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Design for Multi-Vehicle Roadside Tracking Based
on Radio Tomographic Imaging

Jarmo Theodore Wilkens and Anilton Salles Garcia

Abstract— With the increasing amount of vehicles on the road,
traffic jams pose a growing global problem. Traffic surveillance
is a crucial step into improving traffic flow. This paper proposes
a design and methodology for the estimation of occupancy and
velocity of multiple vehicles on a single lane road segment using
Radio Tomographic Imaging (RTI). RTI is an emerging technol-
ogy that produces images of the change in the electromagnetic
field of a monitored area, making it possible to track device-
free objects such as humans and cars. The proposal is based
on the analysis of three works discussed in this paper, together
with a newly introduced vehicle detection method. To the best of
our knowledge, this paper is the first to propose the surveillance
of multiple vehicles simultaneously using RTI sub-networks. We
also propose a novel car detection and speed estimation method.
The contribution of this paper is to stimulate research of the
possibility of using RTI networks as being part of an Intelligent
Transport System (ITS).

Keywords— Radio Tomographic Imaging, Wireless Sensor Net-
works, Vehicle Traffic, Surveillance, Received Signal Strength.

I. INTRODUCTION

Traffic jams limit a city’s efficiency: people waste time by
waiting and may arrive late at work or meetings, it is difficult
for emergency services to pass and costly for industries as
transportation time and fuel consumption increases. Hence it
is essential for a city’s efficiency to keep traffic flow optimal.

A solution to the described problem is to measure vehicle
occupancy and traffic flow at high traffic density roads. These
statistics may be made available online or directly relayed to
navigation systems to inform people about traffic conditions.
Furthermore, traffic data can be used to more efficiently
control traffic lights in a smart city environment.

Due to the relatively high infrastructural costs of the already
widely implemented roadside surveillance systems such as
cameras, induction loops and radars [1], this paper seeks
to explore the possibility of deploying a more cost-effective
solution. More specifically, this paper proposes the application
of Radio Tomographic Imaging (RTI). RTI is an emerging and
promising technology, initially developed in 2008 by Patwari
et al. [2], to localize and track stationary and moving device-
free targets within a monitored area. The technology relies on
a mesh network of simple and inexpensive stationary radio
transceivers that are deployed on the border of the area of
interest, where each radio is wirelessly connected in the 2.4
GHz ISM frequency band to all other radios. By obtaining
the Received Signal Strength (RSS) of every link inside the
network, the RTI system is able to image the location of
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a target in real-time, due to the targets present inside the
Wireless Sensor Network (WSN) that attenuate the signals,
also referred to as shadowing. Recent papers applied new
techniques that lead to improved RTI performance [3], [4],
[5]. Aside the cost-effectiveness offered by the RTI technology
over the state of the art (cameras, induction loops, radars) is its
scalable and easily configurable network. Moreover, the WSN
offers a higher spatial resolution that will improve reliability
of traffic modeling and accuracy of short-term traffic state
prediction [1]. This paper discusses a theoretical deployment
of a RTI network as a roadside surveillance application,
hoping that future research and development would lead to
improving traffic flow. This paper proposes a pragmatic set-
up/methodology that estimates occupancy and velocity of two
vehicles on a single lane road segment with radios positioned
on the roadside that form an RTI network, as illustrated in
figure 1 of section IV. The proposal is based on an analysis of
three recent papers that demonstrated significant developments
in the area of RTI and roadside surveillance. The proposal
will also include data acquisition and processing procedures,
including expected performance results with explanation.

The rest of this paper is organized as follows. Section II dis-
cusses related work concerning RTI and roadside surveillance,
of which three are further analyzed in section III. Section IV
contains the RTI proposal based on the analyzed articles, and
section V concludes this article.

II. RELATED WORK

Kassem et al. [7] investigated the application of Device
free Passive (DfP) localization, a technology similar to RTI,
to detect and estimate vehicle presence and velocity. They
successfully differentiated between three states on a single lane
road: empty street, a stationary vehicle and a moving vehicle.

Anderson et al. [8] aimed to improve RTI modeling and
algorithms in a roadside surveillance environment. Three
improvements were proposed, which includes an extra bias
term to the existing image estimation solution [9], a way to
remove negative observations and combining multiple frames
to produce a more accurate final image. They compared their
results to the first RTI network version by Wilson and Patwari
[9], and show that their proposed approaches lead to greatly
improved performance. Anderson et al. have shown it is
possible to track a single vehicle passing through a single lane
road and estimate its velocity using RTI.

Kaltiokallio et al. [5] developed an attenuation-based RTI
system that localizes stationary and tracks moving people real-
time. The authors reduce multipath interference and improve
location estimates significantly by combining RSS fade level
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data on multiple channels. They also developed a model to
determine link-channel specific parameters, thereby increasing
localization accuracy further.

Alippi et al. [3] developed an outdoor RTI network method
that detects and localizes multiple people real-time. Together
with their proposed method, they combine several recent
technologies with some adjustments, including measurements
on multiple channels [5], spatial filtering for online calibration
similar to [10], multi-target tracking [4] and background sub-
traction. They also develop an individual distance-RSS model
for each node, further increasing robustness. They compare
their results to the previously described system [5] with an
RTI network deployed in a forested area, where they achieve
an average localization error of a stationary person of 3.2 m,
as opposed to 4.1 m using the method of [5].

Wei et al. [11] examined the use of Electronically Switched
Directional (ESD) antennas to improve RTI performance. ESD
antennas focus radiated power in a selected direction to reduce
multipath propagation and thereby reduce interference in links.
The authors proposed three methods to select the direction of
each node, of which the fade level-based method yields highest
performance. Compared to the multi-channel omni-directional
RTI network in [12], their proposed system improves tracking
performance by 42% in an open LOS-environment.

III. ARTICLE ANALYSIS

The RTI implementation discussed in the selected articles
are analyzed with respect to their computational complex-
ity, localization accuracy and robustness. The proposed RTI
system should be able to compute occupancy and speed
of multiple vehicles real-time, fast enough to track vehicles
moving at 50 km/h with sufficient accuracy. Moreover, the
RTI system should be robust to multipath fading and time-
varying intrinsic motion, which is the motion of objects that
naturally belong to the environment. Intrinsic motion is seen
as environmental noise, caused by, for example, wind that
sways leaves, branches or the nodes themselves. Performance
is greatly influenced if the receiver node is moved only by a
fraction of its wavelength [11].

A. “RTI Goes Wild: Radio Tomographic Imaging for Outdoor
People Detection and Localization”

Computational Complexity

Alippi et al. [3] demonstrate that every frequency channel of
each link has varying RSS dynamics, which was modeled in
[13] and referred to as fade level. A link-channel pair in deep
fade and anti-fade is due to destructive and constructive inter-
ference respectively. Multipath fading is a result of reflected
and scattered signals from surfaces in the environment. When
no people are present in the monitored area, a link channel
in anti-fade experiences a higher average RSS than a channel
in deep fade. Anti-fade channels contain less interference and
more reliably measure attenuation than deep fade channels.
The number of links, nodes and voxels are given by L, N and
V respectively.

Each estimated radio tomographic image x̂V×1 in (1),
depends on the regularized least-squares approach ΠV×L [2],

[4], [12], and the change in RSS attenuation vector yL×1.
Vector y consists of the RSS attenuation change measured
from all fade-level based selected link-channels and is assumed
to be a spatial integral of the propagation field of the monitored
area. For all non-selected link-channels, the RSS change is set
to zero. Matrix Π only required to be computed once before
operation, which made real-time estimation of the image x̂
possible. Regularization is required, because the matrix WTW
in (2) is typically not full rank (when V > L). Π consists of a
simple weight matrix WL×V that relates the influence of each
voxel on each link, regularization parameter σ2

N and a priori
covariance matrix Cx (based on Poisson process):

x̂ = Πy (1)

Π = (WTW + σ2
NC
−1
x )−1WT (2)

[Cx]j,i = σ2
xe
−dj,i/δc (3)

where σ2
x is the variance of voxel intensities, di,j is the

distance between the centers of voxels i and j, and δc is
the voxels’ correlation parameter. For the localization and
tracking of multiple targets, the method of [4] was used.
Image x̂ requires VL multiplications, meaning computational
complexity increases linearly with amount of voxels and links.

RSS data from the complete network consisting of 20
Texas Instruments CC2531 nodes was collected every 340 ms,
which they mention is sufficiently fast to track moving people.
Computation time for an RTI estimate was not mentioned, but
is assumed to be less than one network scan of 340 ms.

Localization Accuracy

The authors achieved an average location error of 3.2 m
(Euclidian distance) in an RTI network deployed in a densely
forested environment. They compared their results in the same
measurement environment to the state of the art fade level-
based model introduced by Kaltiokallio et al. [5], where they
obtained a worse location error of 4.1 m.

Robustness

Alippi et al. have four methods to increase robustness
against intrinsic motion. They achieve a 0.04% false alarm
rate of a person present in the monitored area with wind. This
is a significant improvement compared to the state of the art
[5], where they achieved a 0.74% false alarm rate.

One of the methods is to select which links and which one of
their channels are most reliable. After fixed time intervals, only
link-channel pairs are selected that are in anti-fade and have
an average RSS higher than the receiver sensitivity threshold.
From these selected link-channels, only the channel that has
the lowest variance of each link is selected. Intrinsic noise has
high variance, which is filtered out this way.

The second method is an online calibration technique run for
five seconds after each network scan, which applies a spatial
filter that only updates the reference RSS of selected link-
channel pairs not attenuated by stationary people [10].

The third method is a node-specific path loss model that
is used to calculate fade level for each node. Fade levels are
updated after each pre-determined fixed time interval.
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The fourth method is background subtraction, which is a
technique to better distinguish the blobs in the generated image
representing real people from environmental noise.

B. “dRTI: Directional Radio Tomographic Imaging”

Computational Complexity

ESD antennas focus the radiated power in selected di-
rections to reduce multipath propagation and thereby reduce
interference in communication links. Wei et al. [11] used
ESD antennas that have six selectable directions, meaning 36
possible transmit-receive antenna direction pairs are possible,
which they refer to as Pattern Pairs. Communication in both
directions leads to a maximum number of Pattern Pairs of 72
for each link. Using the proposed directional antennas comes
at a cost of network scan time as each direction is sequentially
switched, making the dRTI system difficult to scale to larger
network sizes.

The authors proposed three methods to select the Pattern
Pairs of each link, of which the fade level-based method yields
highest performance. This method selects the top k Pattern
Pairs with highest fade level. The change in RSS vector y
is calculated as the sum of the absolute difference between
the current and reference RSS for each selected Pattern Pair.
Computational complexity hence increases with parameter k.

The RTI model used by Wei et al. is the same as in [9],
which is a least-squares solution with Tikhonov regularization
as shown by equations (4) and (5) in section III-C (without
parameter β). In the work of Wei et al., however, the number
of multiplications was reduced by approximately a factor 45.
This provides strong evidence that images were generated real-
time, but image generation time remains unknown.

Localization Accuracy

Compared to the multi-channel omni-directional RTI net-
work in [12], their proposed system shows a tracking perfor-
mance improvement of 42% in an open LOS-environment at
the 90th percentile of the CDF representing tracking error. The
authors, however, have not compared their results to the latest
high performance multi-channel RTI network [3], which might
have produced similar or even better results.

Robustness

The authors have not tested their proposed RTI system
outdoors nor have they mentioned any effects of intrinsic
motion. However, the authors do present system performance
results with False Positive (FP) and False Negative (FN)
figures, which is a way to evaluate system robustness. They
show that their proposed dRTI method yields significantly
lower FP and FN results compared to mean- and variance-
based RTI, as well as multi-channel RTI.

C. “Radio Tomography for Roadside Surveillance”

Computational Complexity

Three improvements described below were proposed that all
add to computational complexity compared to the initial RTI
approach proposed by Wilson et al. [9].

Instead of the regularization term Cx in (2), Anderson et
al. [8] applied a least-squares solution ΠV×V with H1 regu-
larization in (5), which is a form of Tikhonov regularization
[9]. Additional to this expression and using the Maximum A
Posteriori (MAP) estimator, they added the bias term β for the
estimation of a radio tomographic image x̂MAP :

x̂MAP = Π(WT y + β1V×1) (4)

Π = (WTW + α(DTXDX + DTY DY ))−1 (5)

where α is an empirically derived image smoothing parameter,
DX and DY are the difference operators for the horizontal
and vertical directions respectively. Weight matrix W and
RSS vector y represent the same as described in section (III-
A). Computation of (4) requires 2VL multiplications, thereby
making it twice as computationally expensive as in (1). The
addition of the bias term β does not increase computational
complexity notably.

Anderson et al. deal with negative data in the observations
by iterating their proposed simple three-step method three
times. The method is based on removing negative elements
of x̂MAP and exclude the respective columns of W and D,
after which x̂MAP is recomputed until it does not contain any
more negative entries. This method produces results similar to
background subtraction, thereby denoising the image. Compu-
tation time increases proportional to the number of iterations,
where the authors mention that three iterations were sufficient.

The authors combine three frames into a final, more ac-
curate, image. A model to estimate vehicle velocity was
proposed, which at the same time minimizes noise in the final
image. However, it is not known how this model performs
when multiple vehicles are in the monitored area.

Although the researchers mention RSS data is recorded real-
time, is is not mentioned if the image was computed real-time,
nor the computation time with their proposed approaches. It
is also unknown what their network scan time is.

Localization accuracy

Using the method of removing the negative observations
together with the optimized bias parameter β, the authors
reduced the RMSE by 47% compared to the approach in [9].
By also integrating their multiple image combination method,
they show performance is greatly enhanced compared to [9].

Robustness

Anderson et al. mention that weather and atmospheric
effects had only a small impact on their RSS measurements
at 2.4 GHz. Although they do not present any impacts of
intrinsic motion on their system, they do show that robust-
ness is increased compared to [9] using Receiver Operating
Characteristic (ROC) curves.

IV. PROPOSED RTI SYSTEM

As briefly described in section I, this paper proposes a
pragmatic methodology of a RTI network deployed on a
roadside segment that determines occupancy and traffic flow
of multiple family cars in real-time.
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A. Experimental Design

To measure two cars in the same network traveling at 14
m/s (~50 km/h), maintaining a safe distance of two seconds
means the distance between the cars should be at least 28 m.
Assuming a car length of 4 m and assuming the cars are at
least one second from the entrance/exit, the network length
should span 66 m. This will require 72 radios, which are 36
nodes on each side, spaced 2 and 3 meters along and across
the road respectively at a height of 0.5 m from the ground.
Figure 1 illustrates the proposed design.

Fig. 1. Top view of roadside surveillance proposal

As opposed to conventional RTI networks where monitored
targets are completely surrounded by radios, the proposed
design only has radios deployed on two sides, thereby signifi-
cantly reducing the number of links and consequently reducing
system accuracy. Furthermore, network scan frequency should
be considerably higher, since vehicles can move notably
faster than people. The best case is where vehicle blurring
does not occur, which is when the vehicle does not cross a
voxel boundary during one network scan [8]. The maximum
allowable velocity (m/s) is given by the product of the voxel
width (m) and network scan frequency (Hz).

The average time of a transmission period per TI CC2531
node is around 3 ms [12], meaning for a WSN with 72
nodes operating on four frequency channels, the maximum
scan frequency will be ~1.15 Hz. For a scan frequency of
1.15 Hz and a vehicle that moves 14 m/s (~50 km/h), a voxel
width of ~12 m would be required. Such voxel width would
be problematic to estimate velocities each second of vehicles
moving slower than 12 m/s. To detect slow moving vehicles,
maintaining a fairly high accuracy and still making use of
multiple channels, the proposed RTI network design contains
three sub-networks, each operating on two different frequency
channels. The use of sub-networks was first described in [8].
In this case, a scan frequency of 7 Hz may be achieved,
reducing the voxel width to 2 m, making it possible to estimate
a minimum velocity of 7.2 km/h. A voxel width of 2 m
means only a one-dimensional image can be generated, which
is acceptable for the proposed application and also simplifies
the tracking problem. Splitting up into sub-networks, however,
comes at a cost of accuracy at the boundary areas, where there
are relatively fewer links, as can be seen in figure 1.

For this proposal, it is chosen not to use directional antennas
as described in section III-B, because they increase network
scan time considerably. Data transmission and switching di-
rection take 3 ms and 1 ms respectively. Switching and
transmitting from six directions will take 23 ms per node. This
is more than seven times longer than using omni-directional

antennas, making it unfeasible to use directional antennas if
image blurring is to be prevented for faster moving vehicles.

The network design proposes to use the same hardware
and configurations as Alippi et al. [3], the only difference
being the use of two unique channels per sub-network: C1 =
{11, 14}, C2 = {17, 20}, C3 = {23, 26}. Using different
frequency channels prevents co-channel interference within the
RTI network. The protocol to be used for the RF sensors is
the multi-Spin protocol [10]. Each sub-network has one node
that transmits real-time data to the laptop, which stores all
transmitting nodes’ RSS data in one buffer.

A limitation of using a RTI system with omni-directional
antennas operating in cities is co-channel interference with
other 2.4 GHz ISM band networks. These networks include
public Wi-Fi hotspots, 4G LTE, wireless cameras and blue-
tooth devices in vehicles. One method to reduce co-channel
interference is using BPSK modulation, but the IEEE 802.15.4
standard only permits frequency bands 800/900 MHz utilizing
this scheme, which comes at a cost of localization accuracy
due to reduced wavelength. An alternative band could be the
relatively interference-free 5 GHz ISM band, which, however,
would increase multipath effects [14].

The proposed methodology of data acquisition is as follows.
Drive one family car at a constant speed of 10 km/h on the RTI
covered road segment and use the proposed method outlined in
algorithm 1 to estimate occupancy and speed real-time. Repeat
this for speeds of 20 km/h, 30 km/h, 40 km/h and 50 km/h.
Reiterate the aforementioned procedure with two family cars,
always driving at a safe distance of two seconds from each
other. Save all recorded data to compare system performance
for varying vehicle speeds and different amount of vehicles.
Repeat all tests ten times to obtain more reliable results.

B. Radio Tomographic Imaging Method

The proposed novel roadside surveillance method is outlined
in algorithm 1. It is mainly a combination of the method of
Alippi et al. [3] and Anderson et al. [8].

Offline calibration is where the system records data without
people or vehicles affecting the network. The fade level
method of [3] filters out unreliable links, including the longer
distance links that have an average RSS close to the receiver
sensitivity threshold. Multipath fading in LOS signals is ex-
pected to occur due to signal scattering from the road surface.

The number of detected cars is given by the number of
voxels darker than a voxel-specific threshold Tv , where Tv is
a newly proposed threshold given by:

Tv = ρ
∑
k∈A

Fk (6)

where ρ is a weighting parameter, A is the set of selected link-
channels covering voxel v and Fk is the fade level calculated
using the method of [3]. This threshold takes into account
channel reliability and link density as can be observed in figure
1. If there are multiple neighboring voxels detected as a car,
only the voxel representing the front part of the car is chosen.
Vehicle speed is estimated as the number of voxels displaced
per second, multiplied by the voxel width.
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Algorithm 1: Proposed roadside surveillance method
Calibrate offline for 5 min. to obtain reference RSS [3]
Calculate fade level for each link-channel pair [3]
Apply link-channel selection method [3]
Determine threshold Tv for each voxel
Calculate projection matrix Π using (5) [8]
while (1) do

At the completion of each network scan:
Apply online calibration to update reference RSS [3]
Update vector y (one vector for all sub-networks) [3]
Compute RTI image x̂MAP using (4) [8]
while x̂MAP has negative observations [8] do

Set negative voxels of x̂MAP to zero
Update Π using only the columns of W and D
that correspond to the positive voxels of x̂MAP

Recompute image x̂MAP using (4)
end
Apply car detection and speed estimation methods

end

For this proposal, it is chosen not to use the frame com-
bination method from [8], because the method seems compu-
tationally expensive and is expected not to improve vehicle
detection and velocity estimation considerably.

Parameters α, β and ρ are found empirically. Since the
amount of links is significantly higher than the number of
voxels, regularization is theoretically not necessary, but may
be included to smoothen the image.

C. Expected Results

Results from the proposed method are likely to be com-
pletely different from the results of papers discussed in this
article. Not only does the design provide half as many links
as in other networks, but the targets to be tracked are vehicles
instead of humans, traveling at significantly higher velocities.
The only work similar to this proposal is from Anderson et
al. [8], who did not publish quantitative results concerning
localization accuracy and how it is affected by vehicle velocity,
nor system performance for the tracking of multiple vehicles.

Figure 2 shows a simulated RTI image in MATLAB of an
arbitrary sub-network with a simulated car on voxels 7 and 8.
The simulation procedure will be discussed in a future article.
The brighter voxels represent the area occupied by the car.

Fig. 2. One-dimensional RTI image

The proposed system is expected to be robust against
intrinsic noise, due to the link-channel selection method and
online calibration [3]. The image is significantly denoised by
the removal of negative observations and the parameter β
proposed by [8]. Localization accuracy is expected to decrease
with increasing targets to be tracked [4]. This is due to the
fact that some links may be attenuated by more than one

object. Also, the number of multipath components is expected
to be larger than in previous studies, due to the increased
reflectiveness of metallic objects and size of targets, thereby
making multipath interference a bigger problem.

V. CONCLUSION

In this paper, we propose a design and methodology for the
estimation of occupancy and velocity of one and two vehicles
on a single lane road segment traveling at speeds from 10
km/h up to 50 km/h using multiple RTI sub-networks. The
use of multiple RTI sub-networks prevents blurring of faster
moving vehicles. The proposed roadside surveillance method
is mainly a combination of two recent works, together with a
simple novel car detection and speed estimation method.

The contribution of this paper is to stimulate research
of the possibility of using RTI networks as being part of
an ITS in a smart city environment. Following the design
and methodology presented in this paper, it is expected that
more insight will be gained into how localization accuracy is
affected by vehicle velocity, as well as system performance
for the tracking of multiple vehicles. Future work will involve
the practical implementation of the proposed methodology.
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