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Unified Asymptotic Performance of Communication
Systems in Fading Channels

Francisco Raimundo Albuquerque Parente, Flavio du Pin Calmon,
and José Cândido Silveira Santos Filho

Abstract— The performance of wireless communications sys-
tems is affected by many components of the fading phenomenon.
These components include clustering, nonlinearity, scattered
waves, and line of sight. Even though several fading distributions
exist which address a multitude of propagation conditions, in
many cases the fading models or the associated system perfor-
mance cannot be obtained in closed form. Therefore, it proves
very hard to understand how each fading component impacts sys-
tem performance. In this work, we introduce a unified asymptotic
characterization at high signal-to-noise ratio to obtain simple,
general closed-form expressions for the diversity and coding gains
of essential performance metrics: symbol error rate and outage
probability. Capitalizing on the fact that the asymptotic channel
distribution around the origin fully determines the diversity
and coding gains, our results provide new insights into how
each fading component ultimately affects the performance of
communication systems in fading channels.

Keywords— Asymptotic characterization, error rate, fading
channels, outage probability.

I. INTRODUCTION

Wireless communications are subject to several fading con-
ditions, including clustering, nonlinearity, scattered waves, and
line of sight. Some combinations of these conditions have been
incorporated into many probabilistic fading models, which
range from the simple one-parameter Rayleigh distribution
to the highly sophisticated seven-parameter α-η-κ-µ distri-
bution [1]. These models can be used to assess the system
performance in terms of metrics such as symbol error proba-
bility (SEP) and outage probability (OP), ultimately helping
optimize system design.

For many fading scenarios, an exact performance analysis
usually does not offer closed-form solutions [2]. Because of
that, it is challenging to address how each fading component
affects system performance. In order to overcome such diffi-
culty, some authors have resorted to an asymptotic analysis
at high (average) signal-to-noise ratio (SNR), a region of
most practical interest for wireless communications [3], [4].
However, such approach has been often explored on a case-
by-case basis [2], [5]–[8].

In this work we develop a unified asymptotic characteri-
zation to reveal how each of the fading components affects
system performance. To this end, we provide simple, unified
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closed-form expressions for the high-SNR SEP and OP of
communications systems in terms of two key asymptotic
parameters: the diversity and coding gains. Since the high-
SNR SEP and OP depend exclusively on the asymptotic
channel distribution around the origin [3], our main objective
is to find a comprehensive asymptotic channel distribution that
embraces a broad Gaussian class of fading scenarios. As shall
be demonstrated, the clustering and nonlinearity are the only
fading components that affect the diversity gain, whereas all
the addressed fading components affect the coding gain.

In what follows, f(·)(·) denotes probability density func-
tion (pdf); E[·], expected value; V[·], variance; (·)T , trans-
pose; log[·], the base-10 logarithm; Γ(·), the gamma func-
tion; Q(x) ,

∫∞
x

(1/
√

2π) exp(−x2/2)dx, the Q-function;
and “∼”, asymptotically equal to around zero, i.e., f(x) ∼
g(x) ⇐⇒ limx→0 f(x)/g(x) = 1.

II. PRELIMINARIES

In order to quantify wireless system performance, two me-
trics commonly used are the SEP and OP, whose formulation
relies on knowledge of the probability distribution that models
the fading channel. For the high-SNR regime, it was observed
by Wang and Giannakis [3] that the SEP and OP can be
characterized by the diversity and coding gains, which afford
simple parameterization in terms of the channel pdf around the
origin. We now revisit how this pdf determines the diversity
and coding gains of SEP and OP.

Initially, let B represent the channel power coefficient with
asymptotic pdf given by

fB(β) ∼ aB,0βbB,0 , (1)

where aB,0 and bB,0 are constants, and B is a nonnegative
random variable (RV). Considering an instantaneous SEP in
the form of Q(

√
νBγ̄),1 where ν is a positive constant that

depends on the signaling scheme, and γ̄ is the average SNR
when E[B] = 1, the average SEP (PE) can be expressed at
high SNR as [3]

PE ∼ (Gcγ̄)−Gd , (2)

where the diversity gain Gd and the coding gain Gc are
obtained in terms of aB,0 and bB,0 as

Gd =bB,0 + 1 (3a)

Gc =ν

[
2bB,0aB,0Γ(bB,0 + 3/2)√

π(bB,0 + 1)

]− 1
bB,0+1

. (3b)

In a similar manner, the OP (Pout) can be expressed at high
SNR as [3]

Pout ∼ (Ocγ̄)−Od , (4)

1This condition assumes additive white Gaussian noise.
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where the diversity gain Od and the coding gain Oc are
obtained as

Od =bB,0 + 1 (5a)

Oc =
1

γth

(
aB,0

bB,0 + 1

)− 1
bB,0+1

, (5b)

and γth > 0 is a certain outage SNR threshold. Besides the
system parameters ν and γth, note that the diversity and coding
gains of SEP and OP only depend on the parameters aB,0 and
bB,0 of the asymptotic channel power pdf around the origin.

Once aB,0 and bB,0 are accordingly expressed in terms of
physical fading parameters, we can outline how the fading
conditions affect system performance. To this end, we intro-
duce next a novel asymptotic analysis that leads to aB,0 and
bB,0 in terms of all aforementioned fading components.

III. ASYMPTOTIC ANALYSIS

In this section, we develop an asymptotic analysis conside-
ring a general fading scenario to ultimately reveal how fading
parameters impact high-SNR system performance.

A. General Fading Model
Following standard practice in the literature [1], we consider

a general fading model obtained from a sum of squared
independent Gaussian RVs. In this way, the channel power
B can be written as

B
α
2 =

M∑
i=1

X2
i , S, (6)

where α > 0 is a nonlinearity parameter, and each Xi is a
Gaussian RV with mean E[Xi] = mi and variance V[Xi] =
σ2
i . We can arrange the components Xi into the vector form

X , [X1 X2 · · · XM ]
T so that the multivariate pdf of X ,

fX(·), can be formulated in terms of its mean vector m ,
E[X] and covariance matrix Σ , E[(X −m)(X −m)T ].
Specifically, the positive-definite covariance matrix Σ can be
expressed as

Σ =


σ2

1 0 · · · 0
0 σ2

2 · · · 0
...

...
. . .

...
0 0 · · · σ2

M

 , (7)

whose inverse is given by

Σ−1 =


1
σ2
1

0 · · · 0

0 1
σ2
2
· · · 0

...
...

. . .
...

0 0 · · · 1
σ2
M

 . (8)

Accordingly, the multivariate Gaussian pdf of X can be
obtained as

fX(x) =

exp

[
−1

2
(x−m)TΣ−1(x−m)

]
[(2π)M det(Σ)]

1
2

. (9)

Considering this general fading model, we now determine
the asymptotic channel power pdf.

B. Asymptotic Channel Characterization

Our aim is to obtain the asymptotic pdf of B. We start
by deriving the asymptotic pdf of X , then of X2 ,[
X2

1 X
2
2 · · · X2

M

]T
, then of S, and finally of B = S2/α.

Using the Maclaurin series expansion of the exponential
function in (9) and taking its first term, the asymptotic pdf of
X can be written as

fX(x) ∼
exp

[
−1

2
mTΣ−1m

]
[(2π)M det(Σ)]

1
2

. (10)

For convenience, we let ki , m2
i /σ

2
i , ∀i, such that (10)

reduces to

fX(x) ∼ (2π)−
M
2 exp

[
−1

2

M∑
i=1

ki

]
M∏
i=1

1

σi
. (11)

Furthermore, via a simple transformation of variables, we can
obtain from (11) the asymptotic pdf of X2:

fX2

(
x2) ∼ (2π)−

M
2 exp

[
−1

2

M∑
i=1

ki

]
M∏
i=1

1

σixi
. (12)

In order to obtain from (12) the asymptotic pdf of S (defined
in (6)), we capitalize on a key finding for correlated RVs
[4]: under mild conditions, positive correlated RVs behave
asymptotically around zero as an equivalent set of mutually
independent RVs. Eq. (12) meets those conditions [4, eq. (5)].
Let {X̌2

i }Mi=1 be this set of independent RVs asymptotically
equivalent to {X2

i }Mi=1. Also, let the Maclaurin series expan-
sion of the pdf of each X̌2

i be given by

fX̌2
i

(
x̌2
i

)
=

∞∑
n=0

ai,n
(
x̌2
i

)bi,n ∼ ai,0 (x̌2
i

)bi,0 , (13)

and the Maclaurin series expansion of the pdf of S be
expressed by

fS(s) =

∞∑
n=0

ans
bn ∼ a0s

b0 , (14)

where ai,n, an, bi,n, and bn are constants, ∀i, n. Note that
ai,0

(
x̌2
i

)bi,0 and a0s
b0 denote the asymptote of fX̌2

i
(·) and

fS(·), respectively [4]. Comparing (12) with [4, eq. (5)], we
obtain ai,0 and bi,0 as

ai,0 = (2π)−
1
2 exp

[
− 1

2M

M∑
i=1

ki

]
M∏
j=1

σ
− 1
M

j (15a)

bi,0 = −1

2
, (15b)

and substituting (15) into [4, eq. (4)], we attain

a0 =

exp

[
−1

2

M∑
i=1

ki

]
2
M
2 Γ
(
M
2

) M∏
i=1

1

σi
(16a)

b0 =
M

2
− 1. (16b)

As a final step, we obtain the asymptotic pdf of B = S2/α

by performing once again a transformation of variables, which
leads to

fB(β) ∼ aB,0βbB,0 =
αa0

2
β
α(b0+1)−2

2 . (17)

2
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Using (16) and (17), aB,0 and bB,0 are then expressed as

aB,0 = α

exp

[
−1

2

M∑
i=1

ki

]
2
M+2

2 Γ
(
M
2

) M∏
i=1

1

σi
(18a)

bB,0 =
αM

4
− 1. (18b)

From (18), we can obtain a comprehensive characterization
of the asymptotic system performance in terms of the various
fading parameters, as provided next.

C. Diversity and Coding Gains

Based on the above analysis, we can use (18) to obtain the
gains for the SEP and OP, thereby providing an insightful
system performance characterization. Accordingly, substitu-
ting (18) into (3), we obtain the gains for SEP:

Gd =
αM

4
(19a)

Gc =ν

{
Mπ

1
2 2

M
2 (1−α

2 )Γ

(
M

2

)[
Γ

(
αM

4
+

1

2

)]−1

× exp

[
1

2

M∑
i=1

ki

]
M∏
i=1

σi

} 4
αM

. (19b)

Also, substituting (18) into (5), we obtain the gains for OP:

Od =Gd (20a)

Oc =
1

γth

{
M2

M
2
−1Γ

(
M

2

)
exp

[
1

2

M∑
i=1

ki

]
M∏
i=1

σi

} 4
αM

. (20b)

Note the implications of (19) and (20). For any values of
ν and γth, the diversity and coding gains of SEP and OP are
given in terms of the various elements of the fading model
in (6): the number of multipath clusters (M ), the nonlinearity
of the transmission medium and transceiver electronics (α),
the line of sight (mi), and the mean power of the scattered
waves (σ2

i ). In other words, we have a simple and thorough un-
derstanding about how each physical aspect of fading impacts
system performance at high-SNR conditions, usually required
in practice.

IV. PARTICULAR CASES

We can reduce the general fading model considered in the
previous section to a variety of scenarios and existing fading
distributions. Initially, we address the particular case where
the multipath clusters Xi are exchangeable RVs [9], which
we call commutative scenario.

A. Commutative Scenario

Consider the commutative scenario as the one where the
order of the RVs Xi in (6) is irrelevant. Under such constraint,
we can eliminate the indices to let mi = m, σi = σ, and
ki = k, ∀i. Using this into (19) and (20), the diversity and

coding gains reduce to

Gd =Od =
αM

4
(21a)

Gc =ν

{
σMMπ

1
2 2

M
2 (1−α

2 )Γ

(
M

2

)[
Γ

(
αM

4
+

1

2

)]−1

× exp

[
kM

2

]} 4
αM

(21b)

Oc =
1

γth

{
σMM2

M
2
−1Γ

(
M

2

)
exp

[
kM

2

]} 4
αM

. (21c)

From these expressions, we provide in Section V some
insights into the system performance in terms of each fading
parameter. Previously, we reduce (19) and (20) to many
existing fading models, as detailed next.

B. Existing Fading Models
There are many distributions available in the literature that

model the fading channel. In order to reduce our analysis to
each specific case by following a common notation used in
the literature [1], let

K ,

∑M
i=1 m

2
i∑M

i=1 σ
2
i

, P ,
Mx

My
, and Q ,

1

P

∑Mx
i=1 ki∑Mx+My

i=Mx+1 ki
,

where Mx > 0 and My > 0 are the number of multipath
clusters of in-phase and quadrature components, respectively,
such that M = Mx +My.

Table I presents the general gains for many fading models,
from the simple Rayleigh distribution to the highly sophisti-
cated α-η-κ-µ distribution. Assume that σ2

x and σ2
y denote the

variances of the in-phase and quadrature components of the
corresponding fading model, respectively.

V. NUMERICAL RESULTS

In this section, we evaluate how the diversity and coding
gains vary with the fading parameters M , α, σ, and k. In
particular, we illustrate the analysis under the commutative
scenario, with ν = γth = 1. For convenience, in each figure
we fix the values of some parameters, where σ = 1 represents
scattered waves of unit powers; k = 0, absence of line of sight;
α = 2 and α = 10, linear and nonlinear media, respectively.

A. Diversity Gain

The analysis for the diversity gains is quite simple: note
from (21a) that Gd and Od are directly proportional to the
medium nonlinearity (α) and the clustering (M ). This indicates
that as α and M increase, so does the magnitude of the
slope in the SEP and OP curves, as expected from (2)
and (4). Therefore, the fading parameters α and M increase
the diversity gain, as illustrated in Figs. 1, 2, 3, and 4, and
ultimately dominate the system performance at high SNR.

B. Coding Gain

The analysis for the coding gains is less straightforward.
Figs. 1, 2, 3, and 4 depict the coding gains in terms of M , σ,
k, and α, respectively. As M increases, Fig. 1 shows that Oc
increases and, more interestingly, Gc decreases. However, this

3
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TABLE I: Diversity and coding gains for existing fading models.

Fading
Model

Original
Parameterization

Our
Parameterization Gd = Od Gc Oc

Rayleigh (Ω) σx = σy =

[
Ω

2

] 1
2

1 2νΩ
Ω

γth

Hoyt (b,Ω)
σx =

[
Ω(1 + b)

2

] 1
2

σy = σx

[
1− b
1 + b

] 1
2

1 2νΩ [(1 + b) (1− b)]
1
2

Ω

γth
[(1 + b) (1− b)]

1
2

Rice (k,Ω) σx = σy =

[
Ω

2(k + 1)

] 1
2

K = k

1 2νΩ
exp [k]

k + 1

Ω

γth

exp [k]

k + 1

Nakagami-m (m,Ω) σx = σy =

[
Ω

2m

] 1
2

M = 2m

m νΩ

2

[
2
√
πΓ(m)

mm−1Γ
(
m+ 1

2

)] 1
m

Ω

γth

[
Γ(m)

mm−1

] 1
m

Weibull (α,Ω) σx = σy =

[
Ω

2

] 1
2 α

2
ν

2

[
2
√
πΩ

Γ
(
α
2 + 1

2

)] 2
α

Ω
2
α

γth

α-µ (α, µ, r̂) σx = σy =

[
r̂α

2µ

] 1
2

M = 2µ

αµ

2
νr̂2

2

[
2
√
πΓ(µ)

µµ−1Γ
(
αµ
2 + 1

2

)] 2
αµ

r̂2

γth

[
Γ(µ)

µµ−1

] 2
αµ

η-µ (η, µ, r̂)

σx =

[
ηr̂2

2µ(η + 1)

] 1
2

σy =
σx√
η

M = 4µ

2µ νr̂2

2

[
4
√
πηµΓ(2µ)

µ2µ−1(η + 1)2µΓ
(
2µ+ 1

2

)] 1
2µ

r̂2

γth

[
2ηµΓ(2µ)

µ2µ−1(η + 1)2µ

] 1
2µ

κ-µ (κ, µ, r̂)
σx = σy =

[
r̂2

2µ(κ+ 1)

] 1
2

M = 2µ

K = κ

µ νr̂2

2

[
2
√
πΓ(µ) exp [κµ]

µµ−1(κ+ 1)µΓ
(
µ+ 1

2

)] 1
µ

r̂2

γth

[
Γ(µ) exp [κµ]

µµ−1(κ+ 1)µ

] 1
µ

η-κ
(Beckmann) (η, κ, r̂)

σx =

[
ηr̂2

(η + 1)(κ+ 1)

] 1
2

σy =
σx√
η

K = κ

1 νr̂2
4
√
η exp

[
κ(η+1)(q+1)

2(ηq+1)

]
(η + 1)(κ+ 1)

r̂2

γth

2
√
η exp

[
κ(η+1)(q+1)

2(ηq+1)

]
(η + 1)(κ+ 1)

α-η-µ (α, η, µ, r̂)

σx =

[
ηr̂α

2µ(η + 1)

] 1
2

σy =
σx√
η

M = 4µ

αµ νr̂2

2

[
4
√
πµ1−2µηµΓ(2µ)

(η + 1)2µΓ
(
αµ+ 1

2

)] 1
αµ

r̂2

γth

[
2ηµΓ(2µ)

µ2µ−1(η + 1)2µ

] 1
αµ

α-κ-µ (α, κ, µ, r̂)
σx = σy =

[
r̂α

2µ(κ+ 1)

] 1
2

M = 2µ

K = κ

αµ

2
νr̂2

2

[
2
√
πµ1−µΓ(µ) exp [κµ]

(κ+ 1)µΓ
(
αµ
2 + 1

2

) ] 2
αµ

r̂2

γth

[
Γ(µ) exp [κµ]

µµ−1(κ+ 1)µ

] 2
αµ

α-η-κ-µ (α, η, κ, µ, p, q, r̂)

σx =

 ηr̂α (p+1)
(η+1)

2µp(κ+ 1)

 1
2

σy = σx

[
p

η

] 1
2

,M = 2µ

K = κ, P = p,Q = q

αµ

2

νr̂2

2


2
√
π(p+ 1)µ

(
η
p

) pµ
p+1

µµ−1(η + 1)µ(κ+ 1)µ

×
Γ(µ) exp

[
κµ(η+1)(pq+1)

(p+1)(ηq+1)

]
Γ
(
αµ
2 + 1

2

)


2
αµ

r̂2

γth


(p+ 1)µ

(
η
p

) pµ
p+1

Γ(µ)

µµ−1(η + 1)µ(κ+ 1)µ

× exp

[
κµ(η + 1)(pq + 1)

(p+ 1)(ηq + 1)

]} 2
αµ

a See [1, Sec. VI] for further details on the original parameterization of the existing fading models.
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Fig. 1: Diversity and coding gains as function of the number
of summands for α = 2, σ = 1, and k = 0.
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Fig. 2: Diversity and coding gains as function of the standard
deviation for varying α, M = 2, and k = 0.

does not necessarily mean that the SEP increases, since the
diversity gain Gd = αM

4 increases with M , and this latter
aspect dominates the system performance at high SNR, as
already mentioned. In Fig. 2, σ increases the coding gains
by (40/α) log[σ] dB, and in Fig. 3, k increases them by
20(k/α) log[e] dB, where e is the Euler’s number. These
three figures reveal that a growth in the number of multipath
clusters (M ), in the power of scaretted waves (σ2), or in
the power of specular components (m2) improves the system
performance. Indeed, such growth corresponds to more signal
replicas (M) or signal power (σ2 and m2) reaching the
receiver, thereby decreasing metrics such as SER and OP. In
Fig. 4, the coding gains approach infinity as α approaches
zero, a region that corresponds to a severe fading condition [1].
Conversely, as α increases, Oc approaches unity (zero decibel)
and Gc approaches zero. In this case, even though Gc tends
to deteriorate the channel as α approaches infinity, note that
Gd = αM

4 is also function of α, which dominates the SEP at
high SNR. Hence, the system performance improves when the
parameters M , σ, k, and α increase, as expected [10], [11].

VI. CONCLUSIONS

In this work we have proposed a simple and unified
asymptotic performance analysis for communications systems
operating over fading channels. The proposed analysis offers
insights on how fading parameters affect wireless system
performance at high SNR. This can be readily used to evaluate
many communications schemes operating in a broad family of
propagation scenarios, thus helping optimize system design.
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Fig. 3: Diversity and coding gains as function of the power
ratio for σ = 1 and some combinations of M and α.
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Fig. 4: Diversity and coding gains as function of the nonline-
arity for varying M , σ = 1, and k = 0.
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