
XXXVIII SIMPÓSIO BRASILEIRO DE TELECOMUNICAÇÕES E PROCESSAMENTO DE SINAIS - SBrT 2020, 22–25 DE NOVEMBRO DE 2020, FLORIANÓPOLIS, SC

DVB-RCS2 Satellite Standard Performance
Assessment Through a Link-Level Python Simulator

Rodrigo A. R. Fischer, João Paulo Leite

Abstract— The task of obtaining the performance of a commu-
nications receiver is difficult, since it involves the implementation
of the physical layer transmission and reception chains and also
requires great computational time, since Monte Carlo methods
make up the base of link-level simulations. The DVB-RCS2
standard provides some receiver performance data which is
rather restrict. This limits the capacity analysis made through a
system level simulator. The objective of this work is to assess the
DVB-RCS2 performance using a Python simulator developed by
the authors for a much broader range of SNR values and for a
comprehensive set of transmitter-receiver configurations.

Keywords— DVB-RCS2, turbo coding, satellite communica-
tions, simulation.

I. INTRODUCTION

Satellite systems have been broadly used by the commu-
nications industry. One example is the DVB-S system, that
was developed to deliver digital television over satellite and
serves over 100 million receivers [1]. The DVB-S defines only
a broadcast channel, and was expanded (DVB-S2 and DVB-
S2X) in order to be more robust and to adapt to the oncoming
technologies. In response to requests from the industry, a
return channel (DVB-RCS) was incorporated into the DVB
standard to provide interactivity with the remote user. Further,
the RCS standard evolved to DVB-RCS2, encompassing a
mobility element, and more advanced network and physical
layer techniques [1].

While deploying a new communications system technology,
it is crucial to evaluate the performance of the proposed
link interface. This information can be used not only to aid
the development of the receiver terminal and characterize its
capabilities, but also to feed higher level simulators, such as
system simulators, with the physical link statistics. For the
DVB-RCS2 system, the standard provides the user with the
SNR required for only a chosen set of packet error rate (PER)
performance, namely 10−3 and 10−5, for the additive white
gaussian noise (AWGN) channel [2].

This work presents the RCS2 receiver performance for a
much broader range of SNR’s, that can be used to allow a
broader set of design rules through system level simulations.
It also reviews key aspects of Turbo channel coding and
decoding schemes and its implementation using the Python
programming language.

Rodrigo A. R. Fischer, Electrical Engineering Department, University of
Brasília, Brasília, Brazil, e-mail: rodrigoarfischer@gmail.com; João Paulo
Leite, Electrical Engineering Department, University of Brasília, Brasília,
Brazil, e-mail: jpauloleite@unb.br.

II. THE SIMULATOR

In order to obtain a user friendly reconfigurable simulator,
and also to enable fast deployment time, the Python program-
ming language was chosen. Nevertheless, only base external
libraries were used, such as numpy.

The main drawback of using Python is the simulation execu-
tion time. Since a large number of frames need to be processed
in order to obtain accurate statistics, some optimization is
desired. By far, the turbo decoder is the most computationally
complex block in the whole chain. Therefore, this module was
optimized using Pythran [3], which, with only a few directives,
statically compiles the subset of scientific kernels from Python
to an optimized C++ implementation.

III. TURBO CODING

The proposed turbo scheme in DVB-RCS2 is composed
of two parallel-concatenated double-bynary 16-state cyclic
recursive systematic convolutional (CRSC) codes. Double-
binary codes were introduced in [4], and perform significantly
better than the conventional binary codes. Using the double-
binary scheme offers a good trade-off of performance and
computational complexity. The performance loss caused by
the use of Max-Log-MAP Algorithm (a computationally less
intensive version of the MAP decoding algorithm [5]) is almost
non existent for double-binary codes [3].

A. Encoding

The encoding scheme is shown in Figure 1. The encoder
core is a 16-state CRSC encoder. On the turbo encoding
scheme, first a set of parity bits are generated, then the
information is permuted, so that another set of parity bits can
be generated. This results on a rate-1/3 code. To match the
desired rate, a puncturing pattern is applied on the parity bits.
The full description of the encoder can be found on [6].

B. Decoding

The decoding of turbo codes is done iteratively, as shown
in Figure 2. The idea is that after being decoded by a CRCS
decoder, the output likelihood has an extrinsic gain provided
by the parity bits. This gain is inserted on the second CRCS,
which then provides another gain. The subtraction operation
is to make sure that the extrinsic information obtained by a
CRSC isn’t fed on itself, preventing the positive feedback of
previously resolved information [7]. One iteration corresponds
to the information passing both decoders. After the first



XXXVIII SIMPÓSIO BRASILEIRO DE TELECOMUNICAÇÕES E PROCESSAMENTO DE SINAIS - SBrT 2020, 22–25 DE NOVEMBRO DE 2020, FLORIANÓPOLIS, SC

Fig. 1. DVB-RCS2 turbo encoder block diagram.

Fig. 2. DVB-RCS2 turbo decoder block diagram.

iteration, the extrinsic information obtained from the second
decoder is summed with the first decoder input LLR’s.

The Max-Log-MAP algorithm also introduces an overes-
timation of the extrinsic LLR’s, which requires the extrinsic
information to be multiplied by a scaling factor on every but
the last one iteration [4]. The best observed scaling factor on
the reference [4] was 0.7, and shall be adopted on this work.

IV. RESULTS

The performance curves, shown in Figures 3 and 4, con-
taining the packet error rate (PER) of a system composed of
the whole DVB-RCS2 transmission-reception (TX-RX) chain
with AWGN channel were obtained for the 28 waveform ID’s
(WF-ID) whose performances are in [2]. The packet sizes are
the same as provided by [6], varying from 38 to 599 bytes, and
coincide with the burst sizes. The performance points provided
by [2] are shown as dots at PER = 10−3.

V. CONCLUSION

A Python simulator was developed to asses the perfor-
mance of the DVB-RCS2 satellite communications standard.
The obtained performance has matching points in accordance
with the standard, thus validating the implemented TX-RX
processing chain. For a further work, channel models such as
Rayleigh fading or Rice fading could be implemented to asses
the impact of the propagation channel on the performance of
the system.

REFERENCES

[1] Richharia, M., "Satellite Radio Interface Standards," in Mobile Satellite
Communications: Principles and Trends, 2nd ed. West Sussex, United
Kingdom: Wiley, 2014, ch. 8, sec. 3, pp. 407-411.

Fig. 3. DVB-RCS2 PER receiver performance for BPSK and QPSK
modulations.

Fig. 4. DVB-RCS2 PER receiver performance for 8PSK and 16QAM
modulations.

[2] Digital Video Broadcasting (DVB); Second Generation DVB Interactive
Satellite System (DVB-RCS2); Part 4: Guidelines for Implementation
and Use of EN 301 545-2, ETSI Standard TR 101 545-4, Apr. 2014.

[3] S. Guelton, P. Brunet, M. Amini, A. Merlini, X. Corbillon, A. Raynaud,
“Pythran: Enabling static optimization of scientific Python programs,”
Computational Science & Discovery, vol. 8, no. 1, p. 014001, 2015.

[4] C. Douillard and C. Berrou, "Turbo codes with rate-m/(m+1) constituent
convolutional codes," in IEEE Transactions on Communications, vol. 53,
no. 10, pp. 1630-1638, Oct. 2005.

[5] H. R. Sadjadpour, R. Sonalkar and G. Jin "Proposal on using Multi-Tone
Turbo Trellis Coded Modulation", T1E1.4 Meeting in Napa, CA, Oct.
2000.

[6] Digital Video Broadcasting (DVB); Second Generation DVB Interactive
Satellite System (DVB-RCS2); Part 2: Lower Layers for Satellite stan-
dard, ETSI Standard EN 301 545-1, Apr. 2014.

[7] Valenti, M., Cheng, S., Seshadri, R., "Turbo and LDPC Codes for Digital
Video Broadcasting," in Turbo Code Applications, 1st ed., Netherlands:
Springer, 2005, ch. 12, sec. 1, pp. 302-310.


