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Mitigation of nonlinear phase noise in
coherent 16-QAM long-reach PONs by
K-nearest neighbors-based classification
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Abstract— Nonlinear phase-noise induced by the Kerr effect
is the main nonlinear impairment in single-channel coherent
long-reach passive optical networks (LR-PONs). In this work,
we explore the capability of the K-nearest neighbors (KNN)
algorithm to mitigate this impairment in links with non-negligible
fiber dispersion. Simulation results show that when employing
KNN in a 56-Gbps coherent LR-PON with a 100-km range and
1:64 splitting ratio, the effective Q-factor is improved by 0.15 dB
with respect to maximum likelihood. This increment is achieved
by setting the parameter K to 13, which leads to a minimum
training data set size of 500 symbols.

Keywords— Coherent optical communications; Passive optical
networks; Nonlinear phase noise; Machine learning; K-nearest
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I. INTRODUCTION

Due to their high capacity-distance product, optical fiber
links have been adopted not only for long-haul but also for
lower-range applications [1]. For decades, intensity modula-
tion with direct detection (IM/DD) systems could meet the in-
creasing throughput requirements but, with the popularization
of multimedia applications and migration to cloud services,
these systems are becoming obsolete [2]. In this context, the
introduction of coherent receivers employing digital signal
processors (DSPs) gave birth to the fifth generation lightwave
systems. These systems allowed to retain not only phase but
also polarization information, thus enabling the utilization
of advanced modulation formats with unprecedented spectral
efficiency [3]. In addition, the adoption of high performance
forward error correction (FEC) codes enabled the increase of
the number of points in the constellation, leading to M-ary
phase shift keying (PSK), quadrature phase shift keying, and
quadrature amplitude modulation (QAM).

In digital coherent systems, linear impairments such as chro-
matic dispersion (CD), polarization mode dispersion (PMD),
and linear phase noise can be compensated using well-
established DSP algorithms [4] [5]. On the other hand, the
reduction of Kerr-induced nonlinear distortion remains as an
open problem. In this work we focus on single channel systems
with unrepeated links, i.e. long reach passive optical networks
(LR-PONSs), where no cross-phase modulation (XPM) or four
wave mixing (FWM) are present and, therefore, self-phase
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modulation (SPM) is the dominant nonlinear distortion mech-
anism [1]. Besides the nonlinear distortion, the absence of
mid-span amplifiers and the high transmission loss, makes
the noise produced by the photodetector to result in a low
signal-to-noise ratio (SNR). Additionally, even if accumulated
CD is compensated at the receiver, significant intersymbol
interference (ISI) is present along the fiber. The overlap of
adjacent symbols then results on a stochastic-like behaviour of
the SPM, as it depends on the local intensity [6]. Therefore,
the mitigation of the harmful distortion caused by the complex
interplay among the SPM and ISI that results in nonlinear
phase noise (NLPN), in combination with the receiver noise,
becomes challenging, specially in multi-level modulation for-
mats where higher amplitude symbols are more affected.

Some methods for nonlinear impairments has already been
proposed, both in the optical and electrical domains. In the op-
tical domain, two of the methods that attracted more attention
are conjugated twin-waves [7] and mid-span conjugation [8].
These methods, however, suffer from either low flexibility
or reduced capacity. In the electrical domain, on the other
hand, the flexibility of digital electronics enables adaptive non-
linear compensation. The traditional electronic approach for
nonlinear impairment compensation relay on model inversion,
for instance, digital backward propagation (DBP) [9], inverse
Volterra-series transfer function (IVSTF) [10] and Wiener
Hammerstein (WH) [11], [12]. One of the advantages of these
methods is that they are modulation format agnostic, thus
showing flexibility in systems where adaptive modulation is
used. Unfortunately, the elevated computational cost of model
inversion prevents their adoption in real-time applications. In
this context, machine learning has emerged as a feasible lower
complexity alternative with high potential for implementation
in future nonlinear mitigation schemes.

Machine learning algorithms can be roughly divided into
supervised and unsupervised [13]. Unsupervised algorithms
include clustering, as in [14] and [15], in which constellation
symbols are classified utilizing histogram based clustering and
expectation maximization, respectively. On the other hand,
supervised algorithms require a training set in which both
the data and their labels are previously known by the re-
ceiver. Supervised algorithms can perform either regression
or classification, depending whether the output is discrete or
continuous. In [16], an artificial neural network (ANN) is
used as an equalizer to compensate SPM in optical links,
whereas in [17] and [18], support vector machines (SVM)
and K-nearest neighbors (KNN) algorithms are proposed for
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supervised classification, respectively. As a lazy algorithm,
K-nearest neighbors (KNN) does not require to fit a set of
parameters to a training sequence [19], leading to an extremely
simple learning process [18]. Therefore, it is a good solution
for flexible systems where training has to be fast. Nevertheless,
to the best of our knowledge, KNN algorithm has not been yet
tested in links employing standard single mode fibers (SSMF)
where the dispersion parameter is around 16 ps/(km-nm).

In this work, we numerically implement and optimize a
KNN-based classifier to mitigate the nonlinear effects (NLPN)
caused by SPM on a 16-QAM digital coherent optical system.
The rest of the paper is organized as followed: Section II
describes the fundamentals of KNN, in Section III, we describe
the simulation setup used in this work, Section IV discusses
the obtained results, and Section V concludes our work.

II. K-NEAREST NEIGHBORS

As a supervised classification algorithm, KNN requires
a training data set of size NN;., where each received sym-
bol is represented by an N-dimensional feature vector x(*)
and its label, which is a natural constant y() indicating
its class. Thus, in KNN, training process consists in just
storing the set of training symbols and their respective labels,
{x® y1 1 <i < Ny, for subsequent comparison.

When a new symbol with features xU) is received, its
Euclidean distances d; ; to all the stored training symbols x(®)
are computed employing:

N ‘ N 2
di;=d (Xu),X(a‘)) - (xgp _ xg)) ’

n=1
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where subindex n indicates the n-th component of the feature
vector. After calculating the distance to all the training sym-
bols, the K symbols with shortest d; ; are selected, hence the
name K nearest neighbors. The most common class among the
neighbor symbols is then assigned to x(/). To avoid a tie in
decision, the parameter K must be odd in binary classification
but there is not such a restriction for multi-class classification
problems.

In Fig. 1, we show an example of the KNN-based classi-
fication of a 16-QAM constellation with a training set of 35
symbols per class. Then, a total number of 560 symbols were
used for illustration purposes. The symbols are labeled from
1 to 16, which are represented in the plot from the left-to-
right and top-to-bottom. A K of 13 was chosen, meaning that
the 13 nearest symbols will be used for the classification of
the example symbol that is identified with a star marker. As
can be seen, the example symbol is located in the vicinity
of the symbols corresponding to the classes 3, 4, 7, and 8.
The length of the lines from the example symbol represent
the distances between it and the 13 nearest symbols, while the
radius of the circle around it shows the distance to the farthest
K nearest symbol. To facilitate the interpretation of the KNN
classification method, a table including the distances to the
K nearest neighbors and their associated classes is included.
As shown, most of the the K symbols with shortest distance
belong to class 3 and, consequently the example symbol will
be labeled as class 3.

Points | Distance| Class
o ‘& . ° 1 0.151 3
k. > Rt
.?0 ° ;*\.
[ 1]
6 0.311 3
o 7 0.315 7
o gt, |[Eesa e
o o ('Y
‘z:.' 3‘..§g °Q‘; oo 9 | 0322 | 3
L) o 10 0.326 7
A s ° 11 0.344 7
% 0,*. 12 0.349 3
¢ ° 13 | 0349 | 3
Statistical Mode:| 3

Fig. 1. KNN classification with K = 13 of a new incoming symbol identified
by a star marker. The adjacent table indicates the distance and the class of
the k nearest symbols.

Another point to highlight about the KNN simplicity is that
it depends only on a single model parameter, K, which is set
before the training stage. However, the size of training set is
also an important factor to be considered, as this impacts both
the performance and the complexity of the classification. Thus,
if the algorithm requires a low number of training symbols,
Ny, we will have a shorter overhead and higher information
throughput. In Section IV, we study the effect of both K and
Ny, on the system performance to find their optimum values.

III. SIMULATION SETUP

Fig. 2 shows the setup relying on co-simulation between
Matlab and VPI Transmission Maker. This setup was used
to evaluate the KNN classification in a LR-PON utilizing 16-
QAM modulation. Due to its flexibility, Matlab was adopted to
implement the electrical modulation, DSP, and demodulation
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Fig. 2. Illustration of the simulated coherent LR-PON system. S/P: serial-
to-parallel conversion. DAC: digital to analog converter. LD:laser diode. DP-
MZM: dual parallel-Mach-Zenhder modulator. EDFA: erbium-doped fiber
amplifier. VOA: variable opticalattenuator. SSMF: standard single mode
fiber. Att: attenuator. LPF: low-pass filter. ADC: analog-to-digital converter.
DSP:digital signal processing.
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stages, while VPI Transmission Maker was used to simulate
the electrical-to-optical conversion, fiber transmission, and
signal detection.

The system performance was assessed comparing the bit
error ratio (BER) and the effective Q factor of the proposed
classification method with those obtained using the commonly
adopted maximum likelihood (ML). Due to the non-Gaussian
distribution of the constellation points, the BER was computed
by error counting, and the Q factor was obtained from the
BER, by inverting the expression BER = 1/2 - er fc(Q/v/2),
where er fc represents the complementary error function [20].

In the transmitter, the first stage consisted in a serial-to-
parallel conversion of the incoming 56-Gbps bit stream to
4-bit blocks for mapping into a 16-QAM constellation. The
in-phase and quadrature components of the mapped symbols
were oversampled to emulate the digital-to-analog conversion
and employed to drive the dual parallel Mach—Zehnder mod-
ulator (DP-MZM). This DP-MZM was used to modulate a
continuous wave (CW) laser with a linewidth of 100 kHz
and an emission power of 1 mW operating at 1550 nm. The
power of the modulated signal was boosted by an erbium-
doped fiber amplifier (EDFA), which had an output of 13 mW.
Since the EDFA gain was not too high, no significant amount
of amplified spontaneous emission noise was added. Finally, a
variable optical attenuator (VOA) was used to sweep the power
at the input of the distribution network from 2 to 13 mW.

The distribution network was formed by an 80-km-length
standard single mode fiber (SSMF) link, an 18-dB attenuator
representing the splitting loss of the signal to 64 users, and a
second link of SSMF with a length of 20 km.

At the receiver front-end, the incoming signal was first
mixed with a 1-mW CW local oscillator laser employing a
90° optical hybrid network. The corresponding in-phase and
quadrature components of the received signal were converted
to the electrical domain by utilizing two pairs of balanced
photodetectors, whose bandwidth response was modeled by a
4th-order electrical Bessel filters.

At the DSP, the first module carried out the compensation
of the CD in the frequency-domain. The time synchronization
stage relied on a pilot sequence of 64 symbols of alternating
amplitudes, optimizing the sampling times by the method of
cross-correlation maximization. A downsampling process was
then performed to get a single sample per symbol. Through
a blind search algorithm, the stochastic phase rotation caused
by the combined phase noises of both transmitter and receiver
laser diodes was compensated. It is worth mentioning that,
as the total length of the link was 100 km, the accumulated
PMD is significantly smaller than the symbol period and,
consequently, it did not require compensation. After overhead
removal, 81,500 data symbols were available. These symbols
were divided in a training set of up to 10,000 symbols
and a fixed test set of 71,500 symbols. The signal quality
was assessed considering the bit error ratio (BER) calculated
by error counting, whereas as mentioned the performance
improvement of the KNN classification method was quantified
comparing the BER at optimum launch optical power for KNN
and the that of ML.

IV. RESULTS AND DISCUSSION

A. Performance analysis

I(a.u.

Fig. 3. Performance analysis. (a) BER obtained using ML and KNN in
terms of the launch optical power. For KNN three different configurations are
considered: K = 3, 13, and 50. (b-d) Received constellations alongside with
the obtained decision regions for ML at 2, 6, and 13 mW. (e-f) The same as
(b-d) but for KNN classification.

Fig. 3(a) shows the BER obtained when the received sym-
bols are classified utilizing ML and KNN methods. To ensure
optimum performance of KNN, we swept the value of K,
i.e. the number of neighbors to be considered, obtaining an
optimum of K = 13. Nevertheless, in Fig. 3(a) we present
the results for K = 3, 13, and 50 to show the performance
of choosing a small, an optimum, and a large value of K.
As can be observed, at low power levels, where the dominant
impairment is the additive noise, the BER obtained employing
both methods is similar, regardless of the configuration of
KNN. As we increase the launch optical power (LOP), KNN
progressively outperforms ML. This point can be seen at
intermediate LOPs where NLPN begins to be appreciable but
is specially notorious at higher values of LOP. As a result of
the partial nonlinearity mitigation, it is possible to reduce the
optimal BER from 7.12-10~% obtained using ML to 6.37-10~%,
5.85-10~%, and 6.15-10~* when adopting KNN with K = 3, 13,
and 50, respectively. This system performance improvement
corresponds to a 0.15-dB increase in the effective Q-factor.
In addition, for a forward error correction (FEC) threshold of
21073, by employing KNN, the transmission power limit
can be increased from 8 mW to 10 mW, which represents a
~ 1 dB gain in the power margin.
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In order to see why KNN-based classification presents a
better performance than ML, in Fig. 3(b-d) we illustrate the
constellations alongside with the decision regions using ML
at LOPs of 2, 6, and 13 mW, respectively. As can be seen,
when using ML, the boundaries of the decision regions are
straight and orthogonal, which are suitable for low power
levels but are not optimum for high LOPs. Fig. 3(e-g), on the
other hand, represent the same constellations but employing a
KNN classifier instead of ML. At low level powers, KNN and
ML traced similar boundaries and, consequently, they lead to
almost the same BER values. This can be understood by noting
that when the additive noise is dominant, the randomness of
the generated pattern avoids the class of new symbols to be
predicted based on previously received symbols. At higher
values of LOP, the resulted boundaries are not straight any-
more. These curved boundaries better fit the dispersion of the
points, thus reducing the amount of errors. Such improvement
is possible because, even if complicated, the underlying NLPN
effect is deterministic and, therefore, a pattern can be found
by means of machine learning algorithm.

As mentioned in Section I, in multi-level modulation for-
mats, NLPN affects more strongly symbols with higher in-
tensity. This can be clearly observed in Fig. 3(d) and (g).
For the sake of visualization of amplitude-dependent nonlinear
impairments mitigation, it is useful to analyze the BER of
each class individually rather than its average. Considering
this, Fig. 4 represents the BER of each class separately for
both ML (a-c) and KNN detection (d-f) at LOPs of 2, 6, and
13 mW. The BER values presented in Fig. 4 can be interpreted
as the complimentary of the classification accuracy of the
confusion matrix. Looking at the highest LOP, Fig. 4(c) and
(f), it is possible to see that the KNN allows to reduce the
BER of the symbols with highest amplitude from 5-102 to
1.5-10~3, which most contributes to the total BER is given by
the classification of the four vertexes symbols. Nevertheless,
even if KNN mitigates the effect of NLPN, the vertex symbols
of the constellation still present higher BER.
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Fig. 4.
classification with optimum K. Both methods are tested at LOPs of 2, 6, and
13 mW.
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Fig. 5. Calculated BER in terms of the training set size for different values
of K, i.e. K=3, 13, and 50. The optimum BER achieved using ML is also
included as a benchmark.

B. Training test size analysis

The optical channel in a LR-PON system is relatively
static, which means that the training stage is not accomplished
frequently. Nevertheless, it is still important to analyze the
optimal training set size, to assess the capability of the system
to adapt to eventual re-configurations. In Fig. 5, we show the
BER convergence curves as a function of the training set size
for three KNN configurations: K = 3, 13 and 50. In all cases
a LOP of 6 mW was considered. Maintaining the test set fixed,
the training was performed in subsets of sizes ranging from 10
to 2,000 symbols. Taken into account that different training set
examples give different performance results, for each training
size we performed the training 50 times by selecting random
subsets. As expected, for low training set sizes, the BER is
high for all the contemplated configurations. As the training
set size is increased, the BER tends to converge. It can be
observed that for a small value of K, the algorithms requires
a shorter training size to converge. For a higher value of K,
as K = 50, the convergence is slower but it converges to
a smaller BER value. Thus, K = 13 presents an optimum
tradeoff between convergence and perfomance. For the sake of
comparison, the dashed line in Fig. 5 shows the BER achieved
when the ML method is used. Hence, we can conclude that
for the system under test, a good performance KNN can
be achieved with a small N and, consequently, with low
computational complexity.

V. CONCLUSIONS

In this paper we analyzed the capability of KNN for
mitigating the effect of the nonlinear phase noise in coherent
LR-PONs employing 16-QAM. Simulation results reveal that
for a 100-km link with a 1x64 splitting ratio and operating at
56 Gbps, the optimum configuration is achieved for a value of
K =13, which results in a Q-factor improvement of 0.15 dB
when compared to ML. The effect of the training set size was
also investigated, showing that higher values of K require
larger training sets. In particular, for K=13, KNN requires
approximately 500 symbols to get optimum performance.
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