
XXXVIII SIMPÓSIO BRASILEIRO DE TELECOMUNICAÇÕES E PROCESSAMENTO DE SINAIS - SBrT 2020, 22–25 DE NOVEMBRO DE 2020, FLORIANÓPOLIS, SC

General Purpose Radar Simulator based on Blender
Cycles Path Tracer

Rômulo Fernandes da Costa, Diego da Silva de Medeiros, Raíssa Andrade, Osamu Saotome, and Renato Machado

Abstract— This paper proposes a general-purpose radar sim-
ulation tool based on the path tracer Cycles used in Blender, an
open-source 3D computer graphics software. The scenarios, ob-
ject’s geometry, and materials can be defined within Blender. The
propagation of waves in the scenery is simulated by the Cycles
renderer, so that a second computational tool, such as Matlab
or Octave, can be used for reconstructing the received signal.
A simulated experiment using the proposed tool is presented.
The results indicate that the tool has a great potential to be
used in a variety of radar applications, including cross-section
measurement, simulated radar data generation, and simulated
synthetic aperture radar imaging.

Keywords— Radar signals, 3D modeling, RGB channel modu-
lation.

I. INTRODUCTION

Computational simulation is an important tool for evaluating
the propagation of radar signals through the environment.
While it is possible to model radar targets as single point
scatterers of fluctuating cross-section, in a real environment,
signals are expected to be absorbed, refracted, and reflected
multiple times before returning to the receiver antenna. These
effects may lead to an overestimation of the returning signal
power.

A common method for simulating the propagation of radar
signals is through electromagnetism simulators, which numer-
ically solve differential electromagnetic field equations. While
this method is accurate, objects can be too complex to be
modeled, which usually is very time consuming [1].

An alternative approach is the use of ray-tracing algorithms,
which has been slowly becoming more commonplace in the
last decade due to their increased availability and computa-
tional efficiency. As examples, ray tracing was used for wall-
penetrating radar using RAPSOR [2], aircraft detection using
Flames [1], and for urban environment SAR imaging using
POV-Ray [3].

However, many ray tracing radar simulators are limited
in evaluating material penetration and multipath propagation,

Rômulo Fernandes da Costa and Diego da Silva de Medeiros, Graduate
Program in Electronics and Computer Engineering, Aeronautics Institute
of Technology (ITA), São José dos Campos-SP, e-mails: rfcosta@ita.br;
medeiros@ita.br; Raíssa Andrade, Electronic Engineering course, Aero-
nautics Institute of Technology (ITA), São José dos Campos-SP, e-mail:
raissa.andrade@ga.ita.br; Osamu Saotome, Department of Applied Electron-
ics, Aeronautics Institute of Technology (ITA), São José dos Campos-SP, e-
mail: osamu@ita.br; Renato Machado, Department of Telecommunications,
Aeronautics Institute of Technology (ITA), São José dos Campos-SP, e-
mail: rmachado@ita.br; This work was funded by the Brazilian Council for
Scientific and Technological Development (CNPq) and IACIT, in the form of
a research stipend for the first and second authors.

limiting its use to line-of-sight applications [4]. Another com-
mon difficulty is creating accurate models of the terrain [3] or
target geometries [5].

This paper presents a ray tracing radar simulation tool based
on the cycles render engine, from the 3D modeling open-
source software Blender. The RGB channels of each ray are
modulated onto the desired radio frequency to properly sim-
ulate the effects of penetration and multipath propagation of
radar waves. A Python script is used for rendering images for
several successive subsections of the scene, containing power
and range information for each subsection. The rendered
images are then exported to a computational environment such
as MATLAB, where the received signal is reconstructed by
treating each pixel as a single point target.

II. SIMULATOR DESCRIPTION

A. Path Tracing

Blender is an open-source computer graphics suite designed
for 3D modeling, animation, and visual effects. Internally,
Blender utilizes a rendering engine called Cycles, which
simulates how light should propagate in a scene, based on
physical principles. To accomplish this task, Cycles employs
a path tracing algorithm, enabling it to accurately simulate
diffuse and specular reflections, refraction, absorption, and
transmission effects for each ray [6]. Materials can be con-
figured using Blender’s node-based interface, or programmed
directly using Open Shading Language (OSL) [7].

Although Cycles was initially designed for simulating light
propagation for 3D graphics, it can be exploited to simulate
radar waves, by treating light emitters as transmitting antennas
and Blender cameras as receiving antennas [5].

Thus, the object materials and emitters in Cycles can be
reconfigured to encode amplitude and traveled distance for
each ray in its RGB channels, as explained in the following
sections, which allows Cycles to provide a measurement of
incoming power and range for each pixel of the images
captured by the Blender camera.

B. Range modulation in RGB channels

When rendering a scene in Cycles, rays are cast from the
camera and are reflected in the scene until an emitter is reached
or the maximum number of bounces (reflections) allowed per
ray is reached.

The color of each ray is composed of three amplitude
components, red (R), green (G) and blue (B). Between each
bounce, the amplitude of all three components decays in a
square-falloff over distance. Each time a ray interacts with the



XXXVIII SIMPÓSIO BRASILEIRO DE TELECOMUNICAÇÕES E PROCESSAMENTO DE SINAIS - SBrT 2020, 22–25 DE NOVEMBRO DE 2020, FLORIANÓPOLIS, SC

surface of a material, the amplitude of each color component
is multiplied by the material’s corresponding color amplitude.

Figure 1 exemplifies how rays are traced in a given scene
within Cycles. All rays travel backwards from camera to
emitter, as this provides a more efficient computation of the
scene lighting. It must be noted that transmission rays (rays
penetrating an object) are not depicted in Fig. 1 for clarity.

Fig. 1. Propagation of rays in a hypothetical scene in Cycles.

We can choose a color component as a referential for wave
amplitude. In this paper, we chose the B component to be the
amplitude referential, ub. The amplitude ub after n bounces
in the scenery is given by

ub = u0
k0
r0

k1
r1
· · · kn

rn
, (1)

where k0 is a constant dependent on transmission antenna’s
gain, k1 · · · kn are constants dependent on the geometry and
materials of the reflecting objects, and r1 · · · rn are the dis-
tances traveled between bounces. If considering for a single
bounce and amplitude squared (i.e., power), Equation (1) takes
the same format as the radar equation.

Cycles does not keep track of the total traveled distance by
a ray since its emission. Instead, it only has direct access to the
distance traveled since the last ray bounce, making it necessary
to measure it through indirect means. One can encode the
total traveled distance in the RGB channels, by imposing
an additional exponential decay over distance on one of the
color components [8]. This can be done by setting a color
component of all simulated materials to have an exponential
decay αi, which is dependent on the distance traveled ri from
the last i-th bounce by:

αi = exp

(
− ri
kdist

)
, (2)

where kdist is a constant for the exponential decay. We im-
posed this exponential decay over the R channel. Its amplitude
is given by ur.

Due to the n bounces, the decay factors α0, α1 ...αn are
all multiplied over the R channel. The amplitude ur is then
given by

ur = u0α0
k0
r0
· · ·αn

kn
rn
. (3)

Therefore, the ratio ur/ub falls exponentially over the
distance traveled by the ray. With this approach, we can
indirectly measure the total distance traveled by applying a

logarithm over the ratio ur/ub as follows:

rsum =

n∑
i=1

ri = −kdist ln

(
ur
ub

)
. (4)

C. Emitter configuration

A problem that must be taken into consideration, especially
in cluttered scenarios, is object occlusion. During rendering,
objects closer to the camera may obstruct objects further away
in the same line of sight, causing their range and amplitude
measurements to occupy the same pixels in the image. This
superposition can nullify the echoes of occluded objects.

To prevent this, the emitter was configured to progressively
illuminate the scene in successive steps. This is done by
restricting the emitter ray’s length (emission radius) remitter

to

∆rframenframe < remitter < ∆rframe(nframe + 1), (5)

where nframe is the index of the current frame and ∆rframe

is the step size per frame.
In this manner, objects in the same line of sight from the

camera can be rendered without the problem of superposition
in the camera, as the objects are rendered at different frames
(provided that the step size is sufficiently small). During the
signal reconstruction, the contribution of all rendered frames
must be summed to account for the echoes of the entire scene.

The illumination procedure is exemplified in Fig. 2. In this
Figure, a plane located at z = 0 is illuminated by a point
emitter located over the plane, with the step size ∆rframe set
to 2.5 blender units per frame. Due to the constraint applied
over the emitter’s ray length, a ring is projected over the plane.

Fig. 2. Three rendered frames showing a emitter illuminating a plane in
separate steps.



XXXVIII SIMPÓSIO BRASILEIRO DE TELECOMUNICAÇÕES E PROCESSAMENTO DE SINAIS - SBrT 2020, 22–25 DE NOVEMBRO DE 2020, FLORIANÓPOLIS, SC

D. Materials’ configuration

As previously explained, the material’s color components
must be modulated as a function of traveled distance from the
last ray bounce. In addition to color manipulation, materials
in Cycles must be reconfigured to show the same reflectivity,
refraction, absorption, and opacity they would have in the sim-
ulated radar frequency. All of these properties are controlled
by a subroutine called shader, which dictates how the material
should propagate an incident ray.

The properties of internal attenuation, refraction, and reflec-
tivity of a material can be described by the complex index of
refraction as given by [9]:

ηc =
√
εrµr = ηref + jκext, (6)

where εr and µr are the complex relative electrical permittivity
and complex relative magnetic permeability, respectively, ηref
is the real part of the index of refraction, and κext is the ex-
tinction coefficient, which indicates the amount of attenuation
related to ray penetration in the material. Thus, the attenuation
factor αtrans in ray amplitude when a ray travels through a
material is given by

αtrans = exp

(
−2πκext

λ0
z

)
, (7)

where λ0 is the wavelength of the simulated radar signal, and
z is penetration depth. This exponential decay needs to be
implemented manually within the shader.

Moreover, the amplitude reflectance of a surface Γ for a
normal incidence angle is given by:

Γ =

∣∣∣∣ηref1 − ηref2ηref1 + ηref2

∣∣∣∣ , (8)

where ηref1 and ηref2 are the real index of refraction of the
materials. Fortunately, the reflectance is calculated natively
within Cycles for all angles of incidence, so it is not necessary
to reimplement it in the shader.

Some works on the fields of Physics and Chemistry, as
well as some studies in the topic of ground penetrating radar,
provide tables of measured ηc [10] or εr [11] of a material
in several wavelengths. Moreover, if a measurement table is
unavailable for a certain frequency range, it is possible to use
models to interpolate values of εr [12], such as the Debye
relaxation model for dielectric materials [13].

In this study, a shader was developed for simulating the
radar materials, using Blender’s nodes editor. The shader
is used to create absorption, refraction, and reflectivity, and
therefore is used as the basis for all other materials in the
simulation. Figure 3 shows a block diagram of the proposed
shader.

The shader takes as input the material’s index of refraction
ηref , a normalized extinction coefficient (to account for model
scale), as well as specularity and roughness factors. Those
input parameters can be either set manually or by using a
Python script. The input interface of the shader can be seen
in Fig. 4.

E. Rendering and signal reconstruction

Blender can save rendered frames in a dynamic range file
format, such as Radiance HDR and OpenEXR files. These files
can store amplitude values for each color channel in floating
point, allowing the reconstruction of the signal captured by
the Blender camera in a computational environment such as
MATLAB.

Currently, the proposed simulator export amplitude and ray
traveled distance data into four separate HDR files. One pair
of files stores amplitude and ray distance for the current
simulation, as defined by the user. A second pair stores
amplitude and ray distance for a second pass of the renderer
through the scene, assuming that δtslow seconds have passed
in-simulation. This second pass is used for calculating Doppler
effects in the signal caused by movement of objects during the
δtslow interval.

The radar signal can be reconstructed by calculating a point
target signal for each pixel of the rendered frames, and then
summing the signals according to the superposition principle.
Assuming that the transmitted waveform is a chirp, the point
target signal for each pixel is given by:

spixel = A0w(τ − τ0) exp [jφ(τ − τ0)], (9)

where A0 is the signal amplitude, w is a windowing function,
φ is the signal’s phase, and τ is the time since the signal’s
emission from the transmitting antenna (fast time). Both w
and φ depend on the simulated waveform, while

A0 = ub (10)

and
τ0 =

rsum
c

(11)

are obtained from the Cycles rendering process. c is the speed
of light in vacuum.

The Doppler frequency associated with the pixel is obtained
by the variation in rsum between simulations, and it is defined
as:

fDoppler ,
rsum(t+ δtslow)− rsum(t)

δtslowλ0
. (12)

To reconstruct the signal, it is necessary to compute a
weighted sum of the contributions of every pixel in the
rendered frames. The reconstructed signal is given by:

ssum =
∑

frames

∑
pixels

Apixelspixel, (13)

where Apixel is the weight of the pixel in the weighted sum.
Due to perspective projection, objects further away from the
camera occupy a smaller area in the rendered image. Therefore
it is necessary to compensate this effect by defining the weight
as

Apixel = r2. (14)

III. RESULTS

A. Simulated environment

A simple scene was modeled to demonstrate the simulator
capabilities, such as the simulation of multipath propagation,
material penetration and Doppler effects in the signal. The



XXXVIII SIMPÓSIO BRASILEIRO DE TELECOMUNICAÇÕES E PROCESSAMENTO DE SINAIS - SBrT 2020, 22–25 DE NOVEMBRO DE 2020, FLORIANÓPOLIS, SC

Fig. 3. Block diagram of the shader developed for radar simulations.

Fig. 4. Radar shader input interface.

scene comprises a monostatic radar and two large immobile
objects, positioned at 1 km and 2.5 km away from the radar.

Between the two larger objects, a small object was placed
as a target, moving away from the camera at a velocity of 10
m/s. The emitter and target were positioned 100 m above the
surface, represented by a square plane.

The larger objects were assigned partially transparent mate-
rials to demonstrate material penetration effects modeled in the
simulator. The target and floor were assigned highly reflective
materials, also for demonstration purposes.

Figure 5 shows the considered scene. The scene was mod-
eled on a scale of 1 Blender unit to 100 meters.

Fig. 5. Scene modeled for the experiment.

Table I lists the main parameters used in the simulation.

B. Simulation results

The scene was rendered in 21 frames, with each frame
simulating a 250 m subsection of the scenery. Figure 6 shows

TABLE I
SIMULATION PARAMETERS.

parameter value units

Obj. 1 and 2 complex IOR 1.4 + j1.0 -
Target complex IOR 104 + j104 -

Pulse Repetition Frequency 1000 Hz
Sampling Frequency 60× 106 Hz
Center Frequency 5.3× 109 Hz
Chirp Duration 2.5× 10−6 s

FM rate 20× 1012 Hz/s

three of the rendered frames, showing each one of the three
objects in the scene illuminated by the emitter.

Fig. 6. Examples of frames rendered by Cycles.

After rendering, a Matlab script was used for reconstructing
the signal captured by the camera. The reconstructed signal is
shown in Fig. 7. Figure 8 shows the compressed signal after the
matched filter. It can be seen on both figures that the objects in
the scene have caused peaks in the received signal, at the same
distances as they were placed in Blender, thus demonstrating
that the simulator can measure target distances appropriately.

Figure 9 presents a range Doppler power spectrum of the
signal. The stripe at 0 Hz corresponds to echoes of the static
objects in the scene (the surface plane and the two larger
objects), while the moving target appears as a single dot, at
the left side of the diagram.

IV. CONCLUSION

This paper presented how the Blender Cycles path tracer
can be used as a radar simulator, allowing the user to recreate
complex scenery using the Blender modeling tools and then



XXXVIII SIMPÓSIO BRASILEIRO DE TELECOMUNICAÇÕES E PROCESSAMENTO DE SINAIS - SBrT 2020, 22–25 DE NOVEMBRO DE 2020, FLORIANÓPOLIS, SC

Fig. 7. Signal synthesized in the simulation.

Fig. 8. Matched filter output for the synthesized signal.

Fig. 9. Simulated radar power spectrum

extract information on how radar echoes would return in that
scenario. The Python interface available in Blender could

allow the implementation of complex tasks, for example,
generating synthetic radar data to be used as input of machine
learning and deep learning algorithms.

In its current form, the simulator possibly could be used
for simulating SAR and ground-penetrating radar, as radar
penetration and multipath propagation can be modeled in
the simulation. Also, moving target indication (MTI) radar
applications such as airspace surveillance can be simulated as
well [14]. However, it is recommended for these applications
to switch the Blender output files from Radiance HDR files to
OpenEXR files, as those allow for higher precision.

Some constraints are imposed on the simulator in caustics
and nonlinear modeling, which are current limitations of the
Cycles engine.

This simulator is still under development. We expect to
make the simulator (Blender files, scripts, and manuals) avail-
able for download at ITA’s Electronic Warfare Laboratory
webpage, free of charge, once the project is sufficiently
mature.

ACKNOWLEDGMENTS

The authors are grateful for the financial support provided
by the Brazilian Council for Scientific and Technological
Development (CNPq) and the company IACIT. We also would
like to express our gratitude to the Blender community, whose
combined efforts shaped Blender into the powerful tool that it
is today.

REFERENCES

[1] J. Agnarsson, Simulation of a radar in Flames: a ray based radar model.
Master’s Thesis, Uppsala university, 2013.

[2] C. Liebe, P. Combeau, A. Gaugue, Y. Pousset, L. Aveneau, R. Vauzelle,
J. M. Ogier, “Ultra-wideband indoor channel modelling using ray-tracing
software for through-the-wall imaging radar,” International Journal of
Antennas and Propagation, 2010.

[3] S. J. Auer, 3D Synthetic Aperture Radar Simulation for Interpreting
Complex Urban Reflection Scenarios. Doctoral Thesis, Technische Uni-
versitat München, 2011.

[4] M. Ouza, M. Ulrich, B. Yang, “A Simple Radar Simulation Tool for 3D
Objects based on Blender,” The 18th International Radar Symposium
IRS 2017, pp. 1-10, 2017.

[5] C. Romero, High Resolution Simulation of Synthetic Aperture Radar
Imaging. Master’s Thesis, California Polytechnic State University, 2010.

[6] Blender Documentation Team, Cycles Introduction. Available in:
https://docs.blender.org/manual/en/latest/render/cycles/introduction.html.

[7] Blender Foundation, Cycles Features. Available in: https://www.cycles-
renderer.org/about/.

[8] R. Sedman, How to calculate for every ray the total distance it
has traveled from camera to emitter. October 2017, available in:
https://blender.stackexchange.com/a/91760.

[9] M. S. Dresselhaus, Solid state physics part II optical properties of solids.
Lecture Notes, Massachusetts Institute of Technology, Cambridge, MA,
2001.

[10] D. J. Segelstein, The complex refractive index of water. Doctoral Thesis,
University of Missouri, 1981.

[11] H. J. Liebe, G. A. Hufford, T. Manabe, “A model for the complex
permittivity of water at frequencies below 1 THz,” International Journal
of Infrared and Millimeter Waves, vol. 12, issue 7, pp. 659-675, 1991.

[12] V. M. Radivojević, S. Rupčić, M. Srnović, G. Benšić. “Measuring
the Dielectric Constant of Paper Using a Parallel Plate Capacitor,”
International journal of electrical and computer engineering systems,
vol. 9, issue 1, pp. 1-10, 2018.

[13] H. M. Jol. Ground penetrating radar theory and applications. Elsevier,
2008.

[14] R. F. Costa, D. S. Medeiros, R. B. Andrade, O. Saotome, R. Machado.
“Aplicação de Simulador Radar Baseado em Blender Cycles em vig-
ilância de espaço aéreo,” XXII Simpósio de Aplicações Operacionais
em Áreas de Defesa, pp. 11-16, 2020.


