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Abstract—Device-to-device (D2D) communication is expected
to play a big role in 5G, in order to enable new applica-
tions in the mobile system such as vehicular-communications
(V2X) and internet of things (IoT). This should increase the
bandwidth demand, which makes higher spectral efficiency ever
more desirable. This paper proposes a Deep Q-Learning power
allocation framework for maximizing spectral efficiency in D2D
communication, in underlay mode, while satisfying the mobile
user’s quality of service (QoS) requirements.
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I. INTRODUCTION

Due to the expected growth in the mobile devices and
bandwidth-hungry applications [1], the fifth generation

of mobile communications (5G) will need different methods
for improving the provided data rate. Device-to-device (D2D)
communications is expected to play a key role in internet of
things (IoT) applications, such as health care, vehicular com-
munications (V2X), industry automation, and many others.
Beyond IoT, D2D may also help with content caching [2],
traffic offloading [3] and ad-hoc applications, such as social
applications and emergency services [4, 5].

D2D communication makes it possible for two nearby
devices to communicate directly with each other in high
quality, usually, due to the short distances between the users
[6]. In mobile communications, when used in underlay mode,
D2D communication may improve the system’s spectrum
efficiency by reusing the physical resource blocks (RBs) [7].
Additionally, this technique can also bring improvements to
energy efficiency and fairness [8, 9, 10].

Despite its benefits, underlay D2D communications brings
an intrinsic problem, which is the interference between the
mobile user equipment (MUE) and the D2D devices while
sharing the same RB. Considering the uplink transmission,
there must be a power control method in order to avoid
interference from the D2D devices on the base station (BS).
The whole idea about D2D communications revolves around
enabling the link between D2D pairs without disrupting the
link between MUE and the BS.

Power control in mobile communications is a topic that has
been extensively studied in the literature. In the last years,
its application to D2D communications can be seen in related
researches [8, 9, 11, 12]. The community has been approaching
this problem with numerical and statistical methods, such as
game theory and machine learning.
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Recently, Reinforcement Learning (RL), a family of ma-
chine learning algorithms, has been applied to many di-
verse problems, such as robotics [13], video-games [14] and
telecommunications. In telecommunications, there are already
researches studying RL in diverse fields. Some of these fields
are security [15], resource allocation [16, 17], content access
request [18] and power allocation [8, 9, 19].

In this paper, we propose a non-cooperative Deep Q-
Learning (DQL) power control algorithm for underlay D2D
cellular communication, inspired by [8, 9]. The objective is
to maximize the system spectral efficiency while guaranteeing
the MUE quality of service (QoS) to be over a desired level.

The main contributions of this paper are:
• We propose a new DQL-based power allocation algorithm

for the underlay-D2D scenario. DQL has already been
proposed for D2D scenario by [9], but only in overlay
mode, where there is no concern about the MUE QoS.

• We compare the proposed DQL framework to another
D2D power allocation solution, Distributed Q-Learning,
which uses traditional tabular Q-Learning (QL), found
in [8], and show that the DQL framework is able to
achieve better performance and better generalization than
Distributed QL. We compare the D2D spectral efficiencies
and the MUE availability achieved by both solutions. The
MUE availability is a performance indicator proposed
here, that is not seen in [8].

The rest of this paper is organized as follows. Section II
describes the model and formulates the problem. Section III
introduces the theories behind QL and DQL, along with the
proposed DQL framework. The simulation results and analysis
are presented in Section IV. Finally, section V provides the
conclusion of this paper.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In our model, we consider a scenario with a single cell,
in which D2D users coexist with MUEs. The set of MUEs
is denoted by """ = {1, · · · , "} and the set of D2D pairs is
denoted by ### = {1, · · · , #}. The D2D pairs and the MUEs are
distributed uniformly inside the BS coverage area. We assume
the coverage area is circular.

In this work, we consider the uplink transmission, where
MUEs and D2D users share the same amount of available RBs.
The set of available RBs is given by    = {1, · · · ,  }. In this
situation, there are two types of interference we must worry
about. Interference 1 is the interference on the BS, which is
caused by the D2D transmitters sharing the RB with the MUE,
impacting on the MUE QoS. Interference 2 is the interference
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Fig. 1: D2D scenario illustration.

on the D2D receivers. It results from the MUE and other D2D
transmitters sharing the same RB and impacts the D2D QoS.
This scenario is illustrated by Figure 1.

Inspired by [8], we assume different RBs are orthogonal,
allowing us to treat each RB independently.

We measure the system spectral efficiency and QoS using
the SINR. The SINR obtained by the 8-th D2D user, on the
:-th RB, is given by

W
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channel gain between the MUE and the 8-th D2D pair receiver,
on the :-th RB, is given by 6<8

:
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between the 9-th D2D pair transmitter and the 8-th D2D pair
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:
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is depicted as f2. We also have to know the MUE SINR, on
the :-th RB, which is
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Following the established convention, the channel gains
between the MUE and the BS, and between the 9-th D2D
transmitter and the BS, both on the :-th RB, are given by 6<0

:

and 6 90
:

, respectively.
In our problem, we desire to maximize the D2D pairs’

spectral efficiencies [20], while maintaining the MUE QoS
at a minimum desired level. For the sake of simplicity, we
consider the MUE transmission power and the RB allocation

are given and fixed. Therefore, we can write the optimization
problem as:
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where ??? = (?31
:
, · · · , ?38

:
, · · · , ?3#

:
),∀:, 8 ∈    , ### . The opti-

mization problem in (3) consists of finding the set of trans-
mission powers, for each D2D pair on the :-th RB, which will
maximize the capacity for the MUE and the D2D pairs, while
satisfying two restrictions. The restrictions are the minimum
MUE SINR, g0, and the maximum transmission power level,
?<0G . In order to solve this problem, we resort to a DQL
framework.

III. DQL FRAMEWORK

In this section, we present the theory behind single agent RL
and multi-agent RL. We begin with classical Q-Learning and
progress to DQL. In the end, we propose a DQL framework
to solve a modified version of the optimization problem in
(3), so we may approach the solution in a multi-agent, non-
cooperative manner.

A. Single Agent Q-Learning

QL [21] is a popular model-free, off-policy RL algorithm.
It seeks to approximate the optimal action-value function,
&∗ (B, 0), for state B ∈ ( and action 0 ∈ �. QL works
with the tuple ((, �, ), '(B, 0)), where ( is the finite set of
the environment states, � is the finite set of agent actions,
) : ( × � × ( ↦→ [0, 1] is the state transition probability
function and ' : ( × � × ( ↦→ ''' is the reward function.
The environment state transitions are considered markovian
processes, making the optimization problem a markovian
decision process (MDP).

The algorithm makes use of the interaction between an agent
8 and environment. At time C, the state is given by B8C . Then,
the agent takes an action, 08C , which leads the environment to
the next state, B8

C+1, according to the state transition function.
This action also returns a reward, A 8C . The agent chooses its
actions following a policy c : ( ↦→ �. Knowing this, we can
calculate the state-value function [21],

+ c (B) = �c [AC |BC = B] = �c

[ ∞∑
C=0

[CAC |BC = B
]

(4)

where 0 ≤ [ ≤ 1 is a discount factor. With (4), we can
calculate the action value function,

&(BC , 0C ) = � [A (BC , 0C ) + _+ c (BC+1)] (5)

where A (BC , 0C ) is the received reward at state B, given action
0 was taken, at instant C, and 0 ≤ _ ≤ 1 is another discount
factor.

Following the Bellman equation [21], we may write the
action value function as
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& c (B, 0) = A (B, 0) + _
∑
B′∈(

%(B, 0, B′)& c (B′, 0′) (6)

where B = BC , 0 = 0C , B
′ = BC+1, 0′ = 0C+1, and %(B, 0, B′) is the

transition probability from state B to state B′ when the action 0
is taken. Finding the optimum policy is equivalent to finding
the optimal action-value function &∗ (B, 0) and its maximum
values. Therefore, the optimal policy may be described as

c∗ (B) = arg max
0∈�

{&∗ (B, 0)} (7)

which means the optimal policy, for a given state B will return
the action 0 that maximizes &∗ (B, 0). Hence, the iterative QL
algorithm approximates &∗ (B, 0) by

&(B, 0) ← &(B, 0)+

U

[
A (B, 0) + _max

0′
&(B′, 0′) −&(B, 0)

] (8)

where 0 ≤ U ≤ 1 is called the learning rate.

B. Deep Q-Learning

Deep Q-Learning (DQL) is a method that implements QL
using Deep Learning (DL) [14, 22]. Since neural networks
(NN) are proved to be universal function approximators [23],
DQL uses DL to approximate the optimal action-value func-
tion &∗ (B, 0). DQL is able to handle continuous-states and
it achieves greater sample efficiency, resulting in a lower
variance than traditional QL [24].

RL is known to diverge when implemented with NNs. To
address this problem, [14] proposes the experience replay.
The experience replay randomizes over the data, removing
correlation between observation sequences. Additionally, the
action values & are updated every � iterations, not on every
iteration, reducing correlation with the target.

The action-value function is parameterized as &(B, 0; \;),
where \; represents the NN weights at the ;-th iteration. We
store the agent’s experience 4C = (BC , 0C , AC , BC+1), at each time
step C in a dataset �C = {41, · · · , 4C }. The NN uses mini-
batches uniformly sampled from �C for its learning process.
The used loss function, at the 8-th iteration, is [14]

!8 (\;) = � (B,0,A ,B′)
[(
A + Wmax

0′
&(B′, 0′; \−; ) −&(B, 0; \;)2

)]
(9)

where \; and \−
;

are the Q-Network and the target weights,
respectively. The target parameters \−

;
are only updated with

\; every � steps, and are kept fixed otherwise.

C. DQL Power Control Framework

The optimization problem in (3) may be decomposed into
 -parallel sub-optimal problems, each problem being solved
for each RB. The RBs are independent from each other.
Considering one RB, the RL algorithm is defined as follows:

Agent: The agents are the D2D transmitters.
State: The state is given by

B8: = (=: , 3
8
1, 3

8
2,: , 33,: , �: ),

where =: is the number of D2D pairs accessing the :-th RB,
381 is the distance from the 8-th agent to the BS, 382,: is the
distance from the 8-th D2D receiver to the MUE on the :-th
RB, 33,: is the distance between MUE and BS on the :-th
RB, and, at last, �: is the interference indicator on the :-th
RB. The interference indicator is defined as

�: =

{
1 W<

:
≥ g0

0 otherwise (10)

We assume the agents exchange information with the BS,
in order to acquire the input data to the DQL framework. It
is interesting to notice this approach would not be practical
with tabular QL, since these distances are continuous values.
QL would need a discretization process, which would incur in
information loss. With DQL, this problem does not exist.

Actions: The agents’ actions consists of a set of transmis-
sion power levels. It is given by

��� = (0:1 , · · · , 0
:
H)

where 0:H represents the power level H for the :-th RB. The
chosen training policy was the n-greedy [14, 21]. This policy
dictates how the agents will pick their actions during training.
It is denoted by

c(B) =
{

0random with probability n
arg max

0

&(B, 0; \8) with probability 1 − n (11)

Reward function: Inspired by [8], the reward function is
given by

'8: =

{
1
�

log2

(
1 + W3,8

:

)
, W<

:
≥ g0

−1, otherwise
(12)

where � is an arbitrary penalty factor to the reward, and '8
:

is the received reward by agent 8 on the :-th RB.
This reward function was built to minimize the information

exchange between agent and BS and make the solution suitable
for distributed training, at the cost of obtaining a sub-optimal
solution by maximizing the spectral efficiency of each D2D
link, instead of the whole RB spectral efficiency.

In this work, since the agents states are independent and
identically distributed [25], we use all agents data to train a
single Deep Q-Network (DQN), for the sake of training speed
and computer resources. In real life, the DQN may be trained
in a distributed way, where each D2D device trains its own
DQN, or in a centralized way, where the BS collects data from
the agents, trains a single DQN, and deploys the DQN to the
D2D devices, afterwards.

The DQL framework algorithm, for one RB, is defined in
Algorithm 1.

IV. SIMULATION AND ANALYSIS

In this section, we present the obtained results and compare
the DQL Framework to the Distributed QL, proposed by [8].
The used simulation settings are presented in Table I. The
parameters are the same as in [8]. We consider a macro-cell
with a coverage radius of 500 m. We simulate for only 1 RB,
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Algorithm 1: DQL Framework
initialize n, nmin, X, �

for episode = 1, M do
for t=1,T do

initialize sequence BBB := (B11, · · · , B
#
1 )

preprocessed sequence
q1q1q1 := (q(B11), · · · , q(B

#
1 ))

for 8 = 1, # do
generate a random number G ∈ (0, 1]
if G < n then

select random action 08C
else

select 08C := arg max
0

&(q(BC ), 0; \)
end
execute 08C

end
if n > nmin then

n := n − X
end
'C'C'C := ('1

C , · · · , '#C )
qqq(BC ) := (q1

C , · · · , q#C )
0C0C0C := (01

C , · · · , 0#C )
qqq(BC+1) := (q1

C+1, · · · , q
#
C+1)

store transition (q(BC )q(BC )q(BC ), 0C0C0C , 0C0C0C , qqq) in �
sample random mini-batches of transitions
(q=
9
, 0=
9
, '=

9
, q=

9+1) from �

if episode terminates at step 9 + 1 then
H 9 := '=

9

else
H 9 := '=

9
+ W ′max

0
& ′(q 9+1, 0′; \−)

end
perform a gradient step on (H 9 −&(q 9 , 0 9 ; \))2

with respect to \
if C mod � = 0 then

& ′ = &
end

end
end

since the same algorithm would only be repeated for each RB,
in a multiple RBs situation. We vary the number of D2D pairs
accessing the RB from 1 to 10 pairs. There is 1 MUE, which
is the RB user with priority. The minimum acceptable MUE
SINR is g0 = 6 dB. For the reward, we use � = 80. For the
target NN update, we use � = 10. � and � were obtained
empirically.

TABLE I: Simulation parameters.

Parameters Values
?max 23dBm

Noise Power / RB -116 dBm
D2D pair distance 50m

pathloss model between BS and users 15.3+37.6log10 (3:<) [dB]
pathloss model between users 28+40log10 (3:<) [dB]

BS antenna gain 17 dBi
User antenna gain 4 dBi

Fig. 2: DQL learning curve.
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Fig. 3: Distributed QL learning curve.

Figures 2 and 3 depict the DQL and QL learning curves,
respectively. They were obtained by taking the averages of
the Q-values given by both algorithms, on every learning
iteration. We can see DQL takes much longer to converge
than traditional QL. Hence, the DQL solution is thought
for stationary situations, since dynamic phenomena become
stationary over time. In the case of environment changes, the
DQL algorithm may be re-trained.

However, DQL offers a great advantage over QL. Once
trained, DQL is able to handle many different users’ positions
distributions and different numbers of users, and even extrap-
olate for situations it has not seen during training, in contrast
with QL, which needs to be re-trained every time the devices
change positions, or when the number of devices changes.

In order to measure how well the power allocation respects
the MUE QoS requirements, a MUE success indicator is
proposed, which measures the rate of how many times the
MUE SINR stood above g0 across the iterations. It can also
be viewed as the MUE link availability.

Figure 4 presents the DQL performance. It shows the total
D2D average spectral efficiency and the average MUE success
indicator, varying with # . We can see DQL is able to handle
varying numbers of D2D pairs, achieving spectral efficiencies
that are over 20% higher than the ones achieved by QL,
while maintaining the MUE QoS. Looking at Figure 5, the
QL solution may achieve high spectral efficiencies. However,
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Fig. 4: DQL Framework performance.
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Fig. 5: Distributed QL performance [8].

the MUE availability is much worse, dropping as low as 60%,
when # = 10, which makes this solution impracticable for
implementation in real life.

DQL is able to surpass QL thanks to its greater sample
efficiency, lower variance [24], and the possibility of using
continuous-states values [23].

V. CONCLUSION

This paper presented a Deep Reinforcement Learning
(DRL) framework to optimize the D2D spectral efficiency
and MUE QoS, in D2D communications. We show DQL is
able to provide a higher D2D throughput and MUE QoS than
standard QL, while generalizing for a wide range of situations.
In our results, we also measured the MUE QoS, which is not
done by other works. In the future, we plan to increase the
simulated scenarios complexity, by adding more devices, RBs,
cells and dynamich channels, bringing the simulations closer
to real environments.
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