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Abstract— We analyze the high-SNR behavior of the level
crossing rate and average fade duration for a variable-gain
amplify-and-forward relaying system composed of an arbitrary
number of hops under Rayleigh fading. Most studies on the
second-order statistics of multi-hop amplify-and-forward relaying
assume fixed gains at the relays and analyze the end-to-end
channel gain (from source to destination). Such analysis leads
to the so-called cascaded product channel, being mathematically
attractive, yet ignoring the accumulation of noise along the hops.
Here, in turn, we take the noise into account by analyzing the end-
to-end SNR, which ultimately governs the system performance.
Also, aiming at the benchmark for transparent relaying, we
assume variable gains at the relays. We obtain simple closed-form
asymptotic expressions for the investigated second-order statistics
and, as a byproduct, for the associated outage probability.

Keywords— Amplify-and-forward, average fade duration, level
crossing rate, multi-hop systems, variable-gain relaying.

I. INTRODUCTION

Second-order statistics are used to characterize the dynamic
nature of the wireless channel in mobile communications
systems, serving essential design issues such as packet length,
symbol rate, and transmission time interval [1]. Those statistics
complement the static characterization given by their first-
order counterparts, e.g., outage probability and bit-error rate.
Key second-order statistics are the level crossing rate (LCR)
and the average fade duration (AFD). The former provides
the temporal rate at which the fading channel crosses a given
threshold, either upwards or downwards; the latter, the average
amount of time the channel remains below that threshold.

Despite their practical importance, very little is known
about second-order statistics in relaying networks. Due to
tractability reasons, most related studies are limited to the
dual-hop scenario [2]–[5]. Very few works have addressed
the general scenario with multiple hops [6]–[10]. Although
the results in [7], [9], [10] are noteworthy contributions on
the second-order statistics for multi-hop fixed-gain amplify-
and-forward (AF) relaying, those works analyzed the LCR
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and AFD for the end-to-end channel gain (a.k.a. the cascaded
product channel), which is mathematically appealing while
neglecting the accumulation of noise along the multiple hops.
Even in [8], where the LCR and AFD are given for the end-
to-end signal-to-noise ratio (SNR), the resulting noise at the
destination was assumed to be Gaussian — an approximation
for rendering the problem more tractable. Anyway, the second-
order statistics for variable-gain (VG) AF relaying systems
with multiple hops remain open for investigation. Our primary
aim here is to help fill this gap.

Even for the simplest scenario with two hops, an exact
analysis of the second-order statistics for AF relaying systems
proves intricate. Existing solutions appear usually in multi-
fold integral form, bringing little or no insight into the system
performance. In this work, we aim to shed light on the second-
order statistics of multi-hop VG-AF relaying by deriving
simple closed-form asymptotic solutions at high SNR.

II. SYSTEM MODEL

Consider a multi-hop AF relaying system composed of N
hops, as depicted in Fig. 1, in which the communication
process between the source S and the destination D occurs
through N − 1 VG-AF relays {Rn}N−1

n=1 . There is no direct
link between S and D. Each relay Rn receives the information
signal coming from the preceding relay Rn−1 (or from S, in
the case of R1), amplifies the signal by a factor of Gn, and
then forwards it to the next node. This process is carried on
hop by hop, up to the destination D. All terminals, including
the source, are assumed to transmit with the same average
power PT. The amplification factor at the nth relay is given by
G2
n =

(
α2
n + Γ−1

0

)−1
[11, eq. (9)], where αn is the channel

amplitude of the nth hop, and Γ0 , PT/N0 is the average
transmit SNR at the source and relays, with N0 being the
mean power of the additive white Gaussian noise at the relays
and destination. In such a case, the end-to-end SNR is obtained
as Γe = [

∏N
n=1

(
1 + Γ−1

n

)
− 1]−1, where Γn = Γ0α

2
n is the

received SNR at the nth hop [12]. A widely used upper bound
on Γe is [12]

Γ ,

[
N∑
n=1

1

Γn

]−1

' Γe, for Γ0 →∞, (1)

where “'” denotes asymptotic equivalence, indicating that Γ
increasingly approaches Γe at high SNR. The upper bound
in (1) serves as a benchmark for practical transparent relaying
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Fig. 1. Variable-gain amplify-and-forward relaying system with multi-
ple hops.

systems and will provide a basis for the high-SNR analysis
attained in the next section.

We assume that the channel amplitudes {αn}Nn=1 of the
hops are independent, non-necessarily identically distributed
Rayleigh random variables (RV). Hence, each received SNR
Γn follows an exponential distribution with mean value Γ̄n =
Γ0Ωn, where Ωn = E

[
α2
n

]
is the corresponding average

channel power gain, with E [·] denoting statistical expectation.
Finally, considering an isotropic propagation environment, it
is known that the time derivative α̇n of αn is statistically in-
dependent of it and follows a zero-mean Gaussian distribution
with variance σ2

α̇n
= π2f2

m,nΩn, where fm,n is the maximum
Doppler shift at the nth hop [1], [7].

III. HIGH-SNR SECOND-ORDER STATISTICS

A. Preliminaries

A system outage occurs whenever the end-to-end SNR Γe
drops below a certain threshold γth. The LCR NΓe (γth) gives
the average temporal rate at which outage events take place,
which can be obtained from Rice’s formula [1]

NΓe (γth) =

∫ ∞
0

γ̇ fΓe,Γ̇e
(γth, γ̇) dγ̇ (2)

in terms of the joint probability density function (PDF)
fΓe,Γ̇e

(·, ·) of Γe and its time derivative Γ̇e. The AFD
TΓe (γth), in turn, gives the average duration of an outage
event, being obtained as [1]

TΓe (γth) =
PΓe (γth)

NΓe (γth)
, (3)

where
PΓe (γth) =

∫ γth

0

fΓe (γ) dγ (4)

is the outage probability, with fΓe(·) denoting the PDF of Γe.

B. Main Contributions

It is worth noting that there is no closed-form exact solu-
tion for either the first- or second-order statistics of VG-AF
relaying systems. Regarding the outage probability, a two-fold
integral-form solution was provided in [13] for an arbitrary
number of hops, when the channels undergo Rayleigh, Rice,
or Nakagami-m fading. Regarding the LCR and AFD, a two-
fold integral-form solution was provided in [4] considering the
existence of a direct link between source and destination, but
for two hops only. In light of the mathematical complexity
associated with VG-AF relaying, and aiming at better insights
into the impact of each channel parameter on the system
performance, we provide here a high-SNR analysis that yields

simple closed-form expressions for the LCR, AFD, and, as
a byproduct, outage probability. Our solutions apply to an
arbitrary number of hops.

In the high-SNR regime (Γ0 →∞), each investigated metric
can be expressed asymptotically as kΓe(γth) ' (ckΓ0)−dk ,
k ∈ {P,N, T}, as required, where dk is called the di-
versity gain, and ck is called the coding gain [14]. After
a lengthy derivation process outlined in Section III-D, we
obtain remarkably simple high-SNR expressions for the outage
probability, LCR, and AFD of multi-hop VG-AF relaying
systems operating over Rayleigh fading:

PΓe(γth) '

(
1

γth

∑N
n=1

1
Ωn

Γ0

)−1

(5)

NΓe(γth) '

 1

2πγth

(∑N
n=1

fm,n√
Ωn

)2 Γ0


−1/2

(6)

TΓe(γth) '

 2π

γth

( ∑N
n=1

1
Ωn∑N

n=1

fm,n√
Ωn

)2 Γ0


−1/2

. (7)

C. Remarks

The asymptotic expressions in (5)–(7) reveal how the di-
versity and coding gains of each investigated metric are influ-
enced by the average channel powers {Ωn}Nn=1 and maximum
Doppler shifts {fm,n}Nn=1 at the various hops. To our best
knowledge, these expressions are new.

The parameters {Ωn}Nn=1 and {fm,n}Nn=1 represent the
channels’ strength and the nodes’ mobility, respectively. Note
that these parameters play no role in the diversity gains of the
outage probability, LCR, and AFD, namely, dP = 1, dN =
1/2, and dT = 1/2. In particular, as known, the diversity gain
of the outage probability mirrors the number of independent
copies of information that achieve the destination [14], [15].
On the other hand, the impact on the coding gains vary for
each metric: the higher the values of {Ωn}Nn=1 (the stronger
the channels), the higher the values of cP (less likely fades),
cN (less frequent fades), and cT (shorter fades); the higher the
values of {fm,n}Nn=1 (the higher the mobility of the nodes),
the smaller the values of cN (more frequent fades) and the
higher the values of cT (shorter fades). As expected, the
Doppler shifts (a dynamic feature) have no impact on the
outage probability (a static metric).

D. Derivation Outline

In this section, we outline the derivation process of (5)–(7).
First, we derive integral-form expressions for the LCR and
AFD of Γ, the upper bound on Γe defined in (1). Then we
simplify those expressions under the assumption of a high-
SNR regime. For the lack of space, some details are omitted.
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1) Approximate Analysis: To calculate the LCR of Γ, we
start by rewriting (2) as

NΓ (γth) =

∫ ∞
0

γ̇ fΓ̇|Γ (γ̇|γth) fΓ (γth) dγ̇, (8)

where fΓ̇|Γ (·|·) is the PDF of Γ̇ conditioned on Γ, and fΓ (·)
is the PDF of Γ. The latter can be obtained as follows.
In [16], Brennan proposed a method to calculate the PDF
of a generic sum of N non-negative, arbitrarily correlated,
arbitrarily distributed RVs. In our case, let us consider the sum

Z =

N∑
n=1

Zn, (9)

where {Zn}Nn=1 are non-negative, independent RVs. From
Brennan’s results, the PDF of Z is given by [16]

fZ (z) =

∫ z

0

∫ z−zN

0

· · ·
∫ z−

∑N
n=3 zn

0

×fZ1

(
z −

N∑
n=2

zn

)
N∏
n=2

fZn (zn) dz2 . . . dzN−1dzN . (10)

To express (1) as in (9), we introduce the relationships

Z , Γ−1 (11)

Zn , Γ−1
n , (12)

with the respective PDFs being related as fΓ(γ) =
γ−2fZ(γ−1) and fZn(zn) = z−2

n fΓn(z−1
n ). Using this

into (10), the PDF of Γ is then obtained as

fΓ (γ) =
1

γ2

∫ 1
γ

0

∫ 1
γ−zN

0

· · ·
∫ 1

γ−
∑N
n=3 zn

0

× 1(
1
γ −

∑N
n=2 zn

)2 fΓ1

(
1

1
γ −

∑N
n=2 zn

)

×
N∏
n=2

1

z2
n

fΓn

(
1

zn

)
dz2 . . . dzN−1dzN . (13)

Now, to obtain fΓ̇|Γ (·|·), we first determine from (1) the time
derivative of Γ:

Γ̇ =
∂Γ

∂t
=

∑N
n=1

1
Γ2
n

Γ̇n(∑N
n=1

1
Γn

)2 =
2
√

Γ0

∑N
n=1 Z

3/2
n α̇n(∑N

n=1 Zn

)2 , (14)

since Γ̇n = ∂Γn/∂t = 2
√

Γ0

√
Γnα̇n and Γn = Z−1

n .
Hence, it becomes apparent that Γ̇ is a weighted sum of
{α̇n}Nn=1, zero-mean Gaussian RVs with variances given by
σ2
α̇n

= π2f2
m,nΩn. The weights depend on {Zn}Nn=1. As a

result, conditioned on Γ and Z2, . . . , ZN , Γ̇ is also a Gaussian
RV, with zero mean and variance computed from (14) as

σ2
Γ̇|Γ,Z2,...,ZN

=4Γ0γth

(1− γth

N∑
n=2

zn

)3

σα̇1

+γ3
th

N∑
n=2

z3
nσα̇n

]
. (15)

By integrating (8) with respect to γ̇ while taking into account
the Gaussianity of fΓ̇|Γ,Z2,...,ZN

(·|·, . . . , ·), we have [17]

∫ ∞
0

γ̇ fΓ̇|Γ,Z2,...,ZN
(·|·, . . . , ·) dγ̇ =

√
σ2

Γ̇|Γ,Z2,...,ZN

2π
. (16)

Then, by applying (13) and (16) into (8), we obtain an
approximate analytical expression for the LCR of a multi-hop
VG-AF relaying system over Rayleigh fading as

NΓ (γth) =

√
2πγth

Γ
N−1/2
0

∫ 1
γth

0

∫ 1
γth
−zN

0

· · ·
∫ 1

γth
−
∑N
n=3 zn

0

×

√√√√f2
m,1Ω1

(
1− γth

N∑
n=2

zn

)3

+ γ3
th

N∑
n=2

f2
m,nΩnz3

n

×
exp

[
− γth

Ω1Γ0(1−γth

∑N
n=2 zn)

−
∑N
n=2

1
Γ0Ωnzn

]
(

1− γth

∑N
n=2 zn

)2

Ω1

∏N
n=2 z

2
nΩn

×dz2 . . . dzN−1dzN . (17)

To calculate the AFD of Γ as in (3), we need to find the
associated outage probability. By substituting (13) into (4),
we obtain an approximate analytical expression for the out-
age probability of a multi-hop VG-AF relaying system over
Rayleigh fading as

PΓ (γth) =
1

ΓN0

∫ 1
γth

0

∫ 1
γ

0

∫ 1
γ−zN

0

· · ·
∫ 1

γ−
∑N
n=3 zn

0

×
exp

[
− γ

Ω1Γ0(1−γ
∑N
n=2 zn)

−
∑N
n=2

1
Γ0Ωnzn

]
(

1− γ
∑N
n=2 zn

)2

Ω1

∏N
n=2 z

2
nΩn

×dz2 . . . dzN−1dzNdγ. (18)

Then, by replacing (17) and (18) into (3), we obtain a
corresponding expression for the AFD.

2) Asymptotic Analysis: The final step is to derive asymp-
totic representations for (17), (18), and the corresponding AFD
as Γ0 → ∞. In such cases, a popular approach is to replace
the exponential function in the integrands by its Maclaurin
series expansion, to drop the terms beyond the second one
(i.e., exp (−xi) ' 1 − xi), and to solve and simplify the
integral. But this approach alone does not work in our case; the
resulting integrals turn out to diverge, since their integrands
contain poles on each integration limit. To overcome this,
we split the integration interval into two parts containing a
single pole each, and then we perform certain mathematical
manipulations to ensure the integral will converge when the
exponential function is approximated.

But applying the above method to (17) and (18) proves
quite involved if done directly for an arbitrary number of
hops N . Rather, we apply the method for two and three
hops first, and then, building on these results, we generalize
them by induction for any number of hops. Next, due to the
lack of space, we present the derivation steps only for the
LCR under two hops. The same rationale can be also applied
for the outage probability, as well as for a larger number of
hops. Finally, using (3), those results can be combined into
corresponding AFD expressions.
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The LCR for the dual-hop case is obtained by setting N = 2
in (17), yielding

NΓ (γth) =

√
2π
√
γth

Ω1Ω2Γ
3/2
0

∫ 1
γth

0

×

√
(1− z2γth)

3
Ω1f2

m,1 + (z2γth)
3
Ω2f2

m,2

(1− z2γth)
2
z2

2

× exp

[
− γth

(1− z2γth) Γ0Ω1
− 1

z2Γ0Ω2

]
dz2. (19)

A high-SNR asymptotic expression for (19) cannot be obtained
by directly using the Maclaurin representation of the exponen-
tial function and dropping the terms beyond the first, since the
resulting integral will diverge due to the poles on z2 = 0 and
z2 = 1/γth. To overcome this, as mentioned before, we split
the integration interval into two parts with only one pole each,
and then a change of variable is made to ensure the integral
will converge when the exponential function is approximated.
Specifically, after the change of variables u , z2γth, (19) can
be split as

NΓ (γth) =

√
2πγ

3/2
th

Ω1Ω2Γ
3/2
0

(I1 + I2) , (20)

where

I1 ,
∫ 1/2

0

√
(1− u)

3
Ω1f2

m,1 + u3Ω2f2
m,2

(1− u)
2
u2

× exp

[
− γth

Γ0Ω1 (1− u)
− γth

Γ0Ω2u

]
du (21)

I2 ,
∫ 1

1/2

√
(1− u)

3
Ω1f2

m,1 + u3Ω2f2
m,2

(1− u)
2
u2

× exp

[
− γth

Γ0Ω1 (1− u)
− γth

Γ0Ω2u

]
du. (22)

By changing also v , (γth − 2uγth) / (Γ0Ω2u) in (21), and
w , (−γth + 2γthu) / (Γ0Ω1 − Γ0Ω1u) in (22), we have

I1 =
Γ0Ω2

γth

∫ ∞
0

(2γth + vΓ0Ω2)
2

(γth + vΓ0Ω2)
2

×

√√√√ (γth + vΓ0Ω2)
3
Ω1f2

m,1

(2γth + vΓ0Ω2)
3 +

γ3
thΩ2f2

m,2

(2γth + vΓ0Ω2)
3

× exp

[
−v − 2γth

Γ0Ω2
− 2γ2

th + vγthΓ0Ω2

Γ0Ω1 (γth + vΓ0Ω2)

]
dv (23)

I2 =
Γ0Ω1

γth

∫ ∞
0

(2γth + wΓ0Ω1)
2

(γth + wΓ0Ω1)
2

×

√√√√ γ3
thΩ1f2

m,1

(2γth + wΓ0Ω1)
3 +

(γth + wΓ0Ω1)
3
Ω2f2

m,2

(2γth + wΓ0Ω1)
3

×exp

[
−w − 2γth

Γ0Ω1
− 2γ2

th + wγthΓ0Ω1

Γ0Ω2 (γth + wΓ0Ω1)

]
dw. (24)

Since 1/Γ0 → 0 as Γ0 → ∞, we can apply the Maclaurin
series to the whole integrand in (23) and (24), and take only
the first term to track the asymptotic behavior:

I1 '
Ω2

√
Ω1f2

m,1Γ0

γth

∫ ∞
0

exp [−v] dv =
Ω2

√
Ω1f2

m,1Γ0

γth

(25)

I2 '
Ω1

√
Ω2f2

m,2Γ0

γth

∫ ∞
0

exp [−w] dw =
Ω1

√
Ω2f2

m,2Γ0

γth
.

(26)

Then, by substituting (25) and (26) into (20), we obtain a
high-SNR asymptotic expression for the LCR of a dual-hop
VG-AF relaying system:

NΓe(γth) '

 1

2πγth

(
fm,1√

Ω1
+

fm,2√
Ω2

)2 Γ0


−1/2

. (27)

As already mentioned, the procedure described in (19)–(27)
can be also applied for the outage probability and for any
number of hops. For these cases, due to space constraints, we
only reproduce the final expressions. The high-SNR asymp-
totic expression for the outage probability with N = 2 is
obtained as

PΓe(γth) '

 1

γth

(
1

Ω1
+ 1

Ω2

)Γ0

−1

, (28)

while the high-SNR asymptotic expressions for the LCR and
outage probability with N = 3 are given respectively as

NΓe(γth) '

 1

2πγth

(
fm,1√

Ω1
+

fm,2√
Ω2

+
fm,3√

Ω3

)2 Γ0


−1/2

(29)

PΓe(γth) '

 1

γth

(
1

Ω1
+ 1

Ω2
+ 1

Ω3

)Γ0

−1

. (30)

Expressions similar to (27)–(30) can be found for N > 3. All
in all, building on these results, and using (3), we arrive by
induction at the general solution given in (5)–(7).

IV. NUMERICAL RESULTS

The analytical expressions derived in the previous section
are now evaluated for sample scenarios. To validate our
analysis, simulations results are also provided for the exact and
approximate end-to-end SNRs. For illustration purposes and
without loss of generality, the SNR threshold and the average
channel power at each hop are set to unity, i.e., γth = 0 dB
and Ω1 = · · · = ΩN = 1. Also, we consider that all nodes
have the same mobility, so that fm,1 = · · · = fm,N = fm.

Figs. 2 and 3 show the normalized LCR (NΓe/fm) and
normalized AFD (TΓe×fm) versus the average transmit SNR
(Γ0), respectively, for a number of hops ranging from two
to five. The approximate curves, labeled as “Approximate
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Fig. 2. Normalized level crossing rate for a multi-hop VG-AF relaying
system: Ω1 = · · · = Ω5 = 1 and γth = 0 dB.
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Fig. 3. Normalized average fade duration for a multi-hop VG-AF relaying
system: Ω1 = · · · = Ω5 = 1 and γth = 0 dB.

SNR (Analysis)”, were obtained from (17) and (18), and
the asymptotic curves, from (6) and (7). Note the tightness
of the proposed approximations at medium to high SNR,
regardless of the number of hops. As expected, the proposed
approximations become less accurate at low SNR, and this
mismatch increases with the number of hops. It can be also
observed how the number of hops affects the performance of
VG-AF relaying in itself. Although a broader coverage area
is normally attained as the number of hops is increased, the
outage events become more frequent (see Fig. 2). Yet, the
penalty due to an extra hop diminishes with the number of
hops. On the other hand, as shown in Fig. 3, the number of
hops barely affects the duration of the outage events at medium
to high SNR.

Note that the above observations can be straightforwardly
assessed via our main analytical results in (5)–(7). In partic-
ular, for the homogeneous scenario addressed in the numer-
ical examples, the coding gains therein specialize to cP =
Ω/(Nγth), cN = Ω/(2πf2

mN
2γth), and cT = 2πf2

mΩ/γth.

V. CONCLUSIONS

We investigated the second-order statistics of a variable-gain
amplify-and-forward relaying system containing an arbitrary
number of hops subject to Rayleigh fading. Our main results
are novel high-SNR expressions for the LCR, AFD, and, in
passing, outage probability, of the end-to-end SNR. These
asymptotic results circumvent the integral-form formulations
that typically emerge in related exact analyses, while shed-
ding light on the subject by means of simple closed-form
expressions that unveil how each system parameter roughly
affects the performance. In particular, our results show that
the diversity gains of the LCR and AFD are both 1/2,
regardless of the number of hops. Also, when all the hops
are identically distributed, the coding gain of the LCR is
inversely proportional to the squared number of hops, whereas
the coding gain of the AFD is not affected whatsoever.
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