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Abstract— Quantum states are very delicate, so quantum
error-correction procedures are believed to be essential for
the successful implementation of quantum communications or
computations. To erroneous qubits where the position is known,
Grassl et al. [Phys. Rev. A 56, 33 (1997)] proposed an error
model which they called quantum erasure channel. In this
paper we present a quantum code capable of protecting n-
qubit of information against the occurrence of t erasures. This
code is based on GHZ states.
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I. INTRODUCTION

Quantum computers are expected to harness the strange
properties of quantum mechanics such as superposition and
entanglement for enhanced ways of information processing.
Arguably, the most formidable hurdle is the unavoidable
decoherence caused by the coupling of the quantum comput-
ers to the environment, which destroys the fragile quantum
information rapidly. It is thus of crucial importance to find
ways to reduce the decoherence and carry out coherent
quantum operations in the presence of noise.

There is a significant source of error - the loss of qubits in
quantum computers. The qubit, which is the basic element
of standard quantum computation (QC), is supposed to be an
isolated two-level system consisting of a pair of orthonormal
quantum states. However, most proposed quantum hardware
are in fact multilevel systems, and the states of qubits are
defined in a two-level subspace, which may leak out of the
desired qubit space and into a larger Hilbert space [1]. This
problem is common in practical QC with various qubits
candidates, such as Josephson junctions [2], neutral atoms
in optical lattices [3], and, most notoriously, single photons
that can be lost during processing or owing to inefficient
photon sources and detectors [4]– [5]. A special class of
quantum erasure-correction code was proposed by Grassl et
al. [1], which considered a situation in which the position of
the erroneous qubits is known. According to classical coding
theory, they called this model the quantum erasure channel
(QEC). Some physical scenarios to determine the position
of an error have been given [1].

In general, alteration of information is not a priori obvi-
ous for the observer, which should encode the information
in a special way to detect such change. One way that can be

explored to perform this encoding is the use of Greenberger-
Horne-Zeilinger (GHZ) state. The GHZ state (also called cat
state) was introduced by Daniel M. Greenberger, Michael
A. Horne and Anton Zeilinger [6] as a new way of proving
Bell’s Theorem [7]. One example of n-party version of the
GHZ state is given by

∣∣GHZ
〉

=
1√
2

(
|

n︷ ︸︸ ︷
00 . . .0〉+ |

n︷ ︸︸ ︷
11 . . .1〉

)
=

1√
2

(
|0〉⊗n + |1〉⊗n

)
.

As the most frequently used multi-party entangled state,
the GHZ state has appeared in applications such as non-
locality [8], comunications complexity [9] and multi-party
cryptography [10].

Yang et al. [11] presented a quantum error correction
code which protects three qubits of quantum information
against one erasure using GHZ states. Santos et al. [12]
presented an extension of this code to protect five-qubits
of information against one erasure. Also Santos et al. [13]
have shown a generalization of this scheme to protect n-
qubits of information against one erasure. However, a code
that protects n-qubit information against one erasure is not
robust enough for many applications, such as quantum secret
sharing. Thus, based on the works cited above, we present
here a code capable of protecting n-qubit of information
against t erasures.

II. A QUANTUM ERASURE-CORRECTING CODE VIA
GHZ STATES

An arbitrary state of n qubits can be written as follows:

|ψ〉=
2n−1

∑
i=0

λi|i〉, (1)

where ∑
2n−1
i=0 |λi|2 = 1; and |i〉 represents a general basis state

of n qubits with the integer i corresponding to its binary
decomposition. To protect n-qubit quantum information, we
can use t = bn/3c blocks of n ancillary qubits to encode the
state (1) into

|ψ〉L =
2n−1

∑
i=0

λi

t⊗
d=0

|ψ(i)〉1(d)2(d)...n(d), (2)

where |ψ(i)〉1(d)2(d)...n(d) are the (t + 1) n-qubit GHZ states
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which are given by

|ψ(i)〉1(d)2(d)...n(d) =
1√
2

[
|u(i)

1(d)u
(i)
2(d) . . .u

(i)
n(d)〉

±|û(i)
1(d)û

(i)
2(d) . . . û

(i)
n(d)〉

]
(3)

where d = 0 corresponding to the block of n “message”
qubits and the d = 1, . . . , t corresponding to t blocks of n
ancillary qubits, respectively (here, |u(i)

m 〉 and |û(i)
m 〉 represent

two orthogonal states of the qubit m(d), û(i)
m = 1−u(i)

m and
u(i)

m ∈ {0,1} ).
Since any basis state in (1) is encoded into a product

of (t +1) n-qubit GHZ states, it is straightforward to show
that for the encoded state (2), the density operator of each
qubit is given by 1

2 (|0〉〈0|+ |1〉〈1|). This result means that
the n-qubit quantum information, originally carried by the
n “message” qubits, is distributed over each qubit after
encoding the state (1) into (2).

The encoding can be easily done by using Hadamard gates
and Controled-NOT (CNOT) gates. Considering that each
basis state in (1) is encoded into a product of (t +1) n-qubit
GHZ states all taking the same form, the encoding operation
is given by

Uenc =
t

∏
d=0

(
n−1

∏
i=1

Cn(d),i(d)

)
⊗

t

∏
d=0

Hn(d)

⊗
t

∏
d=1

(
n

∏
i=1

Ci(0),i(d)

)
, (4)

where the t = bn/3c blocks of n ancillary qubits are initially
in the state |00 . . .0〉; Hn is the Hadamard transformation
operation acting on the qubit n; and Cn,i is a CNOT operation
acting on qubit n (control bit) and on the qubit i (target bit).

It should be mentioned that a general theory about how
quantum information can be distributed has been proposed
[14]. Although we deal with a special case that a single
party cannot gain any information about the state, our main
purpose is to wish to present a concrete encoding scheme
for protect n-qubit information.

To illustrate it consider the following situations:

(i) An arbitrary state of 3 qubits is written in binary
decomposition as follows

|ψ〉1(0)2(0)3(0) = λ0|000〉+λ1|001〉+λ2|010〉
+λ3|011〉+λ4|100〉+λ5|101〉
+λ6|110〉+λ7|111〉. (5)

As n = 3 then we’ll have to t = b3/3c= 1, so we have one
block of three ancillary qubits. Thus, the encoding operation
is given by

Uenc =
1

∏
d=0

(
2

∏
i=1

C3(d),i(d)

)
⊗

1

∏
d=0

H3(d)

⊗

(
3

∏
i=1

Ci(0),i(1)

)
(6)

= C3(0),1(0)C3(0),2(0)C3(1),1(1)C3(1),2(1)H3(0)H3(1)

C1(0),1(1)C2(0),2(1)C3(0),3(1), (7)

thus we have

Uenc

(
|ψ〉1(0)2(0)3(0)|000〉1(1)2(1)3(1)

)
= |ψ〉L. (8)

Throughout this work, every joint operation, as outlined
above, will follow the sequence from right to left. Using
three ancillary qubits 1(1), 2(1) and 3(1), we encode the
original state into

|ψ〉L = λ0|0〉L +λ1|1〉L +λ2|2〉L +λ3|3〉L
+λ4|4〉L +λ5|5〉L +λ6|6〉L +λ7|7〉L, (9)

where the eight logical state are

|0〉L = (|000〉+ |111〉)1(0)2(0)3(0)⊗ (|000〉+ |111〉)1(1)2(1)3(1)

|1〉L = (|000〉− |111〉)1(0)2(0)3(0)⊗ (|000〉− |111〉)1(1)2(1)3(1)

|2〉L = (|010〉+ |101〉)1(0)2(0)3(0)⊗ (|010〉+ |101〉)1(1)2(1)3(1)

|3〉L = (|010〉− |101〉)1(0)2(0)3(0)⊗ (|010〉− |101〉)1(1)2(1)3(1)

|4〉L = (|100〉+ |011〉)1(0)2(0)3(0)⊗ (|100〉+ |011〉)1(1)2(1)3(1)

|5〉L = (|100〉− |011〉)1(0)2(0)3(0)⊗ (|100〉− |011〉)1(1)2(1)3(1)

|6〉L = (|110〉+ |001〉)1(0)2(0)3(0)⊗ (|110〉+ |001〉)1(1)2(1)3(1)

|7〉L = (|110〉− |001〉)1(0)2(0)3(0)⊗ (|110〉− |001〉)1(1)2(1)3(1).

To simplify the notation, normalization factors are omitted
here and in the remainder of this work.

(ii) An arbitrary state of 7 qubits is written in binary
decomposition as follows

|ψ〉 = λ0|0000000〉+λ1|0000001〉+λ2|0000010〉+λ3|0000011〉
+ . . .+λ124|1111100〉+λ125|1111101〉+λ126|1111110〉
+λ127|1111111〉. (10)

As n = 7 then we’ll have to t = b7/3c = 2, so we have
two blocks of seven ancillary qubits. Thus, the encoding
operation is as follows

Uenc =
2

∏
d=0

(
6

∏
i=1

C7(d),i(d)

)
⊗

2

∏
d=0

H7(d)⊗
2

∏
d=1

(
7

∏
i=1

Ci(0),i(d)

)
= (C7(0),1(0)C7(0),2(0)C7(0),3(0)C7(0),4(0)C7(0),5(0)

C7(0),6(0))⊗ (C7(1),1(1)C7(1),2(1)C7(1),3(1)C7(1),4(1)

C7(1),5(1)C7(1),6(1))⊗ (C7(2),1(2)C7(2),2(2)C7(2),3(2)

C7(2),4(2)C7(2),5(2)C7(2),6(2))⊗H7(0)H7(1)H7(2)

⊗(C1(0),1(1)C2(0),2(1)C3(0),3(1)C4(0),4(1)C5(0),5(1)

C6(0),6(1)C7(0),7(1))⊗ (C1(0),1(2)C2(0),2(2)C3(0),3(2)

C4(0),4(2)C5(0),5(2)C6(0),6(2)C7(0),7(2)), (11)
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thus we have
Uenc

(
|ψ〉(0)⊗|0000000〉(1)⊗|0000000〉(2)

)
= |ψ〉L. (12)

Using two blocks of seven ancillary qubits (in a total of
fourteen ancillary qubits), we encode the original state into

|ψ〉L = λ0|0〉L +λ1|1〉L +λ2|2〉L +λ3|3〉L + . . .+λ124|124〉L
+λ125|125〉L +λ126|126〉L +λ127|127〉L, (13)

where
|0〉L = (|0000000〉+ |1111111〉)(0)⊗ (|0000000〉+ |1111111〉)(1)

⊗(|0000000〉+ |1111111〉)(2)

|1〉L = (|0000000〉− |1111111〉)(0)⊗ (|0000000〉− |1111111〉)(1)

⊗(|0000000〉− |1111111〉)(2)

|2〉L = (|0000010〉+ |1111101〉)(0)⊗ (|0000010〉+ |1111101〉)(1)

⊗(|0000010〉+ |1111101〉)(2)

|3〉L = (|0000010〉− |1111101〉)(0)⊗ (|0000010〉− |1111101〉)(1)

⊗(|0000010〉− |1111101〉)(2)

...
...

...
|124〉L = (|1111100〉+ |0000011〉)(0)⊗ (|1111100〉+ |0000011〉)(1)

⊗(|1111100〉+ |0000011〉)(2)

|125〉L = (|1111100〉− |0000011〉)(0)⊗ (|1111100〉− |0000011〉)(1)

⊗(|1111100〉− |0000011〉)(2)

|126〉L = (|1111110〉+ |0000001〉)(0)⊗ (|1111110〉+ |0000001〉)(1)

⊗(|1111110〉+ |0000001〉)(2)

|127〉L = (|1111110〉− |0000001〉)(0)⊗ (|1111110〉− |0000001〉)(1)

⊗(|1111110〉− |0000001〉)(2). (14)

In most cases, physical systems (particles or solid-state
devices) may have many levels, such as atoms, ions, and
SQUIDs [11]. If a qubit is represented by a two-dimensional
(2D) subspace of the Hilbert space of a multilevel physical
system, the interaction with the environment may lead to the
leakage out of the 2D qubit space (i.e., the space spanned
by the two states |0〉 and |1〉 of a qubit). The decoherence
process, therefore, is given by

|e0〉|0〉 −→ |ε0〉|0〉+ |ε1〉|1〉+ ∑
i6=0,1
|εi〉|i〉,

(15)

|e0〉|1〉 −→ |ε
′
0〉|0〉+ |ε

′
1〉|1〉+ ∑

i6=0,1
|ε
′
i 〉|i〉,

where {|i〉}, together with |0〉 and |1〉, forms a complete
orthogonal basis of a multilevel system, and |εi〉, |ε

′
i 〉 are

environment states. As will be shown below, during the
restoration operation, there is no need to perform any
operations on the “bad” qubit. For simplicity, we can rewrite
(15) as

|e0〉|0〉 −→ |0̃〉
(16)

|e0〉|1〉 −→ |1̃〉,

where the above environment states |εi〉 and |ε ′i 〉 have been
included in |0̃〉 end |1̃〉.

To extract the original state, we first perform a unitary
transformation in block of qubits that have not suffered de-
coherence, which we regard as the partial decoding operation
(since that blocks which suffer decoherence are not involved
in the decoding operation). After that, we need to perform
an error recovery operation in order to extract the original
state.

It is considered here that can occur at most t = bn/3c
erasures in a block of n qubits.

Assuming that the erasure t j ( j = 1, . . . , t) occurred in the
block k ∈K, where K is the set of blocks that were detected
erasures, the decoding operator is given by

Udec =
t

∏
d=0(d 6=k)

(
Hn(d)⊗

n−1

∏
i=1

Cn(d),i(d)

)
. (17)

To illustrate, let us now consider the case where the qubit
1 block (0) and qubit 2 block (1) undergoes decoherence
(erasure) and we see what will happen to the encoded state
|ψL〉 of (13). After decoherence, it goes to

|ψ̃〉L = |ψ〉L⊗|e0〉= λ0|0̃〉L +λ1|1̃〉L +λ2|2̃〉L +λ3|3̃〉L +
. . .+λ124| ˜124〉L +λ125| ˜125〉L +λ126| ˜126〉L
+λ127| ˜127〉L, (18)

where

|0̃〉L = (|0̃000000〉+ |1̃111111〉)(0)⊗ (|00̃00000〉+ |11̃11111〉)(1)

⊗(|0000000〉+ |1111111〉)(2)

|1̃〉L = (|0̃000000〉− |1̃111111〉)(0)⊗ (|00̃00000〉− |11̃11111〉)(1)

⊗(|0000000〉− |1111111〉)(2)

|2̃〉L = (|0̃000010〉+ |1̃111101〉)(0)⊗ (|00̃00010〉+ |11̃11101〉)(1)

⊗(|0000010〉+ |1111101〉)(2)

|3̃〉L = (|0̃000010〉− |1̃111101〉)(0)⊗ (|00̃00010〉− |11̃11101〉)(1)

⊗(|0000010〉− |1111101〉)(2)

...
...

...
| ˜124〉L = (|1̃111100〉+ |0̃000011〉)(0)⊗ (|11̃11100〉+ |00̃00011〉)(1)

⊗(|1111100〉+ |0000011〉)(2)

| ˜125〉L = (|1̃111100〉− |0̃000011〉)(0)⊗ (|11̃11100〉− |00̃00011〉)(1)

⊗(|1111100〉− |0000011〉)(2)

| ˜126〉L = (|1̃111110〉+ |0̃000001〉)(0)⊗ (|11̃11110〉+ |00̃00001〉)(1)

⊗(|1111110〉+ |0000001〉)(2)

| ˜127〉L = (|1̃111110〉− |0̃000001〉)(0)⊗ (|11̃11110〉− |00̃00001〉)(1)

⊗(|1111110〉− |0000001〉)(2). (19)

Comparing (19) with (14), we can see that for each
“bad” logical state in (19), the portion of the product,
corresponding to the block (2), is intact. We can first perform
a unitary transformation on the qubits in the block (2) which
we call partial decoding operation (since the qubits of blocks
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(0) and (1) are not involved in the decoding operation). The
decoding operation is shown as follows

Udec =
2

∏
d=0(d 6=0,1)

(
H7(d)⊗

6

∏
i=1

C7(d),i(d)

)
= H7(2)C7(2),1(2)C7(2),2(2)C7(2),3(2)C7(2),4(2)C7(2),5(2)

C7(2),6(2). (20)

After decoding, we have

|0̃〉L = (|0̃000000〉+ |1̃111111〉)(0)⊗ (|00̃00000〉+ |11̃11111〉)(1)

⊗|0000000〉(2)

|1̃〉L = (|0̃000000〉− |1̃111111〉)(0)⊗ (|00̃00000〉− |11̃11111〉)(1)

⊗|0000001〉(2)

|2̃〉L = (|0̃000010〉+ |1̃111101〉)(0)⊗ (|00̃00010〉+ |11̃11101〉)(1)

⊗|0000010〉(2)

|3̃〉L = (|0̃000010〉− |1̃111101〉)(0)⊗ (|00̃00010〉− |11̃11101〉)(1)

⊗|0000011〉(2)

...
...

...
| ˜124〉L = (|1̃111100〉+ |0̃000011〉)(0)⊗ (|11̃11100〉+ |00̃00011〉)(1)

⊗|1111100〉(2)

| ˜125〉L = (|1̃111100〉− |0̃000011〉)(0)⊗ (|11̃11100〉− |00̃00011〉)(1)

⊗|1111101〉(2)

| ˜126〉L = (|1̃111110〉+ |0̃000001〉)(0)⊗ (|11̃11110〉+ |00̃00001〉)(1)

⊗|1111110〉(2)

| ˜127〉L = (|1̃111110〉− |0̃000001〉)(0)⊗ (|11̃11110〉− |00̃00001〉)(1)

⊗|1111111〉(2). (21)

For the recovery operation R, assume that the t j erasure
( j = 1, . . . , t) occurred in the qubit b of the block k, denoted
by t j = b(k), where b ∈ {1, . . . ,n} and k ∈ K. Thus, the
recovery operator, when b 6= n, is then given by

Ub(k)
rec =

t

∏
d=0(d 6=k)

(
Tb(d),n(d),n(k)−b(k)⊗Zn(d),n(k)−b(k)

⊗ Tb(d),n(d),n(k)−b(k)⊗
n−1

∏
i=1(i 6=b)

Ci(d),i(k)

⊗
n

∏
i=1(i6=b)

Cb(d),i(k)

)
, (22)

where Ta,b,c is a Toffoli gate operation [15], and Zb,c is a
controlled Pauli σZ operation. A Toffoli gate Ta,b,c has two
control bits corresponding to the first two subscripts (a,b),
and the target bit c. When the two control bits are in the
state |11〉, the state of the target bit will change, following
|0〉→ |1〉 and |1〉→ |0〉, while when the two control bits are
in the state |00〉, |01〉 or |10〉, the state of the target bit will
be invariant. The controlled Pauli σZ operation Zb,c has the
control bit b and target bit c, which sends the state of the
target bit |0〉 → |0〉 and |1〉 → −|1〉 when the control bit is
in the state |1〉; otherwise, when the control bit is in the |0〉,
the state of the target bit will not change.

The recovery operator, when b = n, is given by

Ub(k)
rec =

t

∏
d=0(d 6=k)

(
Zn(d),n(k)−1⊗

n−1

∏
i=1(i 6=b)

Ci(d)i(k)

)
. (23)

Assuming that the erasures t1, . . . , t f ( f = bn/3c) occurred,
the recovery operation is given by

R = U
t f
rec

(
. . .
(

U t1
rec
(
Udec(|ψ̃〉L)

))
. . .
)
. (24)

To illustrate the application of the recovery operation, we
consider the situation shown in (21). Since the erasures were
t1 = 1(0) and t2 = 2(1), then b = 1 6= n, and also b = 2 6= n
(n = 7). Therefore we’ll use the recovery operator of (22).
The recovery operators are as follows

U1(0)
rec =

2

∏
d=0(d 6=0,1)

(
T1(d),7(d),7(0)−1(0)⊗Z7(d),7(0)−1(0)

⊗T1(d),7(d),7(0)−1(0)⊗
6

∏
i=1(i 6=1)

Ci(d),i(0)

⊗
n

∏
i=1(i 6=1)

C1(d),i(0)

)
= T1(2),7(2),6(0)⊗Z7(2),6(0)⊗T1(2),7(2),6(0)⊗C2(2),2(0)

C3(2),3(0)C4(2),4(0)C5(2),5(0)C6(2),6(0)⊗C1(2),2(0)

C1(2),3(0)C1(2),4(0)C1(2),5(0)C1(2),6(0)C1(2),7(0); (25)

and

U2(1)
rec =

2

∏
d=0(d 6=0,1)

(
T2(d),7(d),7(1)−2(1)⊗Z7(d),7(1)−2(1)

⊗T2(d),7(d),7(1)−2(1)⊗
6

∏
i=1(i 6=2)

Ci(d),i(1)

⊗
n

∏
i=1(i6=2)

C2(d),i(1)

)
= T2(2),7(2),5(1)⊗Z7(2),5(1)⊗T2(2),7(2),5(1)⊗C1(2),1(1)

C3(2),3(1)C4(2),4(1)C5(2),5(1)C6(2),6(1)⊗C2(2),1(1)

C2(2),3(1)C2(2),4(1)C2(2),5(1)C2(2),6(1)C2(2),7(1). (26)

Therefore, the recovery operation R in this case is as
follows

R = U2(1)
rec

(
U1(0)

rec

(
Udec

(
|ψ̃〉L

)))
. (27)

When we applying the recovery operator U1(0)
rec (25) in

(21), we have

|0̃〉L = (|0̃000000〉+ |1̃111111〉)(0)⊗ (|00̃00000〉+ |11̃11111〉)(1)

⊗|0000000〉(2)

|1̃〉L = (|0̃000000〉+ |1̃111111〉)(0)⊗ (|00̃00000〉− |11̃11111〉)(1)

⊗|0000001〉(2)

|2̃〉L = (|0̃000000〉+ |1̃111111〉)(0)⊗ (|00̃00010〉+ |11̃11101〉)(1)

⊗|0000010〉(2)

|3̃〉L = (|0̃000000〉+ |1̃111111〉)(0)⊗ (|00̃00010〉− |11̃11101〉)(1)

⊗|0000011〉(2)
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...
...

...
| ˜124〉L = (|0̃000000〉+ |1̃111111〉)(0)⊗ (|11̃11100〉+ |00̃00011〉)(1)

⊗|1111100〉(2)

| ˜125〉L = (|0̃000000〉+ |1̃111111〉)(0)⊗ (|11̃11100〉− |00̃00011〉)(1)

⊗|1111101〉(2)

| ˜126〉L = (|0̃000000〉+ |1̃111111〉)(0)⊗ (|11̃11110〉+ |00̃00001〉)(1)

⊗|1111110〉(2)

| ˜127〉L = (|0̃000000〉+ |1̃111111〉)(0)⊗ (|11̃11110〉− |00̃00001〉)(1)

⊗|1111111〉(2). (28)

After this, we apply the recovery operator U2(1)
rec (29) in

(28) and obtain

|0̃〉L = (|0̃000000〉+ |1̃111111〉)(0)⊗ (|00̃00000〉+ |11̃11111〉)(1)

⊗|0000000〉(2)

|1̃〉L = (|0̃000000〉+ |1̃111111〉)(0)⊗ (|00̃00000〉+ |11̃11111〉)(1)

⊗|0000001〉(2)

|2̃〉L = (|0̃000000〉+ |1̃111111〉)(0)⊗ (|00̃00000〉+ |11̃11111〉)(1)

⊗|0000010〉(2)

|3̃〉L = (|0̃000000〉+ |1̃111111〉)(0)⊗ (|00̃00000〉+ |11̃11111〉)(1)

⊗|0000011〉(2)

...
...

...
| ˜124〉L = (|0̃000000〉+ |1̃111111〉)(0)⊗ (|00̃00000〉+ |11̃11111〉)(1)

⊗|1111100〉(2)

| ˜125〉L = (|0̃000000〉+ |1̃111111〉)(0)⊗ (|00̃00000〉+ |11̃11111〉)(1)

⊗|1111101〉(2)

| ˜126〉L = (|0̃000000〉+ |1̃111111〉)(0)⊗ (|00̃00000〉+ |11̃11111〉)(1)

⊗|1111110〉(2)

| ˜127〉L = (|0̃000000〉+ |1̃111111〉)(0)⊗ (|00̃00000〉+ |11̃11111〉)(1)

⊗|1111111〉(2). (29)

Therefore, after performing the decoding operator Udec

(20) and the recovery operators U1(0)
rec (25) and U2(1)

rec (29),
the system composed of twenty eight qubits and the envi-
ronment will be in state

(
|0̃000000〉+ |1̃111111〉

)
(0)
⊗
(
|00̃00000〉+ |11̃11111〉

)
(1)
⊗|ψ〉(2). (30)

As shown above, since the “damaged” particle is not
involved in the recovery operations, the present code can
still work in the case when the interaction with environment
leads to the leakage of a qubit out of the qubit space.

III. CONCLUSION

We have presented a N-qubit code for protecting n-qubit
quantum information against t erasures, where N = n(t +
1) and t = bn/3c. There are already experimental studies
that used schemes similar to that presented in this paper in
order to protect a logical qubit from loss of a physical qubit,

see Ref. [16]. The encoding, decoding and error recovery
operations, as shown here, are relatively straightforward. A
special feature of the erasure recovery scheme is that no
measurement are required.

Finally we recall that erasure recovering algorithms like
that introduced here have several interesting applications,
e.g., concatenated quantum codes [13] and quantum secret
sharing [17], [18].
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[18] M. Hillery, V. Buzěk, and A. Berthiaume, “Quantum secret sharing,”
Phys. Rev. A, vol. 59, 1999, pp. 1829–1834.


