER performance of polar
coding and the behavior of a FLL in a DVB-S2 receiver chain.
The results also made it possible to evaluate the correctness
of the coded algorithms and proposed interfaces.

REFERENCES

[1] ITU, "IMT Vision - Framework and overall objectives of the fu-
ture development of IMT for 2020 and beyond," ITU, Recom-
mendation ITU-R M.2083-0, Accessed: Apr. 19, 2020. [Online].
Available: https://www.itu.int/dms_pubrec/itu-r/rec/m/R-REC-M.2083-
0-201509-I!!PDF-E.pdf

[2] W. H. Tranter, K. S. Shanmugan, T. S. Rappaport, K. L. Kosbar, Princi-
ples of Communication Systems Simulation with Wireless Applications.
Upper Saddle River, NJ, USA: Prentice Hall, 2003.

[3] D. J. Costello and G. D. Forney, "Channel coding: The road to channel
capacity," in Proceedings of the IEEE, vol. 95, no. 6, pp. 1150-1177,
June 2007, doi: 10.1109/JPROC.2007.895188.

[4] MathWorks, (2018). Communications Toolbox: User’s
Guide (R2018b). Retrieved October 5, 2020 from
https://www.mathworks.com/help/releases/R2018b/comm/index.html

[5] Travis E. Oliphant, A guide to NumPy. USA: Trelgol Publishing, (2006).
[6] S. Guelton, P. Brunet, M. Amini, A. Merlini, X. Corbillon, A. Raynaud,

“Pythran: Enabling static optimization of scientific Python programs,”
Computational Science & Discovery, vol. 8, no. 1, p. 014001, 2015.

[7] T. Mattson, B. Sanders, B. Massingill, "The Master/Worker Pattern,"
in Patterns for Parallel Programming, First ed. Boston, Massachusetts,
EUA: Addison-Wesley Professional, 2004, ch. 5, sec. 5.

[8] E. Arikan, "Channel Polarization: A Method for Constructing Capacity-
Achieving Codes for Symmetric Binary-Input Memoryless Channels,"
in IEEE Transactions on Information Theory, vol. 55, no. 7, pp. 3051-
3073, July 2009, doi: 10.1109/TIT.2009.2021379.

[9] B. Tahir, "Construction and Performance of Polar Codes for Trans-
mission over the AWGN Channel," M.S. thesis, Inst. of Telecom-
munications, TU Wien, Vienna, Austria, 2017. [Online]. Available:
https://publik.tuwien.ac.at/files/publik_262980.pdf

[10] Digital Video Broadcasting (DVB); Second generation framing structure,
channel coding and modulation systems for Broadcasting, Interactive
Services, News Gathering and other broadband satellite applications;
Part 1: DVB-S2, ETSI Standard EN 302 307-1, Nov. 2014.

[11] Digital Video Broadcasting (DVB); Implementation guidelines for the
second generation system for Broadcasting, Interactive Services, News
Gathering and other broadband satellite applications; Part 1: DVB-S2,
ETSI Standard TR 102 376-1, Nov. 2015.


