
XXXVIII SIMPÓSIO BRASILEIRO DE TELECOMUNICAÇÕES E PROCESSAMENTO DE SINAIS - SBrT 2020, 22–25 DE NOVEMBRO DE 2020, FLORIANÓPOLIS, SC

Second Order Statistics For Composite κ-µ Fading
Model
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Abstract— This paper considers second order statistics for the
composite κ-µ fading model. More specifically, level crossing rate
and average fade duration are calculated, and two formulations
are offered: exact and approximate. The exact formulation is
given in integral form, and the approximate one is written in
terms of the Fox H-function, and also expressed as an infinite
summation. The computation of the approximate level crossing
rate and average fade duration converges quickly and are
practically coincident with the exact solutions for the composite
multipath-shadowing environment considered here. Additionally,
as an application example, the cascaded fading channel is
analyzed.

Keywords— level crossing rate, average fade duration, compo-
site fading, cascaded fading channel.

I. INTRODUCTION

In wireless communications, signal level variations are
usually modeled according to the specific scenarios involved,
with the goal of representing the signal distortion imposed
by the channel. Such variations are caused by several factors,
such as reflection, refraction, diffraction, Doppler frequency,
shadowing and multipath effects. There are in the literature
numerous methods which try to predict the signal level varia-
tion [1], with statistical models usually offering more accurate
results. Currently, statistical models are divided into two
classes, multipath (related to the short-term signal variation)
and shadowing (related to the long-term signal variation).
The first one deals with the fast fluctuation of the signal
caused by scattering in urban and rural environments. A large
number of distributions are used to model fast fading, such
as Rayleigh, Nakagami-m, κ-µ, α-µ, and others, which are
all special cases of the more general distribution, namely α-
η-κ-µ [2]. Shadowing is concerned with slow fluctuations
of the signal, which is induced by large obstructions such
as buildings and hills. Probably the most used model to
represent slow fading is the Lognormal distribution. However,
due to its difficult algebraic manipulation, other distributions
can be used to approximate the slow fading channel [1].
Although the characterization of fading into separate fast and
slow phenomena is widely used, recent advances consider the
combined effects of both fadings, in what is termed composite
fading models. This is particularly desirable in non-stationary
environments, when the local mean may also fluctuate rapidly.
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Composite fading models can be constructed by the product
of two distributions, each representing the intended fading
phenomenon. In its turn, the product of random variables is a
broadly investigated topic, and appears in several applications.
For instance, the cascaded channel is a classic example of
use of the product of random variables [3]. The cascaded
channel is also employed to model RFID systems [4]. The
keyhole effect in MIMO systems [5], the statistics of the
multi-hop communication channel [6], and high resolution
synthetic aperture radar clutter [7] can all be modeled by the
product of the appropriate random variables. In addition, the
analysis of composite fading models can be found in several
papers, e.g., [8]–[11], usually concentrating only in first order
statistics. In this paper, our interest lays with the level crossing
rate (LCR) and the average fade duration (AFD), which are
important metrics belonging to second order statistics, and
have important information about how fading is related to time
[1]. LCR and AFD can be used, for instance, in burst error
statistics, which are useful in predicting the performance of
various modulations and adaptive modulation schemes [12],
or in the selection of error correction codes [13], and MIMO
systems analysis [14], [15], and also in ultra-reliable low-
latency communication [16]. These characteristics are usefull
for the best performance of 5G networks. An LCR framework
for composite fading models was introduced in [17], and after
that several papers have worked with second order statistics
of composite fading channels, e.g., [18]–[22]. Further, the
authors in [22] propose a new, simple, accurate, and general
approximation for LCR in composite fading environments. In
this article, we apply the results from [22] to analyze and solve
the LCR for the composite κ-µ fading model, in which fast
and slow fadings are modeled by the κ-µ distribution. Note
that the slow fading model assumes lower Doppler shift, this
way matching with the signal’s slow fluctuation.

This article is organized as follows. Section II briefly revi-
ews the required background information. Section III presents
the LCR and AFD for composite κ-µ fading with some plots
and their interpretations. In Section IV an application of the
obtained formulations over a generic cascaded fading channel
is explored, and Section IV concludes this article.

II. FRAMEWORK

A. Level Crossing Rate and Average Fade Duration

The LCR for envelope E, represented as NE(e), is sta-
tistically defined as the average number of times that a
signal crosses a particular threshold in a positive or negative
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direction, i.e.,

NE(e) =

∫ ∞
0

ėfE,Ė(e = E, ė)dė, (1)

in which, fE,Ė(e, ė) is the joint probability density function
(PDF) of the envelope and its time derivative Ė.

The AFD, represented as TE(e), is calculated by

TE(e) =
FE(e)

NE(e)
, (2)

in which FE(e) is the cumulative distribution function (CDF)
of the envelope. This metric corresponds to the average time
that the signal remains below a particular threshold [1].

B. Fading Model

The κ-µ fading model, introduced in [23], is better suited
to represent the signal variation in the presence of dominant
line-of-sight (LOS) components. The PDF of the envelope is
given by

fE(e) =
2µ(κ+ 1)

µ+1
2

κ
µ−1
2 exp(κµ)

(e
ê

)µ
exp

[
−µ(κ+ 1)

(e
ê

)2
]

× Iµ−1

(
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√
κ(κ+ 1)

e

ê

)
, (3)

in which ê =
√

E(E2) is the root mean square (rms) value of
E, κ > 0 is the ratio between the powers of the dominant
components and the scattered waves, µ represents the real
extension of the number of multipath clusters, Iν(·) is the
modified Bessel function of the first kind and order ν [24, Eq.
9.6.20], and E(·) is the expectation operator.

In addition, other required metrics of the κ-µ model used
in this article are the joint PDF of the envelope and its time
derivative, and the LCR. These expressions were obtained
from [25] and are, respectively, given as
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]
, (4)

and

NE(e) =

√
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, (5)

in which fd is the maximum Doppler shift.

C. Composite Fading Statistics

The framework given in the following introduces the statis-
tical formulations needed for the development of the proposed
work. Let us consider a composite fading process whose
envelope C is modeled by the product of two random variables
(RVs) denominated S (as in short-term process) and L (as in
long-term process), i.e.,

C = S × L, (6)

and its time derivative Ċ given by

Ċ = Ṡ × L+ S × L̇, (7)

in which Ṡ and L̇ correspond to the time derivative of S and
L, respectively. Also, considering this scenario, the PDF of
the envelope C is defined by

fC(c) =

∫ ∞
0

1

l
fS

(c
l

)
fL(l) dl, (8)

in which fS(s) and fL(l) are the PDFs of RVs S and L,
respectively.

If we assume that S and L are κ-µ distributed RVs, the CDF
of C is calculated in [8], and is given in (12) at the top of the
next page, in which 1F1(·) is the confluent hypergeometric
function of the first kind [24, 13.1.2], Γ(·) is the gamma
function [24, 6.1.1], and and ρ = c

ŝl̂
is the normalized

envelope.
Additionally, as shown in [22], after manipulating (6) and

(7), the composite PDF of C and Ċ is given by

fC,Ċ(c, ċ) =

∫ ∞
0

∫ ∞
−∞

1

l2
fS,Ṡ

(
c

l
,
ċ

l
− l̇c
l2

)
fL,L̇(l, l̇) dl̇ dl. (9)

Following the development introduced in [22], the exact and
approximate formulations for LCR, respectively, are given by

NC(c)=

∫ ∞
0

ċ

∫ ∞
0

∫ ∞
−∞

1

l2
fS,Ṡ

(
c

l
,
ċ

l
− l̇c
l2

)
fL,L̇(l, l̇)dl̇dldċ, (10)

NC(c) ≈
∫ ∞

0

NS

(c
l

)
fL(l) dl = EL

(
NS

(c
l

))
. (11)

The approximate expression is obtained if one considers that
l̇c
l2 tends to zero in (10), which is expected for the proposed
model in which the time scale of slow and fast fading are
significantly different. Please refer to [22] for details.

III. LCR AND AFD FOR COMPOSITE κ-µ FADING
CHANNEL

In this section, exact and approximate expressions for LCR
and AFD assuming composite κ-µ fading model are obtained
and compared. Furthermore, the results are given in terms of
the normalized Doppler shift ratio f = fL

fS
.

The exact LCR for the composite κ-µ fading model is
obtained by using (4) in (10), resulting in (13), given at the
top of the next page. Note that the result is given in terms of
an integral in u, which is obtained by changing the integration
variable to l = u l̂, since it is easier to integrate in l̇ and ċ than
in u. The approximate expression is obtained by using (3) and
(5) in (11), resulting in (14) at the top of the next page, its
demonstration is given in the Appendix.

The calculation of (14) converges rapidly, with just a
few terms of the summation in most cases. In addition, an
alternative expression for the approximate LCR for composite
κ-µ fading was obtained, given in terms of the multivariate Fox
H-function, which guarantees the convergence of the integral
form [26]. This is expressed as

NC(ρ) ≈
√

2πfS

[
ρ2 (κL + 1)µL (κS + 1)µS

]µS− 1
2

exp(κLµL + κSµS)

×H [X; (α,A); (β,B);LS] , (15)
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FC(ρ) =
1

Γ (µL) Γ (µS)

∞∑
j=0

(−1)j

j!

×
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Fig. 1. Comparison between the exact (lines) and approximate (dots) LCR
for composite κ-µ distribution with fixed κS = 1.5, κL = 2.4, µS = 3.1,
µL = 1.2 and with different values of f .

in which LS is the appropriate contour on the complex plane
S, with S = [S1, S2, S3], and

X =
[
ρ2 (κL + 1)µL (κS + 1)µS ,−κLµL,
−ρ2 (κL + 1)µLκS (κS + 1)µ2

S

]
,

α =

[
0, 0, 0, µL − µS +

1

2

]
, β = [µL, µS ] ,

A =


1 0 0
0 1 0
0 0 1
1 −1 1

 , and B =

[
0 −1 0
0 0 −1

]
. (16)

Details of the development of this formulation are also given
in the Appendix.

It can be observed that the exact and approximate formu-
lations depend on ρ and fS . The variable fL appears only
in the exact formulation but in the form of the ratio fL/fS ,
i.e., the normalized Doppler shift ratio. Another important
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Fig. 2. Comparison between the exact (lines) and approximate (dots) AFD
for composite κ-µ distribution with fixed κS = 1.5, κL = 2.4, µS = 3.1,
µL = 1.2 and with different values of f .
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Fig. 3. Comparison between the exact (lines) and approximate (dots) LCR
for composite κ-µ distribution with different values of κS , κL, µS , µL and
a fixed f = 0.01.
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Fig. 4. Comparison between the exact (lines) and approximate (dots) AFD
for composite κ-µ distribution with different values of κS , κL, µS , µL and
a fixed f = 0.01.

point that can be observed is that, for second order statistics
in composite fading models, swapping the position of the
individual distributions alters the final result, which can be
easily checked in (13) and (14). This is not observed in first
order statistics, when swapping the order of the distributions
does not change the results, as presented in [8]. The AFD for
the proposed composite fading model is obtained by using the
CDF (12) in (2).

Figs. 1 and 2 show results for the exact (solid lines)
and approximate (dots) LCR and AFD plots, with fixed κ-
µ fading parameters and different values for f . Note that,
for lower values of the ratio f , the approximate and exact
curves are indistinguishable. This happens because for lower
values of f the approximation tends to the exact solution.
Furthermore, if f increases, then the assumption considered
for the approximation fails and the difference between the
results also increases. However, in practical cases the signal
variation rate of a shadowing process is much slower than the
multipath one. In this sense, it is convenient to claim f � 1
and the approximate solution is perfectly suitable to assess
LCR in composite multipath-shadowing environments.

Figs. 3 and 4 compares the exact and approximate curves
for LCR and AFD for practical cases, with fixed f = 0.01, and
different fading parameters. Similarly to the above comments,
and independently of physical parameters values, if f has a
small value (as in this case), then the exact and approximate
results are practically coincident, as shown in the figures.

IV. CASCADED FADING CHANNEL

In a cascaded fading channel, the source and destination ter-
minals communicate with each other through relay terminals
or keyholes effect, which are viewed as a channel modeled by
product of random variables. In both cases, the instantaneous
signal to noise ratio (SNR) at the destination terminal is
expressed by [3],

γ =
Es
Nt

N∏
n=1

(Rn)2 (17)

in which Rn is the wireless channel gain, N is the number of
relay terminals or keyholes in the system, Es is the average

energy of the transmitted symbols, and Nt is the noise power
spectral density.

As an example, suppose a cascaded fading channel com-
posed by two-tap relay or keyhole, which is modeled by
the product between two random variables (S and L), both
following the κ-µ distribution. In this case, the instantaneous
SNR is

γ =
Es
Nt

(SL)2 =
Es
Nt
C2. (18)

Therefore, the LCR and AFD for the instantaneous SNR in
this system is given, respectively, by

Nγ(γ) = NC

(√
γ
Nt
Es

)
(19)

and

Tγ(γ) = TC

(√
γ
Nt
Es

)
. (20)
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Fig. 5. Level crossing rate application for a generic cascaded fading channel
following a composite κ-µ model.

The plots in Fig. 5 are obtained using (19), (13), and
(14), and are normalized by the cascaded system variables Es
and Nt. Additionally, the figure compares the exact (lines)
and approximate (dots) LCR curves with different fading
parameters and using f = 0.6. It can be observed that the
approximate formulation produces good results for higher
fading parameters values, even considering higher f values.

V. CONCLUSION

In this article, LCR and AFD results for the composite κ-µ
fading model are formulated, and exact and approximate ex-
pressions are presented. Also, an application example conside-
ring this generic fading model is included. For the considered
composite multipath-shadowing environment and assumptions
given, approximate and exact results are indistinguishable from
each other. In addition, the obtained formulations can be used
in the analysis of digital communication systems for which
the proposed composite fading model is assumed, allowing
the interested reader to obtain several performance metrics.
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APPENDIX

Proof of the approximate LCR in (14) and (15).
1) Use (3) and (5) in (11), and also change the integration

variable to l = l̂u;
2) Use [27, 01.03.07.0001.01], i.e., ez =

1
2πı

∮
LS Γ(S)(−z)−SdS and [27, 03.02.26.0008.01],

i.e., Iv(z) =
(
z
2

)v 1
2πı

∮
LS

Γ(S)
Γ(−S+v+1)

(
− z

2

4

)−S
dS,

to expand the exponential and Bessel functions,
respectively, to contour integrals, in which ı is the
imaginary unit;

3) Use [28, 3.326.2] as the integration identity, to obtain

NC(ρ) ≈
√

2πfS

[
ρ2 (κL + 1)µL (κS + 1)µS

]µS− 1
2

exp(κLµL + κSµS)

×
(

1

2πı

)3 ∮ ∮ ∮
LS

Γ
(
µL − µS + S1 − S2 + S3 + 1

2

)
Γ (µS − S3) (µL − S2)

×
[
ρ2 (κL + 1)µL (κS + 1)µS

]−S1
(−κLµL)−S2

×
[
−ρ2 (κL + 1)µLκS (κS + 1)µ2

S

]−S3

× Γ(S1)Γ(S2)Γ(S3) dS1 dS2 dS3. (21)

This expression can be written in terms of the Fox H-
function, as presented in (15);

4) Use the residue theorem in (21) with the appropriate
poles to find the expression in infinite summation as

NC(ρ) ≈
√

2πfS
exp(κLµL + κSµS)

∞∑
k=0

∞∑
j=0

∞∑
i=0

× (−1)i+j (−κLµL)j (κSµS)k

i! j! k! Γ (j + µL) (k + µS)

×
{[
ρ2 (κL + 1)µL (κS + 1)µS

]i+k+µS− 1
2

× Γ

(
−i+ j − k + µL − µS +

1

2

)
+
[
ρ2 (κL + 1)µL (κS + 1)µS

]i+j+µL
× Γ

(
−i− j + k − µL + µS −

1

2

)}
. (22)

After some algebraic manipulations, two of the summa-
tions are simplified and (14) is attained.
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