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Abstract—The behavior of variable step-size least-mean-square 
(VSSLMS) algorithms is strongly affected by measurement 
noise. Thereby, aiming to maintain an adequate performance 
of these algorithms, their parameters must be adjusted 
whenever changes occur in the signal-to-noise ratio (SNR) of 
the adaptive system. A well-known VSSLMS algorithm based 
on error correlation provides a performance enhancement for 
low SNR environment; however, its immunity to measurement 
noise changes is still poor. This paper presents a new non-
parametric variable step-size normalized LMS (VSS-NLMS) 
algorithm with control parameter based on error correlation. 
This approach is very robust to measurement noise changes, 
not requiring any manual adjustment of algorithm 
parameters. Numerical simulation results confirm the 
effectiveness of the proposed algorithm, considering a system 
identification problem. 

Keywords—Adaptive filters, adaptive signal processing, 
variable step-size least-mean-square (VSSLMS) algorithm. 

I.  INTRODUCTION 
The least-mean-square (LMS) algorithm is one of the 

most popular and used adaptive algorithms in widespread 
applications. This strength is due to its low computational 
complexity, robustness, and very good stability 
characteristic, among other attributes [1]. Such advantages 
have made the LMS algorithm adequate for different 
applications, such as system identification, active 
noise/vibration control, echo cancellation, channel 
equalization, among others [2]. The standard LMS 
algorithm uses a fixed step size, which is determined by 
allowing for a trade-off between convergence speed and 
misadjustment error. A large step-size value leads to a faster 
convergence (providing the maximum value to guarantee 
algorithm stability is not violated) along with a larger 
misadjustment. Conversely, a small step size provides a 
small misadjustment at the expense of a slower 
convergence. To overcome this trade-off, variable step-size 
LMS (VSSLMS) algorithms have been proposed in the 
literature. All existing VSSLMS algorithms have as 
common feature to use a large step size at the beginning of 
the convergence process and reducing it as the steady-state 
convergence is approached [3]-[22]. The adjusting law of 
the variable step size can be based on different criteria. For 
instance, in [3], the proposed VSSLMS algorithm has its 
step size adjusted according to the gradient of the square-
error signal. The central idea of this approach is that the 

higher the value of the gradient the larger the distance from 
the minimum MSE (MMSE). Therefore, the step size must 
be larger to speed up convergence. Conversely, for a lower 
value of the gradient, the smaller should be the step size for 
reducing the final misadjustment error. Other algorithms 
based on gradient can be found in [4]-[10]. In general, such 
a class of algorithms is harmed by the presence of gradient 
noise, leading to an increase of the steady-state excess MSE. 

Another strategy, proposed in [11], considers the 
instantaneous square error for adjusting the step size in 
VSSLMS algorithms. Variations of this method are 
presented in [12]-[13]. Algorithms of this class undergo a 
straightforward interference of measurement noise, since the 
variance of this noise is inserted into the squared error 
signal. A third method to update the step size is based on the 
error autocorrelation function [14]. Such a function is a 
reliable measure of nearness to the MMSE, allowing the 
algorithm to effectively achieve the step-size adjustment. 
Further strategies of VSSLMS algorithms consider the 
absolute adaptation error [15]-[16], error vector 
normalization [17], absolute values of the weight vector 
coefficients [18]-[20] and other methods [21]-[22]. In most 
of such approaches, the presence of measurement noise 
degrades the performance of the algorithms. 

As a general matter, a good number of VSSLMS 
approaches require the adjustment of several algorithm 
parameters. In most cases, this is made by trial-and-error 
procedure. Another fact to consider is the dependence of the 
step-size adjustment on the measurement noise. Thereby, 
whenever the noise changes, the algorithm parameters 
should be readjusted. If we take into account that the 
variance of measurement noise is generally unknown and 
variable along time in practical applications, this procedure 
reveals to be ineffective. 

In [11], a VSSLMS algorithm based on the 
instantaneous square error is discussed. This algorithm has 
been widely used, presenting a satisfactory performance in 
most applications. However, for low SNR environment, the 
algorithm performance degrades, since both the step-size 
adjustment and the misadjustment error are seriously 
affected by the measurement noise. A modification of this 
algorithm is proposed in [14], enhancing its performance for 
both low SNR and white measurement noise. Although this 
algorithm presents a better performance under certain 
operating conditions, it still has not improved its immunity 
to measurement noise (which implies that changes in the 



 

algorithm performance occur whenever the measurement 
noise variance changes, unless a new parameter setting is 
made). 

In this work, a non-parametric variable step-size 
normalized LMS (VSS-NLMS) algorithm based on the error 
correlation is proposed. The aim of this algorithm is to 
enhance the immunity to measurement noise of the 
algorithm given in [14], without the need for parameter 
adjustment. Numerical simulation results considering a 
system identification problem verify the performance of the 
proposed algorithm. 

II.  PROPOSED ALGORITHM 
This section describes the proposed algorithm which 

belongs to the class of error-correlation-based algorithms. 
One of the first algorithms of this class, given in [14], was 
devised aiming to improve the performance of the algorithm 
based on instantaneous square error, introduced in [11], for 
low signal-to-noise ratio (SNR) environment. Such an 
enhancement can be achieved only through a proper 
parameter adjustment, which implies to know the variance 
of additive measurement noise in advance. However, this 
information is not usually available in practice. Then, to 
achieve an improved version of the algorithm given in [14], 
we propose here a new error-correlation-based non-
parametric VSS-NLMS algorithm. Such an approach 
enhances the algorithm robustness against measurement 
noise variance changes. 

Before proceeding, a brief description of the algorithms 
given in [11] and [14] is presented. For such, let us consider 
a system identification scheme depicted in Fig. 1. 

The unknown system output is 

 T
o( ) ( ) ( )d n n z n= +w x  (1) 

where T( ) [ ( ) ( 1) ( 1)]n x n x n x n N= − − +x  denotes the 
input vector with { ( )}x n  being a zero-mean Gaussian 
process with variance 2σ ,x  ( )z n  is a white Gaussian noise 
with variance 2σ .z  Vectors ow  and ( )nw  denote, 
respectively, the unknown plant and adaptive coefficients, 
both with dimension .N  

The error signal is then 

 T( ) ( ) ( ) ( )e n d n n n= − w x  (2) 

and the weight update equation [2], 

 ( 1) ( ) ( ) ( ) ( )n n n e n n+ = + μw w x  (3) 

where ( )nμ  is the variable step size. A necessary condition 
to guarantee stable operation of the algorithm is given by 
[1] 
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where T[ ( ) ( )]E n n=R x x  is the input autocorrelation 
matrix. 
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Fig. 1. Block diagram of a system identification problem. 

A. Instantaneous Square Error Based Algorithm 
This algorithm, described in [11], has the variable step 

size updated according to the following rule: 

 2( 1) ( ) ( )n n e nμ + = αμ + γ  (5) 

where α  and γ  are positive control parameters. In this 
algorithm, a large error signal increases the step-size value, 
resulting in a faster convergence; whereas a small one 
decreases the step size, leading to a smaller misadjustment 
[11]; however, as the error signal is contaminated by 
measurement noise, the algorithm becomes strongly 
dependent on this noise, reducing its performance for a low 
SNR environment. 

B. Error Correlation Based Algorithm 
This algorithm, discussed in [14], adjusts the variable 

step size based on the correlation between ( )e n  and 
( 1)e n − , instead of the instantaneous square error 2 ( ),e n  as 

used in [11]. This modification improves the algorithm 
performance in the presence of uncorrelated measurement 
noise. In this approach, the variable step-size update 
equation is given by 

 2( 1) ( ) ( )n n p nμ + = αμ + γ  (6) 

where α  and γ  are positive control parameters and ( )p n  
is smoothed error correlation estimated by 

 ( ) ( 1) (1 ) ( ) ( 1)p n p n e n e n= β − + − β −  (7) 

with β  a positive control parameter. Note that this 
algorithm has three control parameters, each of them with 
different impact on the algorithm behavior. 

C. Non-Parametric VSS-NLMS Algorithm 
The previous algorithm brings to light a strong 

dependence on measurement noise, compelling to modify its 
parameters, particularly ,γ  whenever the noise level 
changes. If parameter γ  remains constant, the algorithm 
performance changes substantially with different SNR 
values. Moreover, the adjustment of γ  parameter is usually 
made by a trial-and-error procedure, being a hard task in 
most of practical applications. 



 

Aiming to make the algorithm more robust for both 
measurement noise and input signal power variations, 
without the need for parameter adjustment, a non-
parametric VSS-NLMS algorithm is proposed. Thus, the 
step-size adjustment rule is given by 

 T
( )μ( )

( ) ( )
nn

n n
α=

x x
 (8) 

where ( )nα  is a variable control parameter, which is given 
by  

 
2

( )( )
( )

p nn
q n

⎡ ⎤
α = ⎢ ⎥

⎣ ⎦
 (9) 

with ( )p n  denoting the error correlation estimate obtained 
from a low-pass filter, expressed as 

 ( ) ( 1) (1 ) ( ) ( 1)p n p n e n e n= β − + − β −  (10) 

and ( )q n  the smoothed squared error signal, given by 

 2( ) ( 1) (1 ) ( )q n q n e n= β − + − β  (11) 

where β  is a constant close to unity. Note that here β  is not 
a parameter which requires adjustment; it is a constant close 
to unity, for example, equal to 0.99.  Because of this fact, 
the algorithm is said to be non-parametric. 

The adjustment rule (8) works as follows. In the 
beginning of the convergence process the correlation 
between ( )e n  and ( 1)e n −  is approximately equal to 2 ( ),e n  
making ( ) 1,nα →  thereby, speeding the algorithm 
convergence. As steady state is approached, the error 
correlation tends to zero and the signal 2 ( )e n  tends to the 
variance of the measurement noise, making the parameter 

( )nα  close to zero, reducing thus the final misadjustment 
error. 

III. SIMULATION RESULTS 
This section presents the numerical simulation results 

comparing the performance of the proposed VSS-NLMS 
algorithm with the ones presented in [11] and [14]. For 
such, a system identification problem is considered. Results 
obtained through the Monte Carlo (MC) method (200 
independent runs) show the excess mean-square error 
(MSE), given by 2{[ ( ) ( )] },E e n z n−  and the step-size 
evolution μ( )n  for all three algorithms. In addition, the 
control parameter evolution ( )nα  of the proposed algorithm 
is shown. 

The plant used has 32 coefficients, given by a scaled 
Hanning window function, enforcing o|| || 1.=w  The input 
data used is a zero-mean Gaussian correlated signal, 
obtained from an AR(1) process given 
by ( ) ( 1) ( ),x n ax n u n= − +  with 0.9,a =  2 1,xσ =  and ( )u n  
being a white Gaussian noise with variance 2 0.19.uσ =  The 
eigenvalue spread of the autocorrelation matrix of the input 

signal is 266.5.χ =  The maximum step-size value is limited 
to 0.003  for all algorithms. The parameter adjustment of 
the algorithms presented in [11] and [14] is adjusted 
(manually) only once, considering 2 0.001zσ =  
(SNR 30dB),=  in such a way that all algorithms have the 
same final excess MSE equal to 50dB.−  After that, 
simulations are repeated (without parameter adjustment), 
considering two different additive noise variances, i.e,. 

2 0.00001zσ =  (SNR 50dB)=  and 2 0.1zσ =  (SNR 10dB).=  
Fig. 2 shows the evolution of the excess MSE, variable 

step size, and control parameter ( ).nα  In this simulation, 
algorithms are adjusted such that the same error in excess is 
obtained. Note from this figure that the proposed algorithm 
performs as well as the ones given in [11] and [14]. The 
step-size evolution curve points out that the maximum 
specified value of the step size is reached for the three 
algorithms. We also observe that the control parameter 

( )nα  is initially close to 1, tending to zero as the MMSE is 
approached [see Fig. 4(c)]. 

Fig. 3 shows the excess MSE, variable step size, and 
control parameter evolution as the SNR is increased by 
reducing the variance of the additive measurement noise. 
Note that now the algorithms have no parameter adjustment. 
Since both reference algorithms ([11] and [14]) use the 
variance of the additive noise to speed up their convergence, 
as this parameter is reduced the parameter γ  should be 
increased. If this parameter is maintained constant (fixed), 
the performance of such algorithms are degraded, as shown 
in Fig. 3. Note that the performance of the proposed 
algorithm is much better in this condition. 

Fig. 4 shows the excess MSE, variable step-size, and 
control parameter curves as the SNR is reduced by 
increasing the variance of the measurement noise. Now, 
parameter γ  should be reduced in both [11] and [14] 
algorithms, aiming to maintain the same performance as in 
Fig. 2. Since no parameter is adjusted, these algorithms are 
forced to work (along the time) with a larger step-size value, 
leading to a very high steady-state misadjustment. Again, 
the proposed algorithm shows higher immunity to an 
increase of the measurement noise variance. 

Analyzing presented simulation results, we verify that 
the proposed algorithm maintains very good performance 
for all considered scenarios (different measurement noise 
levels). On the other hand, the algorithms given in [11] and 
[14] are very sensitive to measurement noise changes. 

IV. CONCLUSIONS 
This paper presented a non-parametric VSS-NLMS 

algorithm with control parameter based on the error 
correlation. The new approach improves significantly the 
algorithm immunity to measurement noise changes, 
outperforming other algorithms of the literature. By using a 
system identification problem, the proposed algorithm was 
assessed for both correlated input signal and different 
measurement noise levels. 



 

Iterations
0 1000 2000 3000 4000 5000

10

-40

0

-10

-20

-30

-60

-50

Ex
ce

ss
 M

SE Approach [11]

Approach [14]

Proposed algorithm

 
(a) 

-× 310

Iterations

410310210110010

3.5

1.5

3.0

2.5

2.0

0

1.0

0.5

St
ep

-s
iz

e 
ev

ol
ut

io
n,

 
(

)
μ

n

Approach [11]

Approach [14]

Proposed
algorithm

 
(b) 

Iterations

Pa
ra

m
et

er
 

(
)

α
n

1.0

0.3

0.6

0.5

0.4

0

0.2

0.1

0.7

0.8

0.9

0 500 1000 2000 2500 30001500
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Fig. 2. Simulation results for 2 0.001zσ = (SNR 30dB).=  (a) Excess MSE 
curve. (b) Variable step-size evolution. (c) Control parameter evolution. 
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Fig. 3. Simulation results for 2 0.00001zσ = (SNR 50dB).=  (a) Excess 
MSE curve. (b) Variable step-size evolution. (c) Control parameter 
evolution. 
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Fig. 4. Simulation results for 2 0.1zσ = (SNR 10dB).=  (a) Excess MSE 
curve. (b) Variable step-size evolution. (c) Control parameter evolution. 
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