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Abstract—Node deployment plays an important role in the
design of wireless sensor networks (WSNs). Many important
properties such as coverage, connectivity, data fidelity and
lifetime are directed influenced by the way nodes are placed in
the sensor field. In this work we show that the use of a stochastic
point process, namely the C model, is able to increase the network
lifetime by addressing the “energy hole” problem. Among the C
model properties, this process can be easily simulated and, for
any number of nodes in arbitrary areas, it is able to describe
situations that range from deterministic (regular) placement of
nodes to clusters of sensors in a small region. The model is herein
described and is assessed in terms of the coverage, connectivity,
data fidelity and lifetime by using computer simulation. In
particular, we compare the C process with the mostly used
deployment strategy, namely the uniform randomly placement
(URP), being the latter a particular case of the former.

I. INTRODUCTION

Wireless sensor Networks (WSN) are ad hoc wireless net-
works consisting of spatially distributed autonomous devices
that cooperatively monitor environmental conditions such as
temperature, pressure and pollutants. WSNs have been used
in various application areas (e.g., health, military, home) [1]
where human presence is not possible nor desired [2], [3].

The sensors scattered in a sensor field have the capability to
collect and aggregate data and route them to a base station [1].
The base station provides the users of the WSN with the result
of these operations, which could be used to reconstruct the
phenomena of interest and provide information for making
decisions.

Many techniques have been proposed and used for tradi-
tional wireless ad hoc networks, but they are not well suited
for many WSN applications [1]. For this reason, different pro-
tocols and algorithms specific for WSNs have been proposed.

Wu et al. [4] show that the lifetime of a uniformly deployed
WSN is limited by the sensors at the first-hop from the base
station that is collecting data, a feature known as “energy
hole” analytically characterized by [5]. The authors show that
increasing the number of nodes cannot desirably prolong the
system lifetime under the binomial deployment. Actually, they
conclude that the entire system lifetime can be improved by
spreading more nodes close to the base station.

Thus, the resulting topology realized by the node deploy-
ment phase plays an important role in the WSN design process.

Despite the important role that deployment-induced topol-
ogy plays in WSNs, studies in this venue are seldom found

in the literature. Actually, uniform random placement (URP)
is the most used deployment strategy for the WSN simula-
tions [6]. In order to fill this gap, this work:

• provides a framework to simulate WSNs with different
topologies by using Spatial Point Process models as
presented in [7], namely the C process. This model is
able to generate three deployment scenarios: (i) attractive,
(ii) repulsive (including regular deterministic placement)
and (iii) binomial;

• assesses different topologies generated by the C process
by means of: coverage, connectivity, the quality of infor-
mation reported to the base station, and network lifetime.

The paper unfolds as follows. Section II analyzes the related
work. Section III presents the main models we employ in this
work, Section IV presents the simulation results, and Section V
concludes the paper.

II. RELATED WORK

Optimal node placement is a challenging task since it has
been proven to be a NP-Hard problem for most formulations
in WSN [8]. Younis and Akkaya [8] present a comprehen-
sive survey on strategies and techniques for node placement
in wireless sensor networks. Among them, we will discuss
randomly placed static nodes. Most studies consider that this
strategy leads to a uniform node distribution but, as stated
in [8], such assumption is seldom realistic.

Ishizuka and Aida [9] studied fault-tolerant properties of
stochastic node deployment in flat networks. They assumed
three models: simple diffusion (bivariate Gaussian distribu-
tion), uniform, and R-random. The R-random model is char-
acterized by the density function f(r, θ) = 1/(2πr), where
0 ≤ r ≤ R, 0 ≤ θ < 2π, and the sensor position is
given in polar coordinates within a distance R from the base
station. They conclude that the initial placement of sensors
has significant effect on network dependability in terms of
tolerance of a node failure, and that the R-random deployment
model yields better fault-tolerance properties. This fact leads
to the need of concentration of nodes around the base station.

Lloyd and Xue [10] considered a two-tier network model
where the nodes are grouped around relay nodes that directly
communicate to the base station. They seek for the node
deployments that maximizes network lifetime. They show
that URP does not extend the network lifetime, since the



relay nodes deplete energy at different rates, depending on
the distance to the base station. They then propose a weight
random node distribution that concentrates more nodes away
from the base station to split the load among the nodes that will
consume more energy. This strategy may lead to connectivity
problems because some relay nodes can be placed out of
the transmission range of the base station. To mitigate such
problem, they propose a hybrid deployment strategy that aims
to balance the network lifetime and connectivity goals.

We propose a new approach to random deployment by
means of a stochastic point process, and we study the same
properties Younis and Akkaya [8] discuss that should be
optimized. We assume that no adjustments in a sensor node
position happens after deployment, thus, all properties studied
here are determined only by the deployment strategy. We ana-
lyze coverage, connectivity, reconstruction error and network
lifetime, and show that the “energy hole” problem can be
diminished using the attractive process herein described. A
module for the Sinalgo simulation package is provided.

III. THE MODELS

1) The data: Sensors measure continuously varying real
functions that describe, for instance, the illumination on the
ground of a forest or the air pressure in a room. We model
the phenomenon with a zero-mean isotropic Gaussian random
field assuming isotropy and a covariance function of the form
exp(−xs), where x ≥ 0 is the distance between sites. The
scale s > 0 is the parameter that characterizes this model; it
is related to the granularity of the process.

Figure 1 shows four situations, from fine (s = 5) to coarse
(s = 20), in a red-yellow-white color table. granularities.
Samples from this process can be readily obtained using the
RandomFields package for R [11].

(a) s = 5 (b) s = 10 (c) s = 15 (d) s = 20

Fig. 1. Gaussian random fields

2) Signal sampling and reconstruction: Sensor i, located
at (xi, yi) ∈ W , W ⊂ R2 being the area of interest, captures
a portion of f : the mean value observed within its area of
perception pi, i.e., it stores the value vi =

∫
pi
f . We chose to

work with isotropic homogeneous sensors, where

pi = {(x, y) ∈ W : x2 + y2 ≤ r2s},

being rs > 0 the perception or sensing radius.
Kriging is the reconstruction technique we employed [12].

It is a geostatistical method, whose simplest version (“simple
Kriging”) is equivalent to minimum mean square error pre-
diction under a linear Gaussian model with known parameter

values. We used “ordinary Kriging”, where the local mean
value is estimated from the data and their location.

A. The Deployment Model

A point process is a stochastic model that describes the
location of points in space. It is very useful in a broad
variety of scientific applications such as ecology, medicine
and engineering [13].

The isotropic stationary Poisson model, also known as “fully
random”, is the basic point process. The number of points
in the region of interest follows a Poisson law with mean
proportional to the area, and the location of each point does
not have influence on the location of the other points. The
other process we will use is a repulsive one, where points
cannot lie at a position lower than a specified distance. Using
these two processes we build a composed point process able
to describe many practical situations.

If the number of points is known, and their locations are
collectively independent, we have a binomial point process
or “uniformly distributed” points, denoted B(n). Samples
from a Poisson point process on a rectangular window W =
[a1, b1]× [a2, b2] ⊂ R2, with ai < bi, i = 1, 2, can be drawn
by first sampling from the random variable NA. If NA(ω) = n
(assume n > 0), then draw (xj , yj), 1 ≤ j ≤ n, independent
samples from independent random variables X ∼ U(ai, b1)
and Y ∼ U(a2, b2) uniformly distributed on the sides of the
window. These samples are the coordinates of the n points.

The Matérn’s Simple Sequential Inhibition process can be
defined iteratively as the procedure that tries to place n points
in W [13]. The first point is placed uniformly, and until all the
n points are placed or until the maximum number of iterations
tmax is reached, a new location is chosen uniformly on W . A
new point is placed there if the new location is not closer than
r to any previous point; otherwise the location is discarded,
the iteration counter is increased by one and a new location is
chosen uniformly. At the end, there are m ≤ n points in W
that lie at least r units from each other. This process describes
the distribution of non-overlapping discs of radii r/2 on W ;
denote it M(n, r) assuming W is known.

We build the “step process” by merging two Poisson pro-
cesses with different intensities on different supports W ′ and
W , such that W ′  W . A step point process, with parameters
a and λ > 0, is defined as two independent Point processes:
one with parameter λ on W \W ′, and the other with parameter
aλ on W ′. Without loss of generality we assume λ = 1
and denote this process as S(n, a). The compound process
on W = [0, 100]2, W ′ = [0, 25]2 and η = 1, is

C(n, a) =

 M(n, rmax(1− ea)) if a < 0
B(n) if 0 ≤ a ≤ 1
S(n, a) if a > 1,

where rmax is the maximum exclusion distance, set to rmax =
n−1/2 = 1/10. Negative values of a yield repulsive models;
when a → −∞ the process becomes more repulsive, tending
to the regular deployment. When 0 ≤ a ≤ 1 there is no
interaction between points, and we have the binomial model.



When a > 1 the model is attractive, with the concentration of
proportionally more points in W ′ due to the step process.

Repulsive processes are able to describe the intentional
but not completely controlled location of sensors as, e.g.,
when they are deployed by a plane at low altitude. Sensors
located by a binomial process could have been deployed from
high altitude, so their location is completely random and
independent of each other; this is the URP model. Attractive
situations may arise when sensors cannot either be deployed
or could function everywhere as, for instance, when they are
spread in a swamp: those that fall on a dry spot survive,
but if they drown they fail to function. An attractive process
is also able to describe the deployment when the designer
intentionally increases the node density in a given region. This
situation is desired to address the “energy hole” problem by
increasing the node density around the base station.

Once the signal f = F (ω), outcome of the Gaussian random
field with parameter s ∈ R is available, it will be sampled
at positions (x1, y1), . . . , (x100, y100) which, in turn, are the
outcomes of the compound point process C(100, a), a ∈ R.

B. The Energy Model

We consider the general energy model described in [6].
This model assumes that transmission and reception dominate
sensors energy consumption and, thus, disregards any other
energy spent in other tasks. In particular, we used the first-
order model, which considers that a node dissipates energy to
run the radio electronics and the power amplifier to transmit
data, and dissipates only the radio electronics to receive
data. The following equations describe the energy dissipation
involved in the communication task:

ETx(`, d) = Eelec `+ εamp ` d
2, and ERx(`, d) = Eelec `,

where ETx(`, d) is the total amount of needed energy to
transmit ` bits to distance d, Eelec is the dissipated energy
to run the radio electronics and εamp is the energy necessary
to run the power amplifier. Since the transmission range of
each sensor is rc (a constant value), the dissipated energy to
transmit and receive data is proportional only to the amount
of data involved in the communication.

We only accounted the total amount of transmitted and re-
ceived messages of each node involved in the communication.
This metric is related to the total energy depletion, regardless
the sensors and the wireless channels they are operating.

C. The Routing Model

We used a simple routing algorithm to estimate the lifetime
of the WSN induced by the topologies generated by the C(n, a)
point process and by the communication radius. This algorithm
is a variation of the gossip routing algorithm [14].

Each sensor reports its collected data by using a minimum
cost path to the base station, being the cost the number of hops
towards the base station. However, to distribute the energy
depletion as equally as possible, we constructed a routing tree
where the nodes store all neighbors that provide the minimum
cost to the base station. Each time the node transmits data

to the base station, it will choose, randomly, one of those
neighbor nodes that presents the same distance to the base
state to be its ancestral.

D. Coverage and Connectivity Models

We considered a WSN with homogeneous sensors with the
same sensing (rs) and transmission (rt) ranges, both perfect
circles. We calculate coverage as the union of the areas of the
sensing circles, intersected with the sensor field.

Connectivity is the percentage of sensors able to report their
information to the base station using a routing path. Two
sensors are able to reach each other if and only if they are
located within each other’s transmission range.

IV. SIMULATION RESULTS

A. Preliminaries

The main goal of our simulations is to evaluate (i) coverage,
(ii) connectivity, (iii) reconstruction error and (iv) lifetime.
While the first three metrics tend to favor repulsive deploy-
ments, the fourth has the opposite behavior. Due to the energy
hole problem, attractive deployments lead to better energy dis-
tribution, extending the network lifetime. The default scenario
is presented in Table I.

TABLE I
DEFAULT SIMULATION SCENARIOS PARAMETERS

Parameter Value
sink node 1 (bottom left-most node)
network size 100 nodes
communication radius 15m
event duration 50min
data rate 1 packet/min
sensing radius 5.4m
sensor field 100× 100m2

We used R v. 2.8.1 [15] for topology generation, and
SinalGo v. 0.75.31 for discrete event simulation. Details can
be obtained from the first author. Each situation was replicated
independently 30 times.

For the rest of this paper, a ∈ {−30,−15, 0, 5, 15, 30}
will be referred to as strongly repulsive, fairly repulsive,
independent, slightly attractive, fairly attractive and strongly
attractive processes, respectively. We studied 80 scenarios
varying n ∈ {100, 150, 200, 512}, a ∈ {0, 5, 15, 30} and
rc ∈ {5, 15, 20, 30, 50}.

Coverage and connectivity behaved as expected: improve
with repulsive processes, which tend to fill the sensed area.

B. Reconstruction error

We discretized the signals on a 100× 100m2 regular grid,
so the absolute value of the relative error is

ε(s,a)(F, F̂ ) =
1

104

∑
1≤i,j≤100

∣∣∣∣F (i, j)− F̂ (i, j)

F (i, j)

∣∣∣∣,
1Sinalgo, “Simulator for network algorithms,” 2008, Distributed Computing

Group - ETH-Zurich, 2008. [Online]. Available: {http://dcg.ethz.ch/projects/
sinalgo}



provided F (i, j) 6= 0, which is granted with probability 1
by the continuous nature of the Gaussian random field. We
studied 24 different scenarios , namely for the factors s ∈
{5, 10, 15, 20} and a ∈ {−30, 15, 0, 5, 15, 30}.

Figure 2 depicts the simulation results for the reconstruction
error: cells represent the scale factor s, and the curves repre-
sent the deployment process. We observe that, regardless the
deployment, the greater the scale of the Gaussian random field,
the lesser the reconstruction error. Regarding the deployment,
we observe that the more repulsive the process, the lesser the
reconstruction error; this is predictable, since there are only
100 sensors and the coverage rate is less than 50% under
the attractive deployment process. The reconstruction error
decreases when the coverage increases; thus, for this metric
the more repulsive the deployment, the better the quality.

Reconstruction Error
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Fig. 2. Estimated Reconstruction Error Densities

C. Lifetime

The lifetime of a sensor is the time it can receive and trans-
mit data until it runs out of energy. The whole network lifetime
is a more sophisticated subject and, for the sake of simplicity,
we only assess the total amount of messages transmitted
and received by the nodes situated one hop away from the
base station. For this, let us define the random variables that
model the total amount of transmitted and received messages,
respectively. We studied 72 different scenarios regarding those
random variables, namely, the factors n ∈ {100, 150, 200},
a ∈ {−30, 15, 0, 5, 15, 30} and rc ∈ {15, 20, 30, 50} for the
nodes located one hop away from the base station.

Figures 3(a) and 3(b) depict the simulation results in semi-
logarithm scale, respectively. The columns show the number

of nodes, the lines show the communication radius and the
colored curves show the deployment processes.

Figure 3(a) shows that when the transmission range is
high, e.g., 50 m, the curves present similar shape when the
network size grows. This follows from the fact that when the
communication radius grows, more sensors are able to send
their data directly to the base station, and a few nodes will
perform the relay role.

Strongly and fairly attractive deployment strategies behave
alike, i.e., they exhibit the lowest amount of data sent for
all situations. Slightly attractive processes also present low
amount of sent data, but the density is more spread, indicating
that the relay task is more concentrated in some nodes. When
the communication radius decreases, the variability increases
for all deployment processes, however, the variability increases
slower when the deployment process is attractive.

For communication radii 15, 20 and 30 under repulsive
(strongly and fairly) and independent processes one observes
multimodal curves. They indicate that the energy dissipation
is concentrated in few sensors and, therefore, the network
lifetime will be degraded in such situations.

Even for low values of the communication radius, such as
15m, attractive deployments split the relay task among the
nodes near the base station. For instance, with 100 nodes the
independent deployment tends to present few nodes distant one
hop from the base station. Therefore, these few sensors will
relay all data sent by all other sensors. This is the behavior that
we intend to avoid because these few sensors tend to run out
of battery early diminishing, thus, the overall network lifetime.

For communication radii 15, 20 and 30m with repulsive
deployment, curves are spread. It means that some nodes relay
lots of data packets, while others relay a few. Only when the
communication radius is high, repulsive deployments tend to
present few relayed data by the sensors.

Under attractive deployments, the number of sensors has
little influence on the transmitted data relayed by the nodes
close to the base station: though the number of data packets
increases, the number of sensors near the base station grows
proportionally, and they will split the relay task more evenly.
Although sensor density has little influence on the transmitted
data, it has strong influence on the coverage and connectivity.

Figure 3(b) shows that deployment has little influence on
the received messages in nodes one hop far from the base
station. The number of received data packets increases with
the number of nodes. This is important, since the dissipated
energy receiving messages is of the same order of magnitude
as that required to transmit. Therefore, the more attractive the
deployment, the better the distribution of energy among the
sensors situated close to the base station.

To improve lifetime without compromising data fidelity, an
attractive deployment may be used increasing the number of
sensors, but with care because when the number of sensors
grows, the number of received data packets also increases.
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Fig. 3. Estimated Transmitted and Received Messages Densities

V. CONCLUSIONS AND OUTLOOK

We presented a comprehensive evaluation of the influence
of the deployment strategy in four aspects of wireless sensor
networks namely, coverage, connectivity, reconstruction error
and lifetime. We conclude that: (i) coverage and connectivity
diminish with the attractivity of the deployment, although this
fact can be alleviated with the deployment of more sensor
nodes; (ii) reconstruction error increases with the attractivity
of the deployment, although this fact can be alleviated with
the deployment of more sensor nodes, as well; (iii) network
lifetime can be improved with the attractivity of the deploy-
ment.

A typical optimization problem is stated here, once cover-
age, connectivity and error conflict with network lifetime. To
address this problem some actions can be taken depending,
among other factors, on the project budget. Actually, the
network designer will decide how to deploy the nodes and
how many nodes will be necessary to maintain the QoS in
acceptable levels for the application at hand.

This work can be used as a guide for the network designer
to deal with those issues. The topology generator proposed in
this work, an open-source project, is available at http://www.
dcc.ufmg.br/∼hramos/topology. It is ready to be used in the
Sinalgo, but it can be extended to other simulation packages.
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