
XXXVIII SIMPÓSIO BRASILEIRO DE TELECOMUNICAÇÕES E PROCESSAMENTO DE SINAIS - SBrT 2020, 22–25 DE NOVEMBRO DE 2020, FLORIANÓPOLIS, SC

CNN-Based Learning System in a Generalized
Fading Environment

Samuel Borges Ferreira Gomes and Michel Daoud Yacoub.

Abstract— In this paper, we investigate the Block Error Rate
(BLER) performance of a Convolutional Neural Network (CNN)-
based autoencoder as a self-learning communication system
under a generalized fading condition. To this end, the α-µ model
is chosen, both for its flexibility and applicability to practical
fading scenarios. For comparison and consistency purposes, the
analytical BLER is also explored under the same environment
for different classical modulation schemes. Our simulation results
show that the studied architecture is able to converge quickly
maintaining its generalization capability under various fading
environments.

Keywords— Communication systems, α−µ fading, end-to-end
learning, autoencoder, convolutional neural network.

I. INTRODUCTION

Deep Learning (DL) has been showing an enormous and
increasing number of applications in diverse areas, including
computer vision, image, natural language processing, and
many others. Particularly, in communications, concrete math-
ematical theories and models ranging from information theory
to channel modeling have been developed and well explored in
the literature. However, the gap between theory and practice is
motivational for the emergence of intelligent communications,
driven by artificial intelligence, big data, power computation,
and expert domain of wireless communications. Hence, this
type of system is now considered to be one of the candidate
technologies for further development in advanced wireless
networks, i.e., beyond fifth generation (5G).

The power of DL applied to communication systems has
been revealed through previous researches applied to the
network layer (e.g., network optimization, resource allocation
and management) as well as to the application layer (e.g.,
network prediction, facial recognition and data mining).

On the physical layer side, aiming to reduce system com-
plexity and focusing on the specific function of each process-
ing block, the conventional wireless communication system
architecture adopts the divide-and-conquer strategy based on
mathematical models. It split transmitter and receiver into
subtasks, such as source/channel coding, modulation, and
equalization. This architecture, whose advantage is to allow
for the optimization of each component individually, has been
very successful as demonstrated for the various communi-
cations systems, wireless communications included. On the
other hand, in practice, complex systems, like those, undergo
unknown effects, difficult to be mathematically modeled.
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Therefore, a more flexible and adaptive framework may be
required to deal with these challenges.

DL applied in communication systems has been studied in
different areas. Among others, we cite signal detection [1],
[2], signal classification [3], and channel encoding [4], [5],
where Recurrent Neural Networks (RNNs) were used at the
receiver to decode channel-coded information bits, such as
Turbo codes and Polar codes. Moreover, channel estimation
[6], [7], positioning [8], and security through jamming [9]
exploitation and adversarial [10] attacks were also explored.

Although the chain of multiple independent processing
blocks as a communication paradigm has led to successful and
efficient systems we own today [11], it is not clear whether
individually optimized processing blocks achieve the best-
possible end-to-end performance.

Motivated by this, an innovative perspective considers wire-
less communications system as an end-to-end autoencoder
[12]. As far as communications are concerned, the goal of an
autoencoder is to find representations of the inputs (transmitted
signals) at some intermediate layer that are robust w.r.t.
the channel impairments mapping (e.g., noise, fading, and
distortion), which allows reconstruction at the output (received
signal) with small probability of error. The self-learning sys-
tem can be seen as weights learned from an optimized neural
network using end-to-end loss functions. The experiments in
[13] show that the Neural Network (NN)-based autoencoder
can achieve similar performance with the conventional method
in the presence of additive white Gaussian noise (AWGN)
channels without any prior specific domain information. This
idea was further evolved with the radio transformer networks
[14] to combine expert domain knowledge in a deep learning
model. In addition, several extensions of the original idea have
been explored, such as the implementation of the self-learning
paradigm on a hardware system [15], and its applications to
Multiple Input Multiple Output (MIMO) transmission [16],
essential for 5G wireless communication systems.

The use of convolutional layers [17] as the main building
blocks for the autoencoder-based communications systems was
first introduced by [18]. However, the performance suffered
from a irreducible error floor in high signal-to-noise ratio
(SNR) regimes. Built upon that, [19] integrated communica-
tions engineering insights to propose an intelligent framework
with a better generalization capability. Nevertheless, none of
these works considered the propagation medium in terms of
its non-linearity.

In wireless communications, short term fading occurs when-
ever signals reach a receiver via multiple paths. As widely
known, in such a case, the signal behavior can be modeled us-



XXXVIII SIMPÓSIO BRASILEIRO DE TELECOMUNICAÇÕES E PROCESSAMENTO DE SINAIS - SBrT 2020, 22–25 DE NOVEMBRO DE 2020, FLORIANÓPOLIS, SC

ing stochastic models. A large number of distributions describe
the statistics of wireless communications channels including
most notably Hoyt, Rayleigh, Weibull, Nakagami-m, and Rice.
Each model tries to capture the real world effects in terms of
different assumptions, such as line-of-sight wave condition and
propagation medium linearity. The α-µ [20] is a general fading
distribution used to represent the small scale variation of the
fading signal in a non-linear environment in which clusters of
multipaths are present. It includes important distributions such
as Nakagami-m, Exponential, Weibull, Rayleigh.

In this paper, we investigate the Block Error Rate (BLER)
performance under flat α-µ channels of the CNN-based au-
toencoder (CNN-AE) [19]. The analysis is given by means of
its generalization capability under generalized fading scenario
for block length, training SNR, and code rate. For comparison
purposes, analytical BLER performance for traditional mod-
ulation schemes is considered. It is shown that the adapted
CNN-based model can match the performance of existing
optimal human engineered solutions under flat α − µ fading
channel. Furthermore, constellation points of the learned rep-
resentation is drawn. To the best of the authors’ knowledge,
the proposed system setup has not been investigated in the
technical literature yet and this paper aims to fill this gap.

The remainder of this paper is organized as follows. In
Section II, the autoencoder architecture as well as how it can
be seen as a self-learning system are shown. Section III the
α-µ model is revisited. Section IV presents simulated and
analytical results, upon which some fundamental guidelines
are highlighted. Finally, Section V concludes the paper and
points out some potential future works.

II. AUTOENCODER AS AN END-TO-END COMMUNICATION
SYSTEM

A point-to-point communication system consists of three
main processing blocks, namely transmitter, channel, receiver.
The transmitter sends a message m over a channel to the
receiver. The message consists of a sequence of L symbols
(block length), each symbol conveying k information bits,
making n discrete uses of the channel. Hence, the rate of
the system is R = k/n (bits/channel use). To this end, the
transmitter applies a transformation xxx = f(m) ∈ Cn, where
xxx is the generated transmitted signal. Generally, the hardware
of the transmitter imposes certain constraints on xxx. In this
work, we shall consider this as a power constraint ‖xxx‖2 ≤ n.
The channel acts as a stochastic system, whose output follows
a conditional probability function distribution yyy ∼ p(yyy|xxx),
where yyy ∈ Cn denotes the received signal. Lastly, the receiver,
which applies the transformation m̂ = g(yyy), aiming to produce
estimate of the original message m as closely as possible. This
scheme is illustrated in Fig. 1.

Fig. 1: Simplified point-to-point communication system.

In the DL terminology, inspired by Fig. 1, the transmitter
and receiver are respectively called encoder and decoder, and

they are implemented using neural networks. Feedforward
networks describes a mapping f(xxx0;WWW ) : RN0 7→ RNL of
an input vector xxx0 ∈ RN0 to an output xxxL ∈ RNL , along
L layers, describing different iterative processing steps. This
kind of mapping depends not only on the output vector from
the previous layer, but also on a set of parameters (or tensor
of all weights) WWW = {W1,W2, . . . ,WL}.

In this work, we consider convolutional layers, which, in
general, consists of a set of F filter weights QQQf ∈ Ra×b,
f = 1, . . . , F , generating each a so-called feature map YYY f ∈
Rn′×m′ from an input matrix XXX ∈ Rn×m, following the
convolution:

Y fi,j =

a−1∑
k=0

b−1∑
l=1

Qfa−k,b−lX1+s(i−1)−k,1+s(j−1)−l, (1)

where s ≥ 1 is the stride parameter, n′ = 1 + bn+a−2s c and
m′ = 1 + bm+b−2

s c.
A convolutional neural network (CNN)-based autoencoder

is assumed, whose structure is illustrated in Table I and Fig.
2. The convolutional layer, whose transformation isdescribed
in Eq. 1, allows the transmitter to process a sequence of
symbols S, where a total number of k × L bits are handled
simultaneously. Furthermore, each symbol of the sequence
S is encoded as an one-hot vector Os ∈ R2k , i.e., an 2k-
dimensional vector, the sth element of which is equal to one
and zero otherwise.

In addition to facilitating linear/non-linear block encoding
of the input sequence through the use of Exponential Linear
Unit (ELU) activation functions, the convolutional layers at
the transmitter transforms the one-hot input symbols sequence
S to a new signal representation XXX = f(S), which occu-
pies n channel use. Therefore, signal constellation points are
mapped into 2n-dimensional space. Each convolutional layer
is followed by a batch normalization layer before activation
to increase the network stability, and has 256 filters, allowing
mapping each one-hot vector to 256-dimensional space and
search for the most suitable representation of the input symbol.

Normalization layer is used to guarantee the transmitter
power constraint, compressing the symbol representation to
2n-dimensional space, considering that each n channel slot
has I/Q channels.

Fig. 2: Autoencoder representation.

The channel layer of Fig. 2 is described as the condi-
tional probability density function p(YYY |XXX) following an α-
µ distribution, which will be revisited in the next section.
Furthermore, an additive Gaussian white noise with a fixed
variance σ2 = (2REb/N0)−1 is added to the signals, where
R = k/n (bits/channel use) denotes the rate and Eb/N0 SNR.
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TABLE I: Autoencoder Layout

Block Layer Activation Output Dim.

Encoder

Input L× 2k

Conv1D ELU L× 256
Conv1D ELU L× 256
Conv1D LINEAR L× 2n
Normalization L× 2n

Channel Fading + Noise L× 2n

Decoder
Conv1D ELU L× 256
Conv1D ELU L× 256
Conv1D SOFTMAX L× 2k

The receiver, whose architecture is similar to the transmitter
but without the normalization layer, decompresses the received
signal YYY in order to extract adequate information, classifying
each signal out of 2k possibilities. A perfect Channel State
Information (CSI) is assumed, which is fed into the receiver
network together with YYY . The signals are mapped to an one-
hot vector for soft decision using soft-max activation, whose
output is a probability vector over all possible input sequences
S, as illustrated in Table I. The entire transformation is denoted
as Ŝ = g(YYY ), and it corresponds to the index of the probability
vector element with the highest probability, as indicated in Fig.
2.

The goal of the self-learning system is to find the best set
of parameters WWW* which minimizes the loss function L(WWW ),
i.e.,

WWW ∗ = arg min
W

L(WWW ). (2)

This is done by means of the well suited stochastic gradient
descent (SGD) algorithm, which starts with some random
initial values of WWW = WWW 0 and then updates WWW iteratively
as

WWW t+1 = WWW t − η∇WWW L̃(WWW t) (3)

η > 0 denotes the learning rate, while ∇WWW is the gradient of
the approximated Binary Cross-Entropy (BCE) L̃(WWW ), which
is computed for a random minibatch of training examples
Nt ⊂ {1, 2, . . . , N} of size Nt at each iteration, i.e.,

L̃(WWW ) = − 1

Nt

∑
i∈Nt

Silog(g(YYY )i) (4)

which can be (under the assumptions) calculated using back-
propagation [21] through the entire dataset of size N .

III. CHANNEL MODEL

This section revisits the α-µ physical model. Furthermore,
theoretical block error rate (BLER) under α-µ fading channel
are shown for classic modulation schemes, such as BPSK and
QAM.

A. α-µ Physical Model

The α-µ is a generalized fading distribution for small-
scale variation of the fading signal in a non line-of-sight
fading condition. Besides considering the signals composed
by clusters of multipath waves, the α-µ distribution accounts

for the non-linearity of a propagation medium as well. Many
important small-scale fading channels are special cases of
α−µ distribution, such as Exponential, Rayleigh, Nakagami-
m, Gamma, and Weibull. The power parameter (α > 0) is
related to the non-homogeneity of the environment, whereas
the parameter (µ > 0) is associated to the number of multipath
clusters. As a result, the obtained envelope is a non-linear func-
tion of the modulus of the sum of the multipath components,
i.e.,

Rα =

µ∑
i=0

X2
i + Y 2

i (5)

Xi and Yi are mutually independent Gaussian processes with
zero mean and normalized variance σi = 1/2µ.

The probability density distribution fR(r) of a fading α-µ
envelope R is given by [20] as

fR(r) =
αµµrαµ−1

r̂αµΓ(n)
exp

(
−µr

α

r̂α

)
. (6)

The parameter r̂ = α
√
E[Rα] is the α-root mean value of the

channel envelope, Γ(z) =
∫∞
0
tz−1exp(−t) dt is the Gamma

function, and E[·] the expectation operator.
The Weibull distribution can be obtained from the α − µ

distribution by setting µ = 1. Rayleigh distribution arises from
Weibull when α = 2. The Nakagami-m distribution can be
obtained from α − µ by setting α = 2 for different m = µ
representing the multipath clusters.

B. Block Error Rate

In order to express the BLER of flat α−µ fading channels
with envelope R, we first define γ as the instantaneous SNR
γ = R2, and the average SNR γ̄ = E[γ]. Hence, the
probability density function of γ can be found by following the
standard procedure of random variables transformation from
(6)

fγ(γ) =
αµµγ

αµ
2 −1

2Γ(µ)γ̄
αµ
2

exp

(
−µ
(
γ

γ̄

)α
2

)
. (7)

The unconditional error probability Pe is definded as

Pe =

∫ ∞
0

p(error|γ)fγ(γ) dγ, (8)

where p(error|γ) differs for each distinct modulation scheme.
For BPSK and QPSK systems, the error probability can be
approximated [22] as

p(error|γ) = Q(
√

2γ),

whereas for M-QAM systems:

p(error|γ) =
4

log2M

(
1− 2

− log2M
2

)
Q

(√
3γ log2M

M − 1

)
.

where Q(·) is the Q-function Q(x) = 1
2π

∫∞
x

exp(−u
2

2 ) du.
Combining the required equations with (7) and (8), the

BLER or probability of error in a message is followed by

PeM = 1− (1− Pe)k, (9)

where k is the number of bits per symbol.
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IV. PERFORMANCE ANALYSIS

In this section, in order to investigate the performance of
the CNN-based autoencoder over the said non-homogeneous
fading environment, numerous simulation results were con-
ducted. The system model of Fig. 2 was employed and all the
neural network parameters were given in Table I, where the
kernel size and the stride were set to 1, handling each symbol
individually. The training and validation datasets are generated
randomly using independent and identically distributed (i.i.d.)
binary bit sequences, drawn from a uniform distribution. The
self-learning system was trained using 16000 data messages,
where each message contains a block length of L symbols,
conveying k information bits each. The network was tested
through 80000 data messages. The optimization used to train
the end-to-end system uses Adam [23] to guarantee fast
convergence, where the learning rate was set to η = 0.001
and decayed by a factor of 10 when saturated. 100 epochs
were used for training. For all other implementation details,
we refer to the source code [24].

Fig. 3: BLER performance of the self-learning system under
Nakagami-µ fading channel.

Fig. 4: BLER performance of the self-learning system under
Weibull fading channel.

Setting the power parameter α = 2, the Nakagami-m
distribution can be obtained from the α-µ distribution, for
different m = µ. Under this scenario, Fig. 3 shows the BLER
performance of the CNN-AE with fixed rate R = 1 (bit/channel
use), trained at a fixed Eb/N0 = 14 dB. Fixing µ, the Weibull
distribution arises for different α. This scenario is shown in
Fig. 4, where the self-learning system was trained at Eb/N0 =
16 dB and R = 2. In both schemes, the receiver learns to
equalize the severe fading effects before decoding, and the
resultant BLERs match the performance of conventional BPSK
modulation (for R = 1) and QPSK (R = 2), illustrated as solid
lines. Lastly, Rayleigh fading comes up in both scenarios when
we set α = 2 and µ = 1, and we consider only n = 1 channel
use.

Fig. 5: BLER performance of the CNN-based system under
α− µ fading for different channel uses and rates. The circles
indicates the theoretical correspondence.

Increasing channel uses, it is expected that a better BLER
can be achieved. This scenario is illustrated in Fig. 5, showing
the significant BLER gain performance when we set n = 2 to
the intelligent system of Fig. 2, trained at a fixed rate R = 4
(bits/channel use), and training Eb/N0 = 27 dB, transmitted
over flat α− µ channels. It it also illustrated the performance
of R = 6 systems, trained at Eb/N0 = 27 dB. The CNN-based
system was able to learn suitable symbol transformations,
achieving the BLER performance that corresponds to the
conventional 16-QAM and 64-QAM counterparts, as expected.

Fig. 6 shows an example of the learned representations for
R = 2 as complex constellation points. It illustrates that the
system converges quickly to classical QPSK constellation with
some arbitrary rotation.

V. CONCLUSIONS

In this paper, we investigated the BLER performance of
a CNN-based autoencoder as an end-to-end communication
system, adapted to comprise a generalized fading scenario,
namely the α-µ model. More explicitly, several constraints
were imposed to the neural layers that compose the system,
such as power constraints, time constraints, and the α-µ fading
model. The system self-learned in a supervised manner with
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Fig. 6: Constellation produced by the intelligent system for
k = 2 and n = 1.

sufficient data, converging to the exact network parameters
that are suitable for pre-defined communication requirements.
Moreover, the generalization capability, regardless of block
length, training SNR, code rates, and channel uses, is vali-
dated under the generalized fading scenario, for which CSI
is assumed. Finally, analytical results were obtained so as to
validate the analysed system.

As future works, in order to eliminate the need for CSI at
the receiver, a Differential CNN-based Autoencoder (DCNN-
AE) system analysis under the same fading assumptions can
be investigated. In addition, the impact of multiple destina-
tion/sources as well as more comprehensive fading models
can be considered. Finally, the effect of multiple antennas on
the overall system performance arises as an interesting subject
for investigation.
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