Canal de Desvanecimento Sombreado Duplamente Correlacionado: Novos Resultados

Jefferson David Santos e Silva, Rausley Adriano Amaral de Souza e Michel Daoud Yacoub

Resumo— Novos resultados referentes ao modelo de desvanecimento sombreado duplamente correlacionado proposto recentemente são apresentados. Especificamente, as seguintes estatísticas são obtidas: expressões analíticas exatas para 1) a função densidade de probabilidade (FDP) conjunta, 2) a função de distribuição cumulativa (FDC) conjunta e 3) a probabilidade de indisponibilidade (PI); e expressões fechadas exatas para 4) a PI assintótica, 5) o ganho de diversidade, 6) os momentos conjuntos, 7) o coeficiente de correlação na potência, 8) a FDP marginal, 9) a FDC marginal e 10) o momento marginal.

Palavras-Chave—Distribuição bivariável Nakagami, desvanecimento sombreado, probabilidade de indisponibilidade.

Abstract—New results regarding the newly proposed doublecorrelated shadowed fading model are presented. Specifically, the following statistics are obtained: exact analytical expressions for 1) joint probability density function (PDF), 2) joint cumulative distribution function (CDF), and 3) outage probability (OP); and exact closed-form expressions for 4) asymptotic OP, 5) diversity gain, 6) joint moments, 7) power correlation coefficient, 8) marginal PDF, 9) marginal CDF and 10) marginal moment.

Keywords— Bivariate Nakagami distribution, shadowed fading, outage probability.

I. INTRODUÇÃO

Ao propagar-se através de um canal sem fio, o sinal recebido apresenta variações instantâneas ou médias da potência. Essas variações podem ocorrer como resultado do desvanecimento por multipercurso, por sombreamento ou por combinação de ambos [1]. Em função da inevitável aleatoriedade imposta ao sinal recebido, a modelagem dos canais de comunicação sem fio tem sido feita por modelos estocásticos. Como exemplo de modelos mais simples que consideram somente o desvanecimento de curto prazo citam-se Rayleigh, Rice, Nakagamim, e outros. E dentre aqueles que consideram somente o de longo prazo, lognormal e Gama [1]. Na análise de um modelo que englobe simultaneamente multipercurso e sombreamento, o chamado modelo com desvanecimento sombreado, duas estratégias diferentes têm sido adotadas em relação ao sombreamento. A primeira admite que o sombreamento atuará diretamente na potência total do sinal desvanecido, denominado modelo de desvanecimento sombreado multiplicativo. A segunda pressupõe que o sombreamento influencie somente as componentes dominantes do sinal, denominado desvanecimento sombreado na linha de visada direta (*line-of-sight*, LoS). Assim, é possível analisar um canal de desvanecimento sombreado por meio de modelos já conhecidos de curto e longo prazo bastando que altere-se a natureza dos parâmetros físicos, antes determinísticos, pertencentes ao modelo de curto prazo, tratando-os como aleatórios.

Os canais de desvanecimento sombreado têm sido frequentemente foco de diversas pesquisas em diferentes cenários de aplicação. O modelo estatístico em [2] admite que o sinal recebido é a superposição de ondas parciais cujas origens estão em objetos próximos e/ou distantes do receptor. Nesse caso, supôs-se que o espalhamento em objetos longe do receptor pode ser modelado por uma distribuição lognormal da potência recebida enquanto que o espalhamento em objetos próximos do receptor pode ser modelado por distribuições Rayleigh, Rice, lognormal, ou Nakagami-m. Em [3], é apresentada uma análise do desempenho em um ambiente com interferência co-canal operando em canais com desvanecimento Nakagamim sombreados por um modelo de canal do tipo Gama. Em [4] é feita a investigação do desvanecimento sombreado no modelo de canal κ - μ . Admite-se uma variação na LoS que está sujeita ao sombreamento de um modelo Nakagami-m. Assim, tendo cada um desses modelos teóricos ou empíricos suas qualidades particulares em relação à concordância com medidas realizadas em campo, a distribuição Nakagami-m é comumente utilizada para representar tanto o desvanecimento de curto prazo quanto o de longo prazo.

Um aspecto comum aos trabalhos anteriormente citados é a inexistência da suposição da correlação nas componentes de sombreamento ao se analisar a combinação de cópias do sinal na recepção. A aleatoriedade da potência dessas réplicas pode ser modelada por meio de distribuições bivariáveis que consideram a correlação entre elas [5]. Em especial, modelos de desvanecimento sombreado com correlação no sombreamento podem ser encontrados em [6]–[8].

Recentemente, foi proposto um modelo de desvanecimento sombreado duplamente correlacionado em que cada sinal está sujeito conjuntamente ao desvanecimento tanto de curto como longo prazo do tipo Nakagami [9]. Foram obtidas expressões – exclusivamente na forma de integral dupla – da função densidade de probabilidade (FDP) conjunta, da função de distribuição cumulativa (FDC) conjunta e da probabilidade de indisponibilidade (PI) em um sistema de diversidade do tipo combinador por seleção.

Capitalizando nos resultados em [9], este artigo tem por objetivo apresentar novos resultados referente ao modelo de desvanecimento sombreado duplamente correlacionado. Espe-

Jefferson D. S. e Silva e Rausley A. A. de Souza, Instituto Nacional de Telecomunicações (Inatel), Santa Rita do Sapucaí-MG, Brasil, e-mail: jeffersondss@mtel.inatel.br; rausley@inatel.br. Michel D. Yacoub. Universidade Estadual de Campinas (Unicamp), Campinas-SP-Brasil, E-mails: michel@decom.fee.unicamp.br. Este trabalho foi parcialmente financiado pela Fapemig, pelo CNPq contratos 308365/2017-8, pela Capes e pela RNP, com recursos do MCTIC, processo No 01250.075413/2018-04, sob o projeto Centro de Referência em Radiocomunicações (CRR) do Inatel, Brasil.

cificamente, as seguintes estatísticas são obtidas: expressões analíticas exatas para 1) a FDP conjunta, 2) a FDC conjunta e 3) a PI; e expressões fechadas exatas para 4) a PI assintótica, 5) o ganho de diversidade, 6) os momentos conjuntos, 7) o coeficiente de correlação na potência, 8) a FDP marginal, 9) a FDC marginal e 10) o momento marginal.

II. O MODELO FÍSICO

Sejam R_1 e R_2 envoltórias Nakagami- m_f , representativas do desvanecimento plano de curto prazo, dadas por

$$R_1^2 = \sum_{i=1}^{2m_{\rm f}} X_i^2 \tag{1a}$$

$$R_2^2 = \sum_{i=1}^{2m_{\rm f}} Y_i^2 \tag{1b}$$

com parâmetros $(m_{\rm f}, \Omega_1) \in (m_{\rm f}, \Omega_2)$, respectivamente. O parâmetro real e positivo $m_{\rm f}$ denota o *fator de desvanecimento* do modelo Nakagami- $m_{\rm f}$, e os parâmetros $\Omega_1 = \mathbb{E}(R_1^2) = 2m_{\rm f}\sigma_{1\rm f}^2$ e $\Omega_2 = \mathbb{E}(R_2^2) = 2m_{\rm f}\sigma_{2\rm f}^2$ denotam as potências médias dos processos R_1 e R_2 , respectivamente. As variáveis aleatórias $X_i \in Y_i$ são processos Gaussianos mutuamente independentes com médias nulas e variâncias $\sigma_{1\rm f}^2 \in \sigma_{2\rm f}^2$, respectivamente. Admite-se correlação entre os processos $X_k \in Y_j$ tal que o coeficiente de correlação normalizado $\lambda_{\rm f} = \mathbb{C}(X_k, Y_j)/(\sigma_{1\rm f}\sigma_{2\rm f})$, para k = j, e $\lambda_{\rm f} = 0$, caso contrário, sendo $\mathbb{C}(\cdot)$ o operador covariância, com $|\lambda_{\rm f}| < 1$. O coeficiente de correlação entre as potências Nakagami- $m_{\rm f} R_1^2 \in R_2^2$ é dado por $\rho_{\rm f} = \lambda_{\rm f}^2$ [5].

A modelagem do sombreamento aqui considerada tem como efeito a variação aleatória da potência média de cada uma das envoltórias R_1 e R_2 [1]. Ou seja, as potências médias Ω_1 e Ω_2 são variáveis aleatórias seguindo um dado modelo de sombreamento. Adota-se aqui o mesmo modelo utilizado na componente do desvanecimento de curto prazo dado em (1). Especificamente, sejam Ω_1 e Ω_2 variáveis Nakagami m_s , representativas do fenômeno de desvanecimento de longo prazo caracterizando o sombreamento, dadas por

$$\Omega_1^2 = \sum_{\substack{i=1\\2m}}^{2m_s} W_i^2$$
(2a)

$$\Omega_2^2 = \sum_{i=1}^{2m_s} Z_i^2 \tag{2b}$$

com parâmetros $(m_s, \Theta_1) \in (m_s, \Theta_2)$, respectivamente. Para a correta distinção do fator de desvanecimento m_f , característico do desvanecimento de curto prazo, neste artigo o parâmetro real e positivo m_s será nomeado fator de sombreamento, característico do sombreamento Nakagami- m_s . Os parâmetros $\Theta_1 = \mathbb{E}(\Omega_1^2) = 2m_s\sigma_{1s}^2 \in \Theta_2 = \mathbb{E}(\Omega_2^2) = 2m_s\sigma_{2s}^2$ denotam as potências médias dos processos $\Omega_1 \in \Omega_2$, respectivamente. As variáveis $W_i \in Z_i$ são processos Gaussianos mutuamente independentes com médias nulas e variâncias $\sigma_{1s}^2 \in \sigma_{2s}^2$, respectivamente. Em adição, admite-se correlação entre os processos $W_k \in Z_j$, gerando assim naturalmente uma correlação entre os processos Nakagami- $m_s \Omega_1 \in \Omega_2$, tal que o coeficiente de correlação $\lambda_s = \mathbb{C}(W_k, Z_j)/(\sigma_{1s}\sigma_{2s})$, para k = j, e $\lambda_s = 0$, caso contrário, com $|\lambda_s| < 1$. O coeficiente de correlação entre as potências Nakagami- $m_s \Omega_1^2 \in \Omega_2^2$ é dado por $\rho_s = \lambda_s^2$.

III. ESTATÍSTICAS CONJUNTAS

A. FDP e FDC Conjuntas Nakagami-m_f/Nakagami-m_s

Dado o modelo físico descrito na Seção II, a FDP conjunta entre duas envoltórias Nakagami R_1 e R_2 condicionadas em relação às suas respectivas potências médias pode ser representada por [10]

$$f_{R_1,R_2}(r_1,r_2|\Omega_1 = \omega_1,\Omega_2 = \omega_2) = \frac{4m_{\rm f}^{m_{\rm f}+1}(r_1r_2)^{m_{\rm f}}}{\Gamma(m_{\rm f})\omega_1\omega_2(1-\rho_{\rm f})} \\ \times \frac{e^{-\frac{m_{\rm f}r_1^2}{\omega_1(1-\rho_{\rm f})} - \frac{m_{\rm f}r_2^2}{\omega_2(1-\rho_{\rm f})}}}{(\sqrt{\omega_1\omega_2\rho_{\rm f}})^{m_{\rm f}-1}} I_{m_{\rm f}-1} \left(\frac{2m_{\rm f}r_1r_2\sqrt{\rho_{\rm f}}}{(1-\rho_{\rm f})\sqrt{\omega_1\omega_2}}\right)$$
(3)

em que $\Gamma(\cdot)$ é a função gama [11] e $I_{\nu}(\cdot)$ é a função de Bessel modificada de ordem ν [12]. Ambas as envoltórias R_1 e R_2 estão caracterizadas pelo mesmo fator de desvanecimento m_f [10], os parâmetros ρ_f e m_f são determinísticos e as potências médias Ω_1 e Ω_2 são aleatórias. Esta estratégia permite representar a influência do sombreamento sobre o canal de desvanecimento de curto prazo Nakagami por meio da aleatoriedade das potências médias. O mesmo método foi adotado em [1] aplicado a uma distribuição univariável.

A FDP conjunta das envoltórias $R_1 \in R_2$ admitindo a aleatoriedade de $\Omega_1 \in \Omega_2$ pode ser determinada por $f_{R_1,R_2}(r_1,r_2) = \int_0^\infty \int_0^\infty f_{R_1,R_2}(r_1,r_2|\omega_1,\omega_2)f_{\Omega_1,\Omega_2}(\omega_1,\omega_2)d\omega_1d\omega_2$ em que $f_{\Omega_1,\Omega_2}(\omega_1,\omega_2)$ representa a FDP conjunta de $\Omega_1 \in \Omega_2$. É possível notar que a natureza do sombreamento é determinada por meio da escolha de $f_{\Omega_1,\Omega_2}(\omega_1,\omega_2)$. Neste artigo, adotou-se a influência de um sombreamento (longo prazo) Nakagami- $m_{\rm s}$ sobre um canal de desvanecimento de curto prazo Nakagami- $m_{\rm f}$ com diversidade. Assim, basta que se caracterize tal sombreamento por

$$f_{\Omega_{1},\Omega_{2}}(\omega_{1},\omega_{2}) = \frac{4m_{s}^{m_{s}+1}(\omega_{1}\omega_{2})^{m_{s}}e^{-\frac{m_{s}\omega_{1}^{2}}{\Theta_{1}(1-\rho_{s})} - \frac{m_{s}\omega_{2}^{2}}{\Theta_{2}(1-\rho_{s})}}{\Gamma(m_{s})\Theta_{1}\Theta_{2}(1-\rho_{s})(\sqrt{\Theta_{1}\Theta_{2}\rho_{s}})^{m_{s}-1}} \times I_{m_{s}-1}\left(\frac{2m_{s}\omega_{1}\omega_{2}\sqrt{\rho_{s}}}{(1-\rho_{s})\sqrt{\Theta_{1}\Theta_{2}}}\right).$$
 (4)

Substituindo-se (3) e (4) na expressão de $f_{R_1,R_2}(r_1,r_2)$, reescrevendo as funções de Bessel como somatórios infinitos com base em [11, eq.(8.445)], reescrevendo as funções exponenciais como funções de Meijer $G_{p,q}^{m,n}(\cdot |:)$ [11] por meio de [13, eq.(07.34.03.0046.01)] e [13, eq.(07.34.03.0228.01)], resolvendo a integral a partir de [13, eq.(07.34.21.0012.01)] e após simplificações algébricas obtém-se (5), a qual representa a FDP conjunta Nakagami- m_f /Nakagami- m_s entre duas envoltórias Nakagami R_1 e R_2 correlacionadas quando as suas respectivas potências médias são processos Nakagami correlacionados. Em (5), $H_{p,q}^{m,n}(\cdot |:)$ representa a função H-Fox, cujo cálculo pode ser realizado ao se utilizar o programa disponível em [14].

A FDC conjunta de duas envoltórias Nakagami quando as suas respectivas potências médias Ω_1 e Ω_2 são aleatórias, pode ser calculada com o uso de (5) por meio de $F_{R_1,R_2}(r_1,r_2) = \int_0^{r_2} \int_0^{r_1} f_{R_1,R_2}(x_1,x_2) dx_1 dx_2$. Realizando a substituição $t_i = x_i^4$ com i = 1, 2, utilizando a propriedade da função H-Fox dada em [15, eq.(2.8)], resolvendo as integrais resultantes por meio de [15, eq.(4.18)] e após algumas simplificações

$$f_{R_{1},R_{2}}(r_{1},r_{2}) = \frac{16m_{\rm f}^{4m_{\rm s}}m_{\rm s}^{2m_{\rm s}}(r_{1}r_{2})^{4m_{\rm s}-1}(1-\rho_{\rm f})^{m_{\rm f}-4m_{\rm s}}}{\Gamma(m_{\rm f})\Gamma(m_{\rm s})(1-\rho_{\rm s})^{m_{\rm s}}(\Theta_{1}\Theta_{2})^{m_{\rm s}}} \sum_{k,l=0}^{\infty} \frac{m_{\rm f}^{4l}m_{\rm s}^{2l}(r_{1}r_{2})^{4l}\rho_{\rm f}^{k}\rho_{\rm s}^{l}}{k!l!\Gamma(m_{\rm f}+k)\Gamma(m_{\rm s}+l)(1-\rho_{\rm f})^{4l}(1-\rho_{\rm s})^{2l}(\Theta_{1}\Theta_{2})^{l}} \\ \times H_{0,2}^{2,0}\left(\frac{m_{\rm f}^{2}m_{\rm s}r_{1}^{4}}{(1-\rho_{\rm f})^{2}(1-\rho_{\rm s})\Theta_{1}}\Big|_{(0,1),(m_{\rm f}-2m_{\rm s}+k-2l,2)}\right)H_{0,2}^{2,0}\left(\frac{m_{\rm f}^{2}m_{\rm s}r_{2}^{4}}{(1-\rho_{\rm f})^{2}(1-\rho_{\rm s})\Theta_{2}}\Big|_{(0,1),(m_{\rm f}-2m_{\rm s}+k-2l,2)}\right)$$
(5)

algébricas, obtém-se (6), a qual representa a FDC conjunta correlacionada do canal Nakagami- m_f /Nakagami- m_s .

B. Momentos Conjuntos Nakagami-m_f/Nakagami-m_s

Os momentos conjuntos generalizados da distribuição Nakagami- $m_{\rm f}$ /Nakagami- $m_{\rm s}$ podem ser calculados por meio de $\mathbb{E}(R_1^{n_1}R_2^{n_2}) = \int_0^\infty \int_0^\infty r_1^{n_1} r_2^{n_2} f_{R_1R_2}(r_1, r_2) dr_1 dr_2$. Realizando a substituição $t_i = r_i^4$ com i = 1, 2, resolvendo as integrais por meio da transformada de Mellin da função H-Fox [15, eq.(2.11)], utilizando a relação entre a função gama e o símbolo de Pochhammer em [12, 6.1.22] e escrevendo as séries infinitas como séries hipergeométricas generalizadas [11, eq.(9.14.1)], obtém-se (7), a qual representa os momentos conjuntos generalizados da distribuição Nakagami m_f /Nakagami- m_s . Em (7), $_2F_1(\alpha, \beta; \gamma; z)$ representa a função hipergeométrica de Gauss [11, eq.(9.14.2)].

C. Coeficiente de Correlação na Potência

O coeficiente de correlação na potência é definido como $\rho = \mathbb{C}(R_1^2, R_2^2)/\sqrt{\mathbb{V}(R_1^2)\mathbb{V}(R_2^2)}, \text{ em que } \mathbb{V}(\cdot) \text{ representa o operador variância. Além disso, } \mathbb{C}(R_1^2, R_2^2) = \mathbb{E}(R_1^2R_2^2) - \mathbb{E}(R_1^2)\mathbb{E}(R_2^2) \in \mathbb{V}(R_i^2) = \mathbb{E}(R_i^4) - \mathbb{E}^2(R_i^2) \text{ com } i = 1, 2. \text{ Logo, utilizando (7) e (11) para o cálculo de } \rho \text{ juntamente com [11, eq.(8.331.1)] e [13, eq.(07.23.03.0081.01)], pode-se calcular o coeficiente de correlação na potência como apresentado em (8). Em (8), é possível notar que o coeficiente de correlação na potência, <math>\rho$, é calculado em função dos coeficientes de correlação na potência referentes ao desvanecimento e ao sombreamento, $\rho_{\rm f}$ e $\rho_{\rm s}$, respectivamente.

IV. ESTATÍSTICAS MARGINAIS

A. FDP e FDC Marginais Nakagami-m_f/Nakagami-m_s

A FDP marginal da distribuição Nakagami- $m_{\rm f}$ /Nakagami $m_{\rm s}$, referente às envoltórias Nakagami- $m_{\rm f}$ R_1 ou R_2 , pode ser calculada por meio de $f_R(r) = \int_0^\infty f_R(r|\omega) f_\Omega(\omega) d\omega$. Os subíndices foram omitidos por questões de simplificação na notação. A função $f_R(r|\omega)$ denota a FDP univariável Nakagami- $m_{\rm f}$ da envoltória R, condicionada em relação à potência média da envoltória Ω e $f_\Omega(\omega)$ representa a FDP univariável Nakagami- $m_{\rm s}$ da potência média. Substituindo $f_R(r|\omega)$ e $f_\Omega(\omega)$ por duas FDPs Nakagami, reescrevendo as funções exponenciais como funções de Meijer por meio de [13, eq.(07.34.03.0046.01)] e [13, eq.(07.34.03.0228.01)] e resolvendo a integral com base em [13, eq.(07.34.21.0012.01)], obtém-se a FDP marginal da distribuição Nakagami- $m_{\rm f}$ /Nakagami- $m_{\rm s}$ dada por

$$f_R(r) = \frac{4r^{4m_s - 1}H_{0,2}^{2,0}\left(\frac{m_t^2 m_s r^4}{\Theta}\Big|_{(0,1),(m_f - 2m_s,2)}\right)}{m_f^{-2m_s} m_s^{-m_s} \Gamma(m_f) \Gamma(m_s) \Theta^{m_s}}.$$
 (9)

A FDC marginal, referente às envoltórias Nakagami- $m_{\rm f}$ R_1 ou R_2 , pode ser calculada a partir da FDP marginal da distribuição Nakagami- $m_{\rm f}$ /Nakagami- $m_{\rm s}$ dada em (9) como $F_R(r) = \int_0^r f_R(x) dx$. Substituindo $f_R(x)$ por (9), realizando a substituição $t = x^4$, utilizando a propriedade da função H-Fox dada em [15, eq.(2.8)], resolvendo a integral resultante por meio de [15, eq.(4.18)] e após algumas simplificações algébricas, obtém-se a FDC marginal da distribuição Nakagami $m_{\rm f}$ /Nakagami- $m_{\rm s}$ como

$$F_R(r) = \frac{H_{1,3}^{2,1} \left(\left. \frac{m_t^2 m_s r^4}{\Theta} \right|_{(m_s,1),(m_f,2),(0,1)}^{1,1} \right)}{\Gamma(m_f) \Gamma(m_s)}.$$
 (10)

B. Momentos Marginais Nakagami-m_f/Nakagami-m_s

A expressão para o cálculo do momento marginal generalizado da distribuição Nakagami- m_f /Nakagami- m_s pode ser calculada tomando-se $n_1 = 0$ ou $n_2 = 0$ em (7). Portanto, admitindo que $n_2 = 0$ e $n_1 = n$ em (7), utilizando [13, eq.(07.23.03.0080.01)] e realizando algumas simplificações algébricas, obtém-se a expressão para o cálculo do momento marginal da distribuição Nakagami- m_f /Nakagami- m_s como

$$\mathbb{E}(R^n) = \frac{\Theta^{\frac{n}{4}} \Gamma\left(\frac{n}{2} + m_{\rm f}\right) \Gamma\left(\frac{n}{4} + m_{\rm s}\right)}{m_{\rm f}^{\frac{n}{2}} m_{\rm s}^{\frac{n}{4}} \Gamma(m_{\rm f}) \Gamma(m_{\rm s})}.$$
 (11)

V. PROBABILIDADE DE INDISPONIBILIDADE

A. PI Exata

Seja a relação sinal-ruído (signal-to-noise ratio, SNR) instantânea $\Upsilon_i = R_i^2 E_b/N_0$, i = 1, 2, em cada um dos ramos de diversidade, em que E_b/N_0 é a razão entre a energia média por bit e a densidade espectral de potência unilateral do ruído. A SNR média pode ser calculada por $\overline{\Upsilon}_i = \Theta_i E_b/N_0$. Logo, aplicando a transformação de variáveis $R_i^2 = \Upsilon_i \sqrt{\Theta_i}/\overline{\Upsilon}_i$ em (6) e tomando $\Upsilon_i = \gamma$ como o limiar a ser avaliado, obtém-se (12). A equação (12) é a expressão para o cálculo da PI, $P_o(\gamma)$, na saída de um combinador por seleção e pode ser interpretada como a PI de sinais recebidos por dois ramos de diversidade quando o canal de comunicação apresenta desvanecimento Nakagami- m_f e sombreamento Nakagami- m_s , considerando-se o limiar igual a γ e as SNRs médias em cada um dos dois ramos como $\overline{\Upsilon}_1$ e $\overline{\Upsilon}_2$.

B. PI Assintótica e Ganho de Diversidade

A expressão exata para $P_{\rm o}(\gamma)$ fornecida em (12) não permite conclusões sobre o impacto dos parâmetros sobre a PI diretamente da expressão matemática. Para tal, uma análise assintótica pode ser realizada para o cenário em que a SNR média é alta, $\overline{\Upsilon}_i \to \infty$, i = 1, 2, obtendo-se uma aproximação

$$F_{R_{1},R_{2}}(r_{1},r_{2}) = \frac{(1-\rho_{\rm f})^{m_{\rm f}}(1-\rho_{\rm s})^{m_{\rm s}}}{\Gamma(m_{\rm f})\Gamma(m_{\rm s})} \sum_{k,l=0}^{\infty} \frac{\rho_{\rm f}^{k}\rho_{\rm s}^{l}}{k!l!\Gamma(m_{\rm f}+k)\Gamma(m_{\rm s}+l)} \times H_{1,3}^{2,1}\left(\frac{m_{\rm f}^{2}m_{\rm s}r_{1}^{4}}{(1-\rho_{\rm f})^{2}(1-\rho_{\rm s})\Theta_{\rm l}}\Big|_{(m_{\rm s}+l,1),(m_{\rm f}+k,2),(0,1)}^{(1,1)}\right) H_{1,3}^{2,1}\left(\frac{m_{\rm f}^{2}m_{\rm s}r_{2}^{4}}{(1-\rho_{\rm f})^{2}(1-\rho_{\rm s})\Theta_{\rm 2}}\Big|_{(m_{\rm s}+l,1),(m_{\rm f}+k,2),(0,1)}^{(1,1)}\right)$$
(6)

$$\mathbb{E}(R_1^{n_1}R_2^{n_2}) = \frac{\Gamma\left(\frac{n_1}{2} + m_f\right)\Gamma\left(\frac{n_2}{2} + m_f\right)\Gamma\left(\frac{n_1}{4} + m_s\right)\Gamma\left(\frac{n_2}{4} + m_s\right)_2F_1\left(\frac{n_1}{2} + m_f, \frac{n_2}{2} + m_f; m_f; \rho_f\right)_2F_1\left(\frac{n_1}{4} + m_s, \frac{n_2}{4} + m_s; m_s; \rho_s\right)}{(1 - \rho_f)^{-m_f - \frac{n_1}{2} - \frac{n_2}{2}}(1 - \rho_s)^{-m_s - \frac{n_1}{4} - \frac{n_2}{4}}\Theta_1^{-\frac{n_1}{4}}\Theta_2^{-\frac{n_1}{4}}m_f^{\frac{n_1}{2} + \frac{n_2}{2}}m_s^{\frac{n_1}{4} + \frac{n_2}{4}}\left(\Gamma(m_f)\Gamma(m_s)\right)^2}$$
(7)

$$\rho = \frac{\left(\Gamma\left(\frac{1}{2} + m_{\rm s}\right)\right)^2}{m_{\rm s}(m_{\rm f} + 1)\left(\Gamma(m_{\rm s})\right)^2 - m_{\rm f}\left(\Gamma\left(\frac{1}{2} + m_{\rm s}\right)\right)^2} \left((m_{\rm f} + \rho_{\rm f})(1 - \rho_{\rm s})^{m_{\rm s} + 1}{}_2F_1\left(\frac{1}{2} + m_{\rm s}, \frac{1}{2} + m_{\rm s}; m_{\rm s}; \rho_{\rm s}\right) - m_{\rm f}\right)$$
(8)

$$P_{o}(\gamma) = \frac{(1-\rho_{f})^{m_{f}}(1-\rho_{s})^{m_{s}}}{\Gamma(m_{f})\Gamma(m_{s})} \sum_{k,l=0}^{\infty} \frac{\rho_{f}^{k}\rho_{s}^{l}}{k!l!\Gamma(m_{f}+k)\Gamma(m_{s}+l)} \times H_{1,3}^{2,1}\left(\frac{m_{f}^{2}m_{s}\gamma^{2}}{(1-\rho_{f})^{2}(1-\rho_{s})\overline{\Upsilon}_{1}^{2}}\Big|_{(m_{s}+l,1),(m_{f}+k,2),(0,1)}^{(1,1)}\right) H_{1,3}^{2,1}\left(\frac{m_{f}^{2}m_{s}\gamma^{2}}{(1-\rho_{f})^{2}(1-\rho_{s})\overline{\Upsilon}_{2}^{2}}\Big|_{(m_{s}+l,1),(m_{f}+k,2),(0,1)}^{(1,1)}\right)$$
(12)

e realizando uma comparação com a expressão em (12). Conforme $\overline{\Upsilon}_i \to \infty$, i = 1, 2, observa-se em (12) que o argumento das funções H-Fox tende a zero e isto permite substituir as funções H-Fox em (12) pela aproximação em [16, eq.(1.8.1)] e com o auxílio de [16, eq.(1.3.6)] e [11, 8.331.1]. A expressão resultante pode ser mais simplificada ainda notando que conforme $\overline{\Upsilon}_i \to \infty$, os resultados para o primeiro termo das séries infinitas resultantes da aproximação anterior são dominantes sobre os demais. Isto implica na utilização apenas do primeiro termo de cada série infinita. Além disso, utiliza-se [12, eq.(6.1.17)] para reescrever a soma referente à aproximação de cada função H-Fox como uma subtração. A aproximação final, $P_{\rm o}^{\infty}(\gamma)$, é tal que, $P_{\rm o}(\gamma) \leq$ $P_{0}^{\infty}(\gamma)$ e sua expressão matemática, representada de maneira compacta com o uso de [12, eq.(6.1.22)] e [11, eq.(9.14.1)], é dada por

$$P_{o}^{\infty}(\gamma) = \frac{m_{\rm f}^{2m_{\rm f}-2}m_{\rm s}^{m_{\rm f}}(1-\rho_{\rm s})^{m_{\rm s}-m_{\rm f}}}{(1-\rho_{\rm f})^{m_{\rm f}}} \left(\frac{\Gamma\left(m_{\rm s}-\frac{m_{\rm f}}{2}\right)}{\Gamma(m_{\rm f})\Gamma(m_{\rm s})}\right)^{2} \times \left(\frac{\gamma^{2}}{\overline{\Upsilon}_{1}\overline{\Upsilon}_{2}}\right)^{m_{\rm f}}{}_{2}F_{1}\left(m_{\rm s}-\frac{m_{\rm f}}{2},m_{\rm s}-\frac{m_{\rm f}}{2};m_{\rm s};\rho_{\rm s}\right).$$
(13)

A expressão assintótica $P_{o}^{\infty}(\gamma)$ em (13) permite calcular o ganho de diversidade, \mathcal{G}_{d} , como [17]

$$\mathcal{G}_d = \lim_{\overline{\Upsilon}_i \to \infty} -\frac{\log P_{\rm o}^{\infty}}{\log \overline{\Upsilon}_i} = 2m_{\rm f}.$$
 (14)

Portanto, o ganho de diversidade somente é afetado pelo fator de desvanecimento e não pelo fator de sombreamento, como esperado.

VI. RESULTADOS NUMÉRICOS

Nos gráficos apresentados nesta seção, as linhas, contínuas ou tracejadas, representam os resultados teóricos obtidos neste artigo e os símbolos representam os pontos de simulações. As simulações e os resultados teóricos foram implementados utilizando-se o Matlab e o Wolfram Mathematica, respectivamente.

A Fig. 1(a) apresenta a influência dos parâmetros referentes ao desvanecimento de curto prazo e de longo prazo sobre o coeficiente de correlação na potência, ρ , referente ao desvanecimento sombreado dado em (8). As curvas foram obtidas ora fixando-se o coeficiente de correlação referente ao desvanecimento de curto prazo, $\rho_{\rm f}$, e variando-se o coeficiente de correlação referente ao sombreamento, ρ_s , ora fixando-se $\rho_{\rm s}$ e variando-se $\rho_{\rm f}$. Além disso, foram utilizados diferentes valores dos fatores de desvanecimento, m_f, e sombreamento, $m_{\rm s}$. É possível observar que o coeficiente de correlação no desvanecimento sombreado, ρ , é diretamente proporcional aos parâmetros $\rho_{\rm f}$ e $\rho_{\rm s}$, sendo que, a taxa de variação de ρ é maior em relação ao parâmetro $\rho_{\rm f}$ do que $\rho_{\rm s}$. Em outras palavras, o parâmetro $\rho_{\rm f}$ tem maior impacto no parâmetro ρ do que o parâmetro ρ_s . Outro importante resultado está relacionado com os fatores de desvanecimento e de sombreamento, $m_{\rm f}$ e $m_{\rm s}$, respectivamente. Para as curvas com o coeficiente de correlação no sombreamento fixo, a taxa de variação do coeficiente de correlação no desvanecimento sombreado é proporcional ao fator de sombreamento e inversamente proporcional ao fator de desvanecimento enquanto que, para as curvas com o coeficiente de correlação no desvanecimento fixo, a situação contrária ocorre.

As conclusões do impacto dos parâmetros no desempenho em termos de PI encontradas em [9] são as mesmas, e desta maneira não serão aqui repetidas. Porém, baseado nos novos resultados aqui deduzidos, novas e importantes conclusões podem ser encontradas. A Fig. 1(b) contém curvas das PIs exata e assintótica dadas em (12) e (13), respectivamente,

Fig. 1. (a) Coeficiente de correlação na potência em função de ρ_f e ρ_s . (b) PIs exatas e assintóticas. (c) FDCs marginais.

em função da SNR média com o limiar $\gamma = 0$ dB fixo. Como pode ser observado, a curva assintótica aproximase mais rapidamente da curva exata à medida que $m_{\rm f}$ e $m_{\rm s}$ diminuem sendo que, para $\overline{T}_i \gtrsim 15$ dB as curvas de PI exatas e assintóticas estão suficientemente próximas. Em concordância com o ganho de diversidade, as curvas referentes à PI assintótica têm diferentes inclinações conforme $m_{\rm f}$ varia, mas mesmas inclinações conforme $m_{\rm s}$ varia, corroborando o fato de que o ganho de diversidade somente é impactado pelo fator de desvanecimento de curto prazo e não pelo fator de sombreamento.

A Figura 1(c) mostra curvas da FDC marginal do canal com desvanecimento sombreado Nakagami-m_f/Nakagami-m_s. Estas curvas foram obtidas por meio de (10) para diferentes valores dos parâmetros $m_{\rm f}$, $m_{\rm s}$ e Θ . As curvas de FDC marginal deslocam-se para a direita conforme os parâmetros aumentam. Observando-se a definição de cada um desses parâmetros, esse comportamento está correto. Os fatores de desvanecimento de curto prazo e sombreamento, $m_{\rm f}$ e $m_{\rm s}$, representam o inverso da variância normalizada do desvanecimento de curto prazo e do sombreamento, respectivamente, significando que, conforme aumentam, a variabilidade, seja do desvanecimento de curto prazo ou do sombreamento, diminui e a probabilidade de valores de envoltória menores que um dado valor r, também diminui. Em relação à potência média do sombreamento, Θ , o seu aumento também resulta no deslocamento das curvas da FDC para a direita, porém não significa redução da variabilidade da envoltória e sim o valor em torno do qual esta variabilidade ocorre sendo este mais à direita conforme Θ aumenta.

REFERÊNCIAS

- P. M. Shankar, "Outage probabilities in shadowed fading channels using a compound statistical model," *IEE Proc. - Commun.*, vol. 152, no. 6, pp. 828–832, Dec. 2005.
- [2] H. Suzuki, "A statistical model for urban radio propogation," *IEEE Trans. Commun.*, vol. 25, no. 7, pp. 673–680, Jul. 1977.
- [3] I. Trigui, A. Laourine, S. Affes, and A. Stephenne, "Performance analysis of mobile radio systems over composite fading/shadowing channels with co-located interference," *IEEE Trans. Wireless Commun.*, vol. 8, no. 7, pp. 3448–3453, Jul. 2009.
- [4] J. F. Paris, "Statistical characterization of κ-μ shadowed fading," *IEEE Trans. Veh. Technol.*, vol. 63, no. 2, pp. 518–526, Feb. 2014.
 [5] R. A. A. de Souza and M. D. Yacoub, "Bivariate Nakagami-m distri-
- [5] R. A. A. de Souza and M. D. Yacoub, "Bivariate Nakagami-m distribution with arbitrary correlation and fading parameters," *IEEE Trans. Wireless Commun.*, vol. 7, no. 12, pp. 5227–5232, Dec. 2008.
- [6] P. S. Bithas, N. C. Sagias, P. T. Mathiopoulos, S. A. Kotsopoulos, and A. M. Maras, "On the correlated K-distribution with arbitrary fading parameters," *IEEE Signal Process. Lett.*, vol. 15, pp. 541–544, 2008.
- [7] P. S. Bithas, N. C. Sagias, and P. T. Mathiopoulos, "The bivariate generalized-K (K_G) distribution and its application to diversity receivers," *IEEE Trans. Commun.*, vol. 57, no. 9, pp. 2655–2662, Sep. 2009.
- [8] Z. Ni, X. Zhang, X. Liu, and D. Yang, "Bivariate Weibull-gamma composite distribution with arbitrary fading parameters," *Electronics Letters*, vol. 48, no. 18, pp. 1165–1167, Aug. 2012.
- [9] J. D. S. e Silva, R. A. A. de Souza, and M. D. Yacoub, "Desvanecimento sombreado duplamente correlacionado," in XXXVII Simp. Brasileiro de Telecom. e Proces. de Sinais, Petrópolis, RJ, Sep./Oct. 2019, pp. 1–5.
- [10] C. Tellambura and A. D. S. Jayalath, "Generation of bivariate Rayleigh and Nakagami-*m* fading envelopes," *IEEE Commun. Lett.*, vol. 4, no. 5, pp. 170–172, May 2000.
- [11] I. S. Gradshteyn and I. M. Ryzhik, *Table of integrals, series, and products*, 7th ed. Elsevier/Academic Press, Amsterdam, 2007.
- [12] M. Abramowitz and I. Stegun, Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical Tables, ser. Applied mathematics series. Dover Publications, 1965.
- [13] The Wolfram functions site, 2019. [Online]. Available: http://functions.wolfram.com
- [14] F. Yilmaz and M. Alouini, "Product of the powers of generalized Nakagami-m variates and performance of cascaded fading channels," in *IEEE GLOBECOM - Global Telecomm. Conf.*, Nov. 2009, pp. 1–8.
- [15] I. D. Cook Jr, "The H-function and probability density functions of certain algebraic combinations of independent random variables with H-function probability distribution," Ph.D. dissertation, The University of Texas at Austin, 1981.
- [16] A. Kilbas, *H-Transforms: Theory and Applications*, ser. Analytical Methods and Special Functions. CRC Press, 2004.
- [17] J. M. Moualeu, D. B. da Costa, W. Hamouda, U. S. Dias, and R. A. A. de Souza, "Performance analysis of digital communication systems over α-κ-μ fading channels," *IEEE Commun. Lett.*, vol. 23, no. 1, pp. 192–195, Jan. 2019.