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On the Semblance Based TDOA Algorithm for
Sound Source Localization: a parametric study
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Abstract— Recently proposed, the Semblance Based TDOA
Algorithm for Sound Source Localization uses a cross-correlation
function to determine the direction of a sound source. This
article aims to perform a parametric analysis of the algorithm,
applying a hypothesis test to determine the importance of each
parameter. The results show that, regarding the three original
parameters of the algorithm, one presented small sensitivity and
can be discarded, and the remaining can be defined based on
the desired resolution level, or fixed at low values (at cost of a
slower runtime).
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I. INTRODUCTION

Many algorithms have parameters that can be previously
adjusted in a given configuration which is believed to maxi-
mize their performance in a specific task. This is advantageous
because it allows the user to perform fine-tuning of the
algorithm, but also results in an additional effort to be used:
the task of adjusting these parameters, which, in many cases,
may require additional information, or may not be trivial.

The simplest way to select parameters is to use ad-hoc
values, which can be based on other values seen in the
literature or on a heuristic process. Another way to make this
selection is to use some parameter adjustment method, such
as gridsearch or manual search [1].

The parameter adjustment step aims to improve the effi-
ciency of the algorithm when solving the problem and can be
divided into two complementary methodologies: optimization
and parametric analysis. The optimization consists of finding
a set of values for the parameters that make the algorithm
more efficient in relation to a cost function, being, therefore, a
criterion for maximizing performance. The parametric analysis
consists of determining whether the alteration of a given
parameter influences the result of the algorithm and how
much the result is sensitive to the variation of that parameter
(sensitivity analysis), being, in turn, a criterion of economy of
the variables used in the model. Since numerical optimization
is, in general, a computationally expensive process [2], using
a parametric analysis allows to search, in a constrained space
of the parameters, relationships of the parameters and their
relation with the overall performance, then use the results to
get insights of the behavior of the algorithm in function to the
configurations, with the expectation that the analysis leads to
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an elimination of parameters with low sensitivity or which not
influence significantly the algorithm performance.

Recently, an algorithm for the sound source localization
(SSL) task was proposed, by using a cross-correlation function
common in seismic signal processing [3], [4], called Sem-
blance Based TDOA Algorithm for Sound Source Localization
(SB-SSL) [5]. The SSL problem is strongly dependent of the
environmental conditions during audio capture (such as noise,
echo, and interference), as well as the dynamic nature of the
sound sources (if they are moving in relation to the capture
system and if they produce constant, intermittent or sudden
sounds). To deal with this variability of scenarios, SB-SSL
was proposed with three parameters that can be adjusted by
the user.

Our objectives are to analyze the parameters of the SB-
SSL algorithm and check if (i) there is a subset of parameters
that can have a fixed value without impacting performance,
(ii) evaluate how the method’s accuracy varies when each
parameter is modified, and (iii) to draw attention to the
importance and benefits that sensitivity analysis can provide
when using a computational method.

Our contributions are the elaboration of a methodology
to analyze the influence of different parameters (that can be
extended to other algorithms), the application of the proposed
methodology in a study of case of the SB-SSL algorithm, and
a systematic way of manipulating audios to build a data set.

The remaining of this paper is organized as follows. In
Section II, the target algorithm of the study is briefly pre-
sented, with explanations to its parameters. In Section III, the
methodology for evaluating the parameters is presented, along
with the data used for the work. In Section IV, the numerical
results obtained are presented, and in Section V, this results
are discussed. Finally, in Section VI, the conclusion about the
parameters is made.

II. SEMBLANCE BASED TDOA ALGORITHM

The SB-SSL algorithm is based on an array of k micro-
phones (k ≥ 2) as a signal capture and input tool, spaced
at an appropriate distance, which is related on the sampling
rate, so that a sound signal — which is assumed to have a flat
wavefront — can be captured by the microphones at different
time stamps. The spatial arrangement of the microphones plays
an important role in disambiguation of the estimated location
(i.e. if the array of microphones are organized in a linear
form, it will not be able to determine the exact elevation, as
both positive and negative elevations would have the same
correlation).
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The determination of the sound source direction is done by
creating a uniformly spaced grid of possible direction values
for the sound source then, for each direction, a delay related to
the position of the channel in the microphone array is applied
to each channel of the signal. Taking as a possible direction
kd(Θd,Φd) ∈ R3, which can be parameterized by azimuth
Θd ∈ [−π, π] and elevation Φd ∈

[
−π2 , π2

]
, the corresponding

delay for the microphone located at mk ∈ R3, using as a
reference point 0 = [0,0,0]T [6], is calculated by:

τd,k = −kd ·mk

v
, (1)

where v is the speed of sound, and · denotes the internal
product operation.

Then, the Semblance Coherence function Zd is calculated,
which determines a metric of energy relationship between the
channels. For each pair (Θd, Φd) in a uniformly spaced grid,
with spacing given by the ∆ parameter, Zd is calculated by:

Zd =

∑
n |
∑
k ŝk(n)|2

Nr
∑
n

∑
k |ŝk(n)|2

, (2)

where k denotes the microphones, n denotes the time samples,
Nr is the total number of sensors, ŝk(n) = sk(n − τd,k) is
the signal at time n of the k-th microphone after the time
correction τd,k.

By combining the correlation measures for each tested
direction, a matrix of coherence values is created, called the
Semblance Panel. The row and column of the element with the
highest value in this matrix indicates the values of (Θd, Φd)
for which there is maximum consistency between the signals
received in each microphone.

Although a single Semblance Panel can be obtained from an
arbitrarily sized audio, it was observed that splitting the audio
into windows provide a higher accuracy [5]. In this case, the
set of panels obtained are recombined using the max pooling
method, where each value of the final panel at position (θi, φj)
is the maximum value at the same position among all panels
obtained for each window.

In the original paper [5], the authors present three parame-
ters that can be adjusted, presented below with their findings:

• Delta (∆) - scan step to generate the uniformly spaced
grid. This value determines the maximum angular resolu-
tion that the search grid can have. The best value obtained
was 10◦, and in general, smaller values did not present a
numerically significant difference in the result;

• FrameSize (w) - the size of the windows that the
algorithm will use for each attempt to estimate the sound
source — during single data acquisition, several windows
are created, the semblance panel is generated for each
one and, finally, the various windows are recombined by
max pooling. The best value was 0.064s (the lowest value
allowed in their analysis), and the authors concluded that
the lower the value for this parameter, the better the result;

• Overlap (δ) - the size of the overlap between each
window, causing consecutive windows to share part of
the signals that were used to compute the correlation in
the adjacent and underlying windows. A degree of 20%
overlap had better results.

Despite that the authors had performed a gridsearch process
to determine the best parameter values, the work had a limited
database, not covering several possible scenarios.

III. METHODOLOGY

This work uses two databases: a validation base and a
test base. The validation base was used to obtain results
from each possible configuration allowed during the process
of gridsearch, and is composed of 150 audios synthetically
generated; and a test base, which contains 300 real audios,
recorded with a drone, used to obtain results on non-artificial
data. The domain problem of our data sets remained the same
as the original paper [5] — finding a speech source using
signals from an 8-microphone array attached to a drone.

As a measure of performance, the Equation 3 — Great
Circle Distance (GCD) [7] — was used, which computes the
smallest angle between two points on the surface of a sphere,
where θ1 and θ2 represents the real and predicted azimuth, φ1
and φ2 the real and predicted elevation, and ∆θ is equal to
the absolute difference of θ1 and θ2.

Lastly, a hypothesis test was also performed between the
results obtained, in order to determine which significant differ-
ences should be considered during the discussion of the results.
The next items describe in detail each mentioned aspect of the
methodology.

A. Validation and Test Data

We used data from the DREGON data set [8], in which sets
of recordings made with an arrangement of 8 microphones
coupled to a drone are available. They provide a set of 300
audios of speech containing ego-noise (from drone rotors)
and a set of 3 audios of speech without ego-noise, both sets
for static sources. Further, they provided a set of audio with
only ego-noise for different rotors velocity. The set of 300
audios was used only in the test partition, to obtain results
that correspond to the performance in a real scenario. As
we observed that the original data presents a low variety
of directions from the sound source, being able to skew the
model and favor some specific configurations, we increase the
number of directions in the 3-audios set performing an audio
synthesis stage. It was necessary to create a set of audios for
validation — that was achieved by creating synthetic audios
based on the combination of a set of noise-free audios and a
set of pure ego-noise audios made with the same equipment
and applying a reverse TDOA model to make new source
positions for each created audio. Thus, the validation partition
have 150 audios, quantity that allows obtaining significantly
large samples for the application of hypothesis tests, while
considerably decreasing the algorithm validation time for each
possible configuration. Figure 1 shows the directions of the
two sets. Note that while the validation set have 150 audios,
the real data partition (test) contains 300 audios but with only
12 different directions.

For the synthetic audio generation, a combination was made
between 3 noise-free audios, with an active speech source and
a known true direction; and pure noise recordings of single
drone rotors at different speeds. The speech audios already had
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∆σ = arctan

(√
(cosφ2 sin(∆θ))2 + (cosφ1 sinφ2 − sinφ1 cosφ2 cos(∆θ))2

sinφ1 sinφ2 + cosφ1 cosφ2 cos(∆θ)

)
. (3)
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Fig. 1. True directions of synthetic and real data sets.

a direction, being necessary to align the signals before drawing
a new random direction. For this, the channels go through a
process of upsample, increasing the original sampling rate of
44.100 kHz by 4 times to provide smoothed signals when
compensating the delays. After that, a random direction is
drawn, the delay is computed for that corresponding direction,
and then applied to the signals. Finally, the signal goes through
a downsample, returning to its original sample rate, and is
combined with 4 noises, each corresponding to the noise
generated by one isolated rotor (the combination of the 4
noises represents the 4 rotors running at different speeds),
where each rotor has its speed drawn at random, and the noise
is cut at a random point for each noise channel. To combine
the speech signal and the noise, both are normalized and a
randomly selected signal-to-noise ratio (SNR) between [-25,
12]. All random draws are made with equal probabilities, in an
attempt to create a uniformly distributed database. As a result,
there is no direct control over the directions and relationships
between signal and noise on the generated data.

B. Gridsearch
The gridsearch is a simple algorithm optimization tech-

nique, easy to implement and capable of giving better results
than manual optimization, and is reliable in small search
spaces, although in larger search spaces the random search has
better performance [1]. The random search is able to find more
precise values, not fixed to the grid defined by the possible
values that the parameters are allowed to assume. Consid-
ering that this work is trying to analyse a small number of
parameters, a gridsearch is satisfactory, as it has a reasonable
execution time.

First, we defined possible values that each of parameter can
assume, summarized in Table I. These values were determined
so that the range with the lowest values was covered with
higher resolution than the range with the highest values, where
it is believed that the best settings are concentrated, taking as
reference the original paper [5].

The gridsearch process will evaluate, for each possible con-
figuration, the mean error over the validation audios. Finally,

TABLE I
POSSIBLE CONFIGURATIONS FOR EACH PARAMETER.

Parameter Range

∆ {5, 7.5, 15, 30} degrees (◦)
w {0.064, 0.128, 0.256, 0.512, 1.024} seconds (s)
δ {10, 20, 30, 40, 50} %

the configuration that presents the best configuration will be
performed for the test partition as a sanity check.

C. Parametric Analysis

The parametric analysis will be done by comparing the
results over the validation data set using the Wilcoxon Signed-
Ranked hypothesis test between related samples. It is a non-
parametric hypothesis test, not requiring assumptions about the
behavior of the sample distribution [9], in contrast to paramet-
ric tests, such as the Student’s t-test [10], which assumes that
the samples come from a normal distribution. The Wilcoxon
test estimates the acceptance of the null hypothesis (that the
difference in the distribution means is given at random) or
the alternative hypothesis (that there is, in fact, a statistically
relevant difference between the samples), where the returned
p-value is used as an indicator of acceptance or rejection of
the null hypothesis. In the literature, a p-value ≤ 0.05 is used
as a strong indicator over the alternative hypothesis.

The hypothesis test will be done to provide statistical
evidence when there is or is not a statistical difference between
the observed results for different parameter configurations
of SB-SSL. Although alternative methods rather than the
Wilcoxon test have been proposed, this test is still widely used
in the literature and has implementations available in several
programming languages.

IV. RESULTS

Considering the possible values for each parameter, in total
there are 125 configurations. The gridsearch created and eval-
uated each configuration with the validation data, with their
average error reported in Figure 2, with the best configuration
underlined. Once the best configuration was determined, all
the others were tested by the Wilcoxon test and those that had
a p-value greater than 0.05 were marked with an asterisk.

Notice that, for the best configuration, the parameters as-
sumes the values ∆ = 7.5◦, w = 0.064s, and δ = 0.5%,
with an average error of 12.84◦. Running the algorithm with
this configuration for the test data, the average error obtained
is 15.86, being reasonable to argue that the synthetic data
presents robustness and captures features similar to the real
audios.

To check the relationships between the best and worst
configurations, Figure 3 presents a graph known as radar plot
(or spider plot), used to visualize multidimensional data, where
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Fig. 2. Heatmaps sharing the same colorscale. The best configuration is hightlighted underlined, and every other configuration that had a p-value> 0.05 are
marked with an asterisk.
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Fig. 3. Radar plot grouping the 10 best and worst configurations.

each axis represents a parameter with it’s possible values,
and a configuration is represented by a closed polygon that
intercepting each axis at the values that the configuration
assumes.

Yet, another way to measure performance is to pair all
settings where only one parameter changes to the next allowed
value — analysis one-at-a-time — and calculate the mean
percentage of the increase or decrease in performance. As the
settings are paired, the statistical test can be applied here again.
The results are reported in Table II.

TABLE II
MEAN PERCENTAGE OF THE PERFORMANCE CHANGE AS A SINGLE

PARAMETER IS VARIED, INCREMENTED ITERATIVELY THROUGH EACH

ALLOWED VALUE, WHERE THE ASTERISK INDICATES A p-value > 0.05.

∆ (smallest: 5.0) 7.5 10.0 15.0 30.0

Relative to previous value -0.85927 -0.72547* -4.0949 -30.87169
Relative to smallest value -0.85927 -1.59097 -5.75102 -38.39815

w (smallest: 0.064) 0.128 0.256 0.512 1.024

Relative to previous value -4.78447 -11.41239 -2.07177* -8.31954
Relative to smallest value -4.78447 -16.74288 -19.16152 -29.07522

δ (smallest: 0.1) 0.2 0.3 0.4 0.5

Relative to previous value -0.10279* 1.75658 -0.12018* -0.62796*
Relative to smallest value -0.10279* 1.65559* 1.5374* 0.91909*

V. DISCUSSION

Regarding the heatmaps in Figure 2, as there are three
parameters, each heatmap corresponds to a slice of the cube
that could be assembled for each tuple (∆i, wj , δk) corre-
sponding to a configuration — by visualizing the heatmaps
stacked, the z-axis represents the δ. Through heatmaps we
can see that small values of ∆ and w always dominate
larger values, implying that the performance increases as
those values decrease. Furthermore, considering the δ axis,
cases with a high p-value are shared (in other words, through
each heatmap, the configurations with high p-values are in
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the same positions), but considering the rows/columns that
would represent the ∆ or w axes, the same does not occur,
although it is possible to observe that almost all configurations
with ∆ = {5.0, 7.5, 10.0} presents a high p-value, implying
that this parameter is relevant to determine the algorithm
performance, but from a point on, it seems unjustifiable to
decrease even further. For ∆, the dominance of small values
can be explained, as it increases the spatial resolution and
allows to estimate the direction with a smaller error. Also
for w, considering that several windows are created, since
the speech signal is not active at all times, and may be
masked by noise in large windows, the dominance of low
values is justified. On the other hand, it seems unreasonable
to argue that δ renders any benefits, as it works by “recycling”
signals that have already been processed, a functionality that
apparently does not justify being used.

The spider plots in Figure 3 show that the best settings
always share small values for ∆ and w, but the parameter
δ assumes all except the smallest value in the range. From
this plot, given that the best solutions shares almost the same
configurations for ∆ and w, there is a strong indicator that
those two parameters are critical to the performance. Similarly,
the worst settings always have high values for ∆ and w,
and δ assumes all values allowed. In addition, it is possible
to observe in heatmaps that almost all configurations with
performance close to the best are in the region of low values
for ∆ and w.

Regarding the p-value, every configuration on the top 10
presented an asterisk on the heatmaps, indicating that this
difference is given at random, instead of having a solid
statistical evidence that they render different results. Although,
when comparing the best and the worst configurations on
heatmap, it is evident that none of them have an asterisk.
The main difference on the spider plots of best and worst
configurations leads to the conclusion that small values for ∆
and w are a requisite to a better performance.

Analyzing the Table II with the percentage of performance
variation, it is possible to see that there is a consecutive
decrease in performance as ∆ or w are increased, with the
row relative to the lowest value representing the accumulation
of performance gain. Only δ does not seem to define a pattern
of performance increase or loss, having small variations and,
generally, high p-values. It is visible that the increase of ∆
and w parameters renders a drastically performance drop.

VI. CONCLUSION

In contrast to the original article [5], our results were ob-
tained here with a larger data set, although almost all findings
are preserved. While the contributions of the original article
were the SB-SSL algorithm and an analysis of SNR level
where the algorithm can perform well, our work investigated
the parameters through the usage of statistical tests.

We can conclude that the parameter δ shows strong signs
of being unnecessary, allowing to simplify the usage of the
algorithm, in addition to simplifying the fine-tuning process,
due to the smaller number of parameters to adjust.

In addition, as initially noted by the authors, small values
of ∆ and w show better results, although the lower the values,

the higher the computational cost required, as it increases the
grid resolution (controlled by ∆) or the number of times the
grid is created (controlled by w — a small window causes a
audio to be divided into a larger number of windows, being
necessary to apply the algorithm in each one, and increasing
the number of panels to be used in max pooling).

It seems to exist a threshold where minimizing ∆ and w
renders any benefits. Since they are strongly related to com-
putational performance, an execution of the same experiments
would help to choose the appropriate values for different
application domains.

Thus, there is a clear compromise between resolution and
execution time. However, it is possible to notice from the
heatmaps that the settings, for the possible determined values,
have errors in the range of 20−25◦, which can be considered
satisfactory for some applications.

Based on the gridsearch, we were able to perform a para-
metric study at a relatively low computational cost and with
a constrained search space, finding similar conclusions from
the original paper, as well as extending it to a larger data set,
resulting the proposal of removing δ parameter from SB-SSL
algorithm.
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