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Diffusion-based Virtual Graph Adjacency for
Fourier Analysis of Network Signals
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Abstract— This work proposes a graph model for networks
where node collaborations can be described by the Markov prop-
erty. The proposed model augments an initial graph adjacency
using diffusion distances. The resulting virtual adjacency depends
on a diffusion-scale parameter, which leads to a controlled
shift in the graph-Fourier-transform spectrum. This enables a
frequency analysis tailored to the actual network collaboration,
revealing more information on the graph signal when compared
to traditional approaches. The proposed model is employed for
anomaly detection in real and synthetic networks, and results
confirm that using the proposed virtual adjacency yields better
classification than the initial adjacency.

Keywords— diffusion distances, virtual adjacency matrix,
graph signal processing (GSP), graph Fourier transform (GFT).

I. INTRODUCTION

The connectivity of real-world elements and the amount
of data generated in networks have been increasing consis-
tently [1], [2]. Real networks and their corresponding data
come in vastly different shapes and applications, ranging from
genetic interaction networks [3] and the human brain [4] to
sensor networks and smart cities [5]. Graph signal process-
ing (GSP) explores pairwise relations between elements of
a network to construct tools suitable for the processing of
network data [1], [2], [6]–[12]. In GSP, networks are modeled
as graphs and data defined over, or generated by, elements
of these networks are modeled as a graph signal—a mapping
from the set of vertices into the set of complex numbers. The
relations between elements of the real network are embedded
into the edges of the graph, connecting pairs of vertices.

Several GSP tools are functions of a graph-shift operator
(GSO), which carries the network-structure information. Thus,
the choice of the GSO and its properties impact the outcomes
of many GSP tools [13]–[16]. Different approaches for GSP
and the definition of the GSO have emerged over the last
years [2], [6], [17] and many works are devoted to improve
the framework [7], [18]. The two main approaches define the
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GSO either as the adjacency matrix of the graph [6] or the
Laplacian matrix [2].

GSP is a highly application-dependent framework. This
dependency starts in the choice of the mapping from the real
network into the graph [19], [20]. Most works rely on generic
approaches for modeling the network. For example, defining
the structure for physical networks in terms of distance be-
tween network elements, and adopting a GSO equal to the
Laplacian matrix. If the network and application are known,
a GSO can be tailored to the application at hand. Here, we
consider Markov networks and the frequency analysis of the
associated signals. In a Markov network, nodes collaborate
with each other according to a defined Markov property, which
defines the initial network adjacency.

We propose the use of diffusion distances (DDs) to incor-
porate the Markov property into the GSO. DD is a concept
within the diffusion maps (DMs) framework proposed in [21].
The DM framework is conceived as a tool for uncovering
a hidden geometry of the dataset by exploring properties of
the eigenfunctions of the Markov matrix associated with the
network states [22], [23]. The DDs serve as a metric for the
diffusion-probability-based relation between two states of data.
One parameter on the computation of DDs is the number of
transition steps of the Markov chain, which corresponds to
the stage or level of the collaboration. Hence, the proposed
model depends on this number of steps. As graph spectrum
depends on graph connectivity, the corresponding Fourier
analysis adapts to the collaboration embedded in the model.

The combination of DM and GSP has been considered
in [24], [25]. These works proposed the use of Markov
matrices as GSO. The Markov matrix has desirable properties
for GSP, such as being diagonalizable, and allows the use of
DM-based tools, such as dimensionality reduction and cluster-
ing [24]. In contrast, we model the relation between elements
of Markov network as a function of DDs. This yields an adja-
cency matrix that captures virtual dependencies between non-
adjacent elements of the network. This is particularly relevant
when nodes collaborate with neighbors over a sequence of
interactions. The virtual adjacency reveals additional spectral
content, which can be exploited by applications that make
decisions based on frequency features, such as classifiers and
detectors.

The paper is organized as follows: Section II reviews
concepts of GSP and DM. Section III presents the proposed
virtual-adjacency matrix and its effects on the graph Fourier
analysis. In Section IV, we analyze the proposed model
using numerical experiments and use it together with spectral
analysis for anomaly detection in synthetic and real networks.
Section V concludes the paper.
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II. BACKGROUND AND NOTATION

A. Graph signal processing

The graph is denoted by G = {V, E}, where V =
{v1, . . . , vN} is the set of vertices (or nodes) and E =
{e11, . . . , eNN} is the set of edges. Each vertex corresponds
to one element of the network being modeled. Elements eij
indicate pairwise relations between nodes vi and vj of the
graph. An edge eij exists if and only if vi and vj are related
(adjacent). These relations may incorporate functional proper-
ties of the network, based on the network data, or structural
characteristics of the network, yielding relations based on the
network elements. We represent the set of, possibly weighted,
edges in the adjacency matrix A.

The degree matrix D is a diagonal matrix such that Djj =
deg(vj), where deg(vj) =

∑
i∈Nj

eij and Nj is the set of
vertices that are adjacent to vj , referred to as neighborhood
of vj . Assuming a symmetric adjacency matrix, the graph
Laplacian is the positive semidefinite matrix L = D−A.

In the GSP framework [2], [6], the signal on a graph is given
by the mapping s : V → C and is usually represented by a
vector s, such that the ith entry of s is si = s(vi). The graph
signal represents a snapshot of the network state at a given time
instant. Let L = UΛUT be the eigendecomposition of the
graph Laplacian, where Λ is a diagonal matrix whose elements
are the real eigenvalues λi and U has the eigenvectors ui as
columns, with i ∈ {1, . . . , N}. The graph Fourier transform
(GFT) of a graph signal s is given by ŝ = UTs and the
signal can be recovered from the GFT coefficients via the
inverse GFT as s = Uŝ [2]. Here, L is taken as the GSO. The
eigenvalues carry a notion of graph frequency that quantifies
the intensity of the signal variation across the graph nodes,
with larger eigenvalues indicating higher variations [2]. We
note that several definitions of the GFT exist in literature. For
instance, [6] defines the GFT in terms of the eigendecompo-
sition of A, with A taken as the GSO.

B. Diffusion maps and distances

In this section, we consider data-state-wise graphs, instead
of network-wise graphs from GSP. Let X ∈ RN×K be a data
matrix that represents a set of K data points of dimension
N , also called states, and assume that there is an underlying
(hidden) process that relates the data points and possibly
influences the data generation. The DM framework aims to
make this process explicit [21]–[24]. Our focus is on one of
the subproducts of the DM framework, which is the concept
of diffusion distances. For a detailed description of DMs,
see [21]–[24].

The first step of the DM framework is to create a graph in
which nodes correspond to the columns of X. The resulting
graph is not intended to model a network, but to capture rela-
tions between data states. One may interpret it as a state-wise
graph instead of the traditional element-wise graph described
in Section II-A. The edges are computed via a symmetric non-
negative kernel that maps the affinity between two states into
a real value, thereby defining an adjacency matrix A [21]. By
normalizing the adjacency matrix, a probability of transition-
ing from state xi to xj is given by p(xj |xi) = Aij/ deg(vi).

A right-stochastic (Markov) matrix M = D−1A comprises all
transition probabilities [26]. Powers Mt are associated with t
steps of the random walk and pt(xj |xi) = M

(t)
ij , the (i, j)th

element of Mt, denotes the probability of starting at xi and
reaching xj after t steps.

The DD between two states is computed as [21], [23], [24]

D2
t (xi,xj) =

K∑
z=1

(pt(xz|xi)− pt(xz|xj))2

φ1,z
, (1)

where φ1,z is the zth entry of φ1, the top left eigenvector of
M. The DD extends relations from the local structure given
by A into a global metric by assimilating probabilities of
diffusion paths through the graph. Two points with similar
posterior distributions have small DD, even if they are not ini-
tially adjacent. This can be seen in terms of paths connecting
the two initial points through the end-points in the posterior
distributions. The computation of the DD depends on the
parameter t, which we denote as the diffusion-scale parameter.
It represents the number of steps taken in the random walk.
Increasing t allows an initial state to reach ending states that
are further away in terms of steps of the random walk.

III. GSP FOR MARKOV NETWORKS

Markov networks inherently allow a modeling of the rela-
tion between its elements in terms of a stochastic matrix. Some
networks that admit this modeling are: consensus networks
[27]–[29], which perform a possibly weighted average of
neighboring nodes in order to reach consensus through the
entire network; conservative diffusion networks [30]–[32];
and random-walk driven networks [26], [33]. We propose to
use DDs to incorporate the Markov property into the graph
model. This approach renders a GSO tailored for Markov
networks and provides a graph-frequency-analysis tool that
offers more information on the signal when compared to
traditional approaches.

A. Virtual adjacency

Modeling of networks for GSP usually relies on some
strict constraints of adjacency between nodes. For instance, a
wireless sensor network (WSN) is usually modeled in terms of
the direct communication capabilities between sensors, given
limitations imposed by the physical distance between them.
If it is a consensus network, however, it operates on the data
through iterative steps according to a stochastic matrix [27].
Thus, a node of the network is related to another node that is
not adjacent through collaboration. We model this relation by
adapting the concept of DDs and derive the virtual-adjacency
matrix. Let the graph G = {V,B} model the network with an
initial symmetric Markov-like adjacency matrix B. The DD
between nodes vi and vj (elements of the network) is defined
by

D2
t (vi, vj) =

N∑
n=1

(
B

(t)
in −B

(t)
jn

)2
(1/N)

, (2)

where (1/N) corresponds to the elements of the top left
eigenvector of B and B(t)

ij denotes the (i, j)th element of Bt.



XXXVIII SIMPÓSIO BRASILEIRO DE TELECOMUNICAÇÕES E PROCESSAMENTO DE SINAIS - SBrT 2020, 22–25 DE NOVEMBRO DE 2020, FLORIANÓPOLIS, SC

The DD in (2) extends the relation of nodes to other nodes that
are outside their original neighborhoods and this extension is
dependent on the scale parameter t. From this definition of
DD between elements of the network, we propose the virtual
adjacency matrix A(t) defined by

Aij(t) =

{
Bij + exp

(
−D

2
t (vi,vj)
ρN

)
i 6= j

0 i = j.
(3)

where ρ is a free parameter, N is the size of the network, and
ρN prevents the diffusion-related term from quickly fading to
zero as network size increases. Note that N cancels out with
the denominator in (2). The parameter ρ provides sufficient
adjustment of the function, meeting possible requirements of
different applications.

It must be noted that DDs are always real positive values,
yielding Aij(t) > 0 for every i 6= j. Thus, instead of using
the expression in (3) we actually consider edges to exist only
if Aij(t) is greater than a given threshold; otherwise, Aij(t)
is set to zero. For increasing t, the DD between nodes is
non-decreasing. This leads to non-decreasing edge values and
new edges possibly appearing as t increases. As t tends to
infinity, the graph is expected to become fully connected.
GSOs associated with different scales t model different stages
of node collaboration.

B. Adaptable Fourier Analysis

As presented in Section II-A, the GFT is defined as the
expansion of a graph signal in terms of the eigenvectors of
the Laplacian matrix, which in turn depends on the adjacency
matrix. Hence, the dependence on the diffusion-scale parame-
ter t in the definition of A(t) is carried over to the GFT, since
the diffusion-scale-dependent Laplacian matrix is

L(t) = D(t)−A(t), (4)

where D(t) is the degree matrix associated with A(t).
Given the eigendecomposition of the Laplacian as L(t) =
U(t)Λ(t)UT(t), the graph Fourier transform can be written
as

x̂(t) = UT(t)x, (5)

which, now, depends on t. Laplacian eigenvalues of connected
graphs are non-decreasing with addition of edges [34]. As
the number of edges in the virtual-adjacency matrix is non-
decreasing with t, increasing t also increases the eigenvalues
of L(t). This yields a frequency analysis tailored for each
stage of node collaboration. Intuitively, more collaboration
results in more connected nodes. Therefore, variations in
graph signals are perceived by more pairs of nodes, thus
corresponding to larger graph frequencies if compared to
the frequency content obtained using the initial adjacency.
Hence, by incorporating node collaboration into the graph
model, we provide a frequency analysis that reveals more
information on the network signal than that offered by the
conventional GFT. Therefore, applications that use spectrum-
related features, such as classifiers and detectors, can benefit
from the proposed methodology.
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Fig. 1. Average and maximum node degree versus diffusion scale t. For
t = 0, the values correspond to the average and maximum degrees of the
original κNN network.

IV. EXPERIMENTS

In this section, we present numerical experiments to show-
case properties of the virtual-adjacency matrix and its effects
on the Fourier analysis. Experiments are conducted over a sen-
sor network that is modeled as a κ-nearest-neighbors (κNN)
graph G = {V,B}, such that each sensor is bidirectionally
connected to the κ nearest sensors. A sensor can be a nearest
neighbor of a sensor that is not one of its nearest neighbors.
Note that this allows a sensor to be connected to more than
κ sensors. Let the symmetric matrix A indicate connections
between nodes, such that Aij = 1 if and only if nodes vi and
vj are connected. A consensus algorithm is implemented over
this network, such that the updated network state at iteration
k + 1 is given by x(k + 1) = Bx(k), where the stochastic
matrix B is defined as B = I− εL, where L is the Laplacian
of A [27]. The parameter ε affects the convergence of the
consensus algorithm and is set to ε = 1/(1.25∆), where ∆
is the maximum degree in G. Given B, we can associate the
network with a Markov chain and, hence, the techniques in
Section III can be applied.

A. Increasing connectivity

From the initial stochastic adjacency matrix B, we compute
the diffusion distance between sensors in the network and the
virtual-adjacency matrix is constructed according to (3). We
consider a κNN network with N = 20 sensors and κ = 2
nearest sensors. The parameter ρ in (3) is fixed at 0.35. Fig. 1
shows the graph average and maximum degrees of the virtual
adjaency matrix versus diffusion scale, with scales varying
from t = 1 to t = 9. As t is increased, more steps of the
random walk are taken in the network and, given a reference
node, the distance to nodes that are further away is expected
to decrease. This results in more edges being created and,
therefore, the connectivity of the graph increases. In fact, as t
tends to infinity, the diffusion distance between any two nodes
in a connected graph tends to zero and A(t)|t→∞ tends to the
adjacency matrix of a fully connected graph with no self loops,
i.e., each node is connected to every other node.
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Fig. 2. Histogram of eigenvalues of diffusion Laplacian matrices Lt, for
t ∈ {1, . . . , 6}. Spectral “gap” denotes the smallest non-zero eigenvalue and
spectral “radius” denotes the maximum eigenvalue.

B. Spectrum analysis

For a network with N = 100 sensors and κ = 4, we analyze
the behavior of the GFT spectrum for different diffusion scales,
for A(t) constructed with ρ = 0.4. The histograms of the
eigenvalues of L(t) for t ∈ {1, . . . , 6} are shown in Fig. 2.
Increasing the diffusion scale and connectivity produces a shift
on the graph-frequency spectral range into higher frequency
ranges. In fact, as t→∞, the graph becomes fully connected
and the maximum eigenvalue tends to {N + θi}Ni=1, where
{θi}Ni=1, with |θi| ≤ 1, are the eigenvalues of the Laplacian
of the stochastic matrix B. Each diffusion scale t yields
a frequency analysis associated with different collaboration
stages. Thus, the virtual adjacency allows for additional spec-
trum information when compared to the initial adjacency.
This additional information can be used by applications that
make decisions based on the signal’s frequency content, as
exemplified in the next section.

C. Application

The virtual adjacency is implemented in a synthetic con-
sensus network and in a real weather-station network, wherein
spectral analysis is used for anomaly detection [38]. Different
diffusion scales and the parameter ρ allow for a tailored
frequency decomposition. We compare detectors based the
spectrum yielded by virtual adjacency matrices against the

TABLE I
F1 SCORES — SYNTHETIC DATA

0 step 1 step 2 steps

Virtual Adjacency t = 1 0.70 0.62 0.53
Virtual Adjacency t = 2 0.73 0.69 0.62
Virtual Adjacency t = 3 0.74 0.66 0.61

Initial Adjacency 0.66 0.60 0.57

Fig. 3. Graph model for weather-stations network.

detector based on that of the initial adjacency. A similar task
using GFT was applied in [35]–[37]. We evaluate the f1 score,
given by the harmonic mean between precision and recall of
the detectors.

We use a network with N = 150 sensors measuring a
synthetic healthy signal drawn from a normal distribution
with expected value equal to 20 and variance of 0.4. The
anomaly is injected in up to 2 sensors that are randomly chosen
as anomalous sensors. Anomalous sensor measurements are
drawn from a uniform integer distribution in the interval
[15, 25].

The detector is based on applying a threshold on the coeffi-
cients of the graph signal after a high-pass filter, assuming that
anomalies induce high frequencies on the signal. We use grid
search to optimize the filter cut-off frequency and the detection
threshold for the conventional GFT. For the GFT based on
virtual adjacency matrices, ρ is also optimized. We treat three
scales t ∈ {1, 2, 3} separately. This simulation is performed
for three different stages of the consensus algorithm: raw data
following previously described distributions; data after one
consensus step; and data after two consensus steps. Results
for the f1 score obtained by different detectors are presented
in Table I, showing that the GFT using virtual adjacency
achieves better results than those obtained by the conventional
approach.

For anomaly detection in a real network, we use 150
randomly-selected weather stations, modeled as the graph in
Fig. 3, and temperature data from the database in [38]. It must
be noted that a Markovian relation is not initially defined for
the nodes of this network. However, we are able to generate
a Markovian relation by constructing a matrix B = I − εL
based on physical adjacency. This example serves to show that
the proposed methodology only requires a form of Markov
model, but it is not restricted to Markov networks. Original
data are converted from degrees Fahrenheit to degrees Celsius
and range from −29.4◦C to 38.6◦C. We introduce anomaly in
up to 7 stations. Anomaly is given by additive white Gaussian
noise with variance equal to 1 ◦C2 and mean drawn from
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the integer uniform distribution [−7 ◦C,+7 ◦C]. Conventional
GFT achieves f1 score of 0.50, while GFT using the proposed
model achieves better results with f1 score equal to 0.55 for
t = 1 and 0.64 for t = 2.

V. CONCLUSION

We proposed an virtual-adjacency matrix which adapts
Fourier analysis to node collaboration in Markov networks.
We construct the adjacency matrix as function of diffusion
distances between elements of the network. The obtained
virtual adjacency depends on the diffusion scale, given by
the number of diffusion steps under consideration, such that
increasing diffusion scales increases the connectivity of the
graph. We showed that the virtual adjacency allows for an
adaptable graph-frequency analysis considering different levels
of collaboration between nodes. Changing the diffusion scale
in the construction of the virtual-adjacency matrix shifts the
range of frequencies discriminated by the GFT. Tools that
operate on the graph spectrum can leverage on the addi-
tional information. For instance, we employed the proposed
model for anomaly detection using spectral information. The
resulting detectors leveraged on the proposed graph-frequency
representation associated with different collaboration stages to
obtain better results than those achieved by the GFT. As future
work, we aim at exploring other applications for the proposed
methodology and investigating efficient ways to determine the
optimal diffusion-scale parameter.
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