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Computer-Simulated UWB VHF SAR Targets
Based on Statistics of Real Data
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Abstract— In this paper, we performed a statistical study of the
targets of wavelength-resolution synthetic aperture radar (SAR)
images and addressed the problem of limited training samples.
Based on suitable statistical models for the real targets of the
evaluated SAR image, we considered a sample generator method
to create computer-simulated targets. For such, well-known
statistical models, namely, Burr, Gamma, Gaussian, Log-normal,
Rayleigh, Rician, and Weibull, are considered for the Anderson-
Darling (AD) goodness-of-fit test. This test is a statistical non-
parametric hypothesis test generally used to investigate whether
a given probability distribution yields a good fit for a given
data set. The images used in this study were obtained from the
Swedish ultrawideband (UWB) very-high-frequency (VHF) SAR
CARABAS II system whose consists of 24 magnitude single-look
SAR images. The obtained computer-simulated targets followed
similar statistical characteristics when compared to the real ones.

Keywords— CARABAS II, Computer-simulated targets, SAR
images, Statistical analysis

I. INTRODUCTION

The identification and classification of distinct ground
types [1], [2], modeling [3], and change detection [4],
[5] are classical tasks in the context of synthetic aper-
ture radar (SAR) statistical image processing. In particular,
wavelength-resolution low-frequency SAR systems are usu-
ally used for natural disasters monitoring, foliage-penetrating
applications, and detection of concealed targets [6].

Change detection algorithms (CDAs) have been widely
considered over the years for the above SAR-related chal-
lenges [7], [8]. In particular, the wavelength-resolution SAR
change detection is an important topic of research and has been
studied for more than a decade [9]. Wavelength resolution SAR
systems have also shown unique results with high detection
probability associated with a low rate of false alarms per
square km, as shown, for example, in [8], [10]. Generally,
a CDA is employed to identify changes in a ground scene
between distinct measurements in time, such as human-made
interference or natural disasters like floods and wildfires [6].
In particular, in wavelength-resolution systems, a CDA can
be simply obtained by computing the difference between two
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single-look images (reference and surveillance), followed by
a thresholding operation.

In summary, a CDA classifies the image pixels in changed
and unchanged pixels based on previous information extracted
from the evaluated images. Consequently, a limited number
of training samples may introduce bias on the CDA’s result.
To solve this problem, we employed a sample generation
method—here referred to as ‘computer-simulated target’, to
create samples from the imaging procedure perspective. For
such, we considered a statistical study of the real targets.
Indeed, the simulation process for a limited number of training
samples is an interest research topic for image classification
and target detection, as shown, for example, in [11]–[14].

Thus, in this paper, our goal is twofold. First, we performed
a statistical study of wavelength-resolution SAR image targets.
We considered the 24 wavelength-resolution SAR images
provided in [15]. As the pixel magnitudes generally follow an
asymmetric distribution and assume nonnegative values, well-
known statistical models with such characteristics, namely,
Burr, Gamma, Gaussian, Log-normal, Rayleigh, Rician, and
Weibull are considered for the Anderson-Darling (AD)
test [16], which is the most powerful test based on empirical
distribution functions [17]. Second, to address the problem
of limited training samples, a sample generator method is
utilized to create computer-simulated targets. This process is
based on the suitable statistical models for the real targets
of the evaluated SAR image. It is expected that the computer-
simulated targets follow similar statistical characteristics when
compared to the real ones.

The remainder of this paper is organized as follows. Sec-
tion II describes the database considered in this study. Sec-
tion III provides a statistical analysis of the image targets,
showing the numerical results of the AD test and the obtained
computer-simulated targets. Finally, Section IV presents some
concluding remarks and directions for future studies.

II. DATA DESCRIPTION

The public data set used in this study was obtained from the
Swedish ultrawideband (UWB) very-high-frequency (VHF)
SAR CARABAS II system, and the images are available
in [15]. The data consist of 24 magnitude single-look SAR
images that were calibrated, pre-processed, and geocoded. The
data set can be divided into three stacks with eight images
each, i.e., two out of six passes have identical flight headings.
Each image is represented as a matrix of 3,000 × 2,000
pixels, and all images cover the same ground area of 6 square
kilometers (2 km× 3 km).

The ground scene is dominated by boreal forest with pine
trees. Fences, power lines, and roads are also present in
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Fig. 1. Image sample from CARABAS II data set. In this image, the vehicles
are deployed in the top left of the scene.

the scene. The military vehicles are deployed in the SAR
scene and placed uniformly in a manner to facilitate their
identifications in the tests [9]. Each image has 25 targets (white
dots) with three different sizes, including (i) ten small vehicles
with a square design, with dimensions 4.4 × 1.9 × 2.2m—
here defined as ‘small size’; (ii) eight truck-sized vehicles with
dimensions 6.8×2.5×3.0m—here defined as ‘medium size’;
and (iii) seven trucks with dimensions 7.8 × 2.5 × 3.0m—
here defined as ‘large size’ [9]. For illustration, one image
sample from the CARABAS II data set is shown in Figure 1.
In this particular image, the vehicles are obscured by foliage
and deployed in the top left of the scene.

III. STATISTICAL ANALYSIS

As mentioned earlier, each image has 25 targets with three
different sizes. To identify the statistical characteristics of the
targets, we extracted them from the images according to their
size in three data sets. Then, we examined several candidates,
i.e., distributions for each data set using the AD test, aiming
to identify the most suitable distribution for each target size.

For the context of SAR images, the pixel magnitudes usually
follow an asymmetric distribution and have nonnegative val-
ues; hence, aiming at having a good characterization of image
pixel magnitude, we selected some well-known distributions
with nonnegative support, such as Burr, Gamma, Log-normal,
Rayleigh, Rician, and Weibull. Additionally, we considered the
Gaussian distribution as a preliminary study to fit the targets
related to the small size data, since this distribution is widely
used in signal and image processing [18], [19].

A. Anderson–Darling Goodness-of-Fit Test

To perform the statistical test analysis, we considered the
AD test, which is a statistical nonparametric hypothesis test
generally used to investigate whether a given probability distri-
bution null hypothesis H0 yields a good fit for a given sample
data [20], [21]. The AD goodness-of-fit test measures the
distance An between the empirical distribution function FY (y)

and the cumulative distribution function under the null hypoth-
esis F0(y) as [22]:

An = n

∞∫
−∞

(FY (y)− F0(y))
2
w(y)dF0(y), (1)

considering the ordered sample values y[1], y[2], . . . , y[n],
where w(y) is a weight function and n is the number of
evaluated data points. In particular, the weight function for
the AD test is defined as:

w(y) = [F0(y) (1− F0(y))]
−1
.

The AD test is computed comparing the distance An with a
critical value τ . When An > τ , the AD test rejects the null
hypothesis. The critical value is selected as [22]:

Pr (An ≥ τ | H0) = 1− Pr (An < τ | H0) = α,

where α is the significance level.

B. Numerical Results

This section presents the numerical results of the statistical
analysis retrieved from the AD test for the seven tested
distributions: Burr, Gamma, Gaussian, Log-normal, Rayleigh,
Rician, and Weibull. To perform the AD test, we set α = 0.05,
which is a typical significance level value considered for
this kind of test [23]. All parameters are estimated from the
target magnitudes using the maximum likelihood estimator.
We considered three window sizes: 5 × 5, 7 × 7, and 9 × 9
pixels around the central pixel of each target to examine the
statistical models. For such, we computed the pixel window
average. These window sizes guarantee that the three target
sizes considered in this study may be covered.

Figure 2 shows the average amplitude values histogram of
the 600 targets extracted from the CARABAS II data set
considering a 7 × 7 pixel window size. Figures 2(a), 2(b),
and 2(c) present the histogram of the small, medium, and large
target sizes, respectively. These histograms are representative
of the targets’ behavior of the three evaluated window sizes
and, due to the limited amount of space of this paper, the other
ones are omitted. The histogram of the small size targets given
in Figures 2(a) shows a fragment and are distributed into two
parts; hence, a unimodal distribution may not be the most
accurate choice to fit this data. On the other hand, the targets
with medium and large sizes can be modeled by traditional
unimodal distributions.

Table I presents the AD test results for the evaluated
distributions; the highlighted values are related to the AD
statistic’s smallest values. The value zero of AD test results
means that the distribution is suitable for the data and the
value one otherwise. The most accurate distribution for the
tested data shows the smallest values of the AD test statistic.

As a preliminary study, we manage to fit a Gaussian
distribution in each small size target data part, since, as shown
in Table I, this distribution is not suitable to fit the whole
small size target data. However, we have that the Gaussian
distribution can fit the data of each part, regardless of the
evaluated window size; hence, we considered a Gaussian
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Fig. 2. Target histograms considering the average amplitude value over a
window of 7× 7 pixels of each target.

mixture distribution to fit this data. As illustration, the data
histogram of the average amplitude value over a window
of 7 × 7 pixels of each target and the fitted density curves
can be found in Figure 3(a). The Gaussian distribution may
not be the most suitable distribution to model this data, since
its support is the real numbers, and not just nonnegative
values, such as the SAR image amplitude values. Thus, for
future investigations, more accurate mixture models could be
considered, considering suitable distributions for nonnegative
values.

As the medium and large target sizes can be model by
a unimodal distribution, we tested the Burr, Gamma, Log-
normal, Rayleigh, Rician, and Weibull in each data set. As
shown in Table I, considering windows of 5 × 5 and 7 × 7
pixels, the Burr, Gamma, Rician, and Weibull distribution can
be suitable choices to model this data. For the window of 9×9

TABLE I
ANDERSON DARLING TEST RESULTS FOR THE BURR, GAMMA,
GAUSSIAN, LOG-NORMAL, RAYLEIGH, RICIAN, AND WEIBULL

DISTRIBUTIONS. THE HIGHLIGHTED VALUES ARE RELATED TO THE AD
STATISTIC SMALLEST VALUES. AD TEST RESULT EQUAL ZERO MEANS

THAT THE DISTRIBUTION IS SUITABLE FOR THE DATA AND ONE

OTHERWISE

Test Statistic Result Statistic Result Statistic Result

Window size 5× 5 7× 7 9× 9

Small size

Gaussian 8.0031 1 6.2261 1 5.1388 1
Gaussian (Part 1) 0.3149 0 0.1954 0 0.3727 0
Gaussian (Part 2) 0.4795 0 0.3684 0 0.4278 0

Medium size

Burr 0.9051 0 0.4709 0 0.4275 0
Gamma 2.4254 0 1.7304 0 0.8226 0

Log-normal 3.4087 1 2.6432 1 1.3706 0
Rayleigh 28.8321 1 29.1844 1 29.2203 1
Rician 1.1305 0 0.6398 0 0.4579 0

Weibull 0.9242 0 0.5900 0 0.8730 0

Large size

Burr - - 0.4882 0 0.3890 0
Gamma 0.8569 0 0.4825 0 0.5306 0

Log-normal 1.0096 0 0.7013 0 0.7879 0
Rayleigh 23.9868 1 28.3461 1 31.4313 1
Rician 0.9239 0 0.4144 0 0.3220 0

Weibull 1.0527 0 0.6807 0 0.5806 0

pixels, among the evaluated distributions, only the Rayleigh
distribution is not suitable to fit this data. Furthermore, among
the Burr, Gamma, Rician, and Weibull distributions and re-
gardless of the window size, the smallest AD test statistic is
related to the Burr distribution; for instance, the data histogram
of the average amplitude value over a window of 7× 7 pixels
of each target and the fitted density curves can be found in
Figure 3(b).

Based on the AD test results, among the tested distributions,
the Rayleigh model is not suitable to fit the large size target
data considering the three employed window sizes. Addition-
ally, the data related to the window of 5×5 pixels is not fit by
a Burr distribution with finite parameters. Based on the AD
test statistic, the most accurate distribution to model the large
size data is (i) the Gamma distribution, for the data obtained
considering a window of 5×5 pixels; and (ii) the Rician model,
for the windows of 7× 7 and 9× 9 pixels; for illustration, the
data histogram of the average amplitude value over a window
of 7× 7 pixels of each target and the fitted density curves are
shown in Figure 3(c). This particular experiment highlights the
importance of considering an appropriate distribution to model
each target and window size, aiming at obtaining a good data
representation.

C. Computer-Simulated UWB VHF SAR Targets

With the fitted distributions presented in Section III-B, we
generate random values in order to simulate the modeled
targets. Table II presents five examples of the average value of
each real and computer-simulated target. For the three targets
and window sizes, the real and computer-simulated targets
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Fig. 3. Target histograms considering the average amplitude value over a
window of 7 × 7 pixels of each target and the density curves of the fitted
distributions.

show similar average values. Additionally, Table II shows the
mean value of all 600 real targets for the evaluated window and
target sizes; in general, the artificially generated target mean
values are similar with the average of the 600 real ones, i.e.,
the simulated data keep the mean standard of the evaluated
data set. In this preliminary study, we deal with the spatial
dependence of pixels by ordering the values from the center
to the edges of the window, i.e., the computer-simulated target
central pixel has the highest magnitude, and so on.

Figure 4 shows an image example of real and computer-
simulated targets considering the three evaluated target sizes
and a window of 7 × 7 pixels. As discussed above, the
computer-simulated targets kept statistical characteristics sim-
ilar to the real ones. Finally, Figure 5 shows a CARABAS II
zoomed image in the area with the real targets (25 white dots
on the bottom) and the computer-simulated ones were added

TABLE II
REAL AND COMPUTER-SIMULATED TARGET MEAN VALUES

Real Simulated Real Simulated Real Simulated

Window size 5× 5 7× 7 9× 9

Small size

Target 1 0.5882 0.5947 0.4237 0.4204 0.3535 0.3432
Target 2 0.5690 0.5355 0.4441 0.5279 0.4879 0.4563
Target 3 0.7430 0.7260 0.5079 0.5257 0.3535 0.3440
Target 4 0.5772 0.6151 0.5113 0.5389 0.3991 0.3686
Target 5 0.9771 0.9954 0.5650 0.5772 0.4653 0.4243

Medium size

Target 1 1.6801 1.1702 0.8239 0.8348 0.6267 0.6139
Target 2 1.2622 1.1483 0.7934 0.8020 0.6832 0.6771
Target 3 1.5430 1.1523 0.8812 0.8641 0.7034 0.7149
Target 4 1.1310 1.1357 0.8449 0.8301 0.6267 0.6366
Target 5 1.1697 1.1909 0.8856 0.8891 0.6486 0.6591

Large size

Target 1 1.0901 1.0797 0.8148 0.8161 0.6873 0.6548
Target 2 1.2425 1.1803 0.8463 0.8244 0.6816 0.6802
Target 3 1.0518 1.0515 0.7716 0.7887 0.6873 0.6744
Target 4 0.8395 0.9947 0.7967 0.7927 0.6359 0.6397
Target 5 1.3760 1.1368 0.8152 0.8182 0.6655 0.6631

Real target mean value (considering the 600 targets)

Small size 0.7694 0.5638 0.4584
Medium size 1.1581 0.8471 0.6600

Large size 1.0626 0.8019 0.6496

(15 white dots on the top). The difference in the computer-
simulated and real target shapes are related to the real truck
design (front and back part), while the computer-simulated
targets, in these particular images, are a fixed window of 7×7
pixels. However, the statistical behavior of both targets is
similar. Thus, in future studies, other morphological shapes
can be considered to better represent the target morphologies.

Besides deriving the computer-simulated targets, the same
statistical study can be applied in the images presented in [10],
where a stack of images was used to obtain the ground
scene true characteristics of the CARABAS II images, without
targets. Hence, we can have a synthetic data set, considering
computer-simulated ground scenes and targets.

IV. CONCLUSIONS

In this paper, we performed statistical models study of
wavelength-resolution SAR image targets. For such, well-
known statistical models, namely, Burr, Gamma, Gaussian,
Log-normal, Rayleigh, Rician, and Weibull, and the AD test
were considered. Based on this study, we proposed a pre-
liminary method to obtain computer-simulated targets, which
showed similar statistical behavior with the real ones.

For future studies, we aim at extending the proposed
scheme, proposing a more suitable mixture distribution for
the small size targets. Also, we intend to evaluate the flight
heading and the target orientation in the pixel spatial distri-
bution, and consequently, obtain different computer-simulated
target morphological shapes. Additionally, the same process
can be used to obtain computer-simulated ground scenes of
SAR images. As a result, we expect to obtain trustworthy
images with fully computer-simulated data.
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(a) Real target – Small size (b) Simulated target – Small size

(c) Real target – Medium size (d) Simulated target – Medium size

(e) Real target – Large size (f) Simulated target – Large size

Fig. 4. Computer-simulated and real targets considering a window of 7× 7
pixels.

Fig. 5. CARABAS II SAR image with computer-simulated and real targets.
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